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Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following

chemotherapy is part of standard treatment protocol for patients with acute myeloid

leukemia (AML). FUS-ERG+ AML is rare but has an extremely poor prognosis even with

allo-HSCT in remission, possibly due to its a leukemia stem cell (LSC)-driven disease

resulting in chemotherapy resistance and a novel therapy is urgently required. It has

been reported that FUS-ERG-positive AML expresses CD123, a marker of LSC, in some

cases. CD123-targeted CAR T cell (CART123) is promising immunotherapy, but how to

improve the complete remission (CR) rate and rescue potential hematopoietic toxicity still

need to explore.

Case Presentation: We used donor-derived CART123 as part of conditioning regimen

for haploidentical HSCT (haplo-HSCT) in a patient with FUS-ERG+ AML who relapsed

after allogeneic transplantation within 3 months, resists to multi-agent chemotherapy and

donor lymphocyte infusion (DLI) and remained non-remission, aiming to reduce these

chemotherapy-resistant blasts and rescue potential hematopoietic toxicity. The blasts

in BM were reduced within 2 weeks and coincided with CAR copies expansion after

CART123 infusion. The patient achieved full donor chimerism, CR with incomplete blood

count recovery, and myeloid implantation.

Conclusion: Our results hints that CART123 reduces the chemotherapy-resistant

AML blasts for FUS-ERG+ AML without affecting the full donor chimerism and

myeloid implantation.

Keywords: chimeric antigen receptor, CD123, allogeneic hematopoietic stem cell transplantation, acute myeloid

leukemia, cytokine release syndrome, graft-vs-host disease, FUS-ERG
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
is part of standard treatment protocol for patients with high-
risk acute myeloid leukemia (AML). In some cases, however,
even allo-HSCT in remission still could not overcome the poor
prognosis, FUS-ERG+ AML patients are one of them (1–3).
FUS-ERG fusion gene is formed by the translocation t(16;21)
(p11;q22), which is a rare reciprocal chromosomal change. This
translocation has been most frequently reported in AML, with an
incidence of 1% (4). To date, more than 100 patients with FUS-
ERG+ AML have been described in patients from 1 to about 60
years of age, of which most are children (1–3, 5). In childhood,
FUS-ERG+ AML patients who achieved MRD-negative showed
no significant difference in event-free survival (EFS) compared
to that of MRD-positive, possibly due to its a leukemia stem cell
(LSC)-driven disease and cannot be successfully eradicated with
current treatment protocol (2). Moreover, 4 years EFS of FUS-
ERG+ AML is 7%, while the high-risk group is 45%, indicating
an inferior prognosis of FUS-ERG+ AML (2). Furthermore,
the FUS-ERG+ AML patients with leukemia burden before
transplantation even had a poorer prognosis than those with
complete remission (CR) (1). Thus, these patients urgently
require novel forms of therapy.

Until now, CD123 positive in FUS-ERG+ AML patients was
reported in several studies (1, 6–8). CD123 is expressed in
40–93% of patients with AML and is one of the significant
markers of LSC when expressed at meager amounts or not
found in healthy CD34+ hematopoietic cells (9, 10). Given
increased research on LSC in the past two decades, researchers
found that LSC is quiescent for a long time and the possible
origin of leukemic blasts, which represent critical factors for
chemotherapy resistance (11). This finding makes CD123 one of
the most promising targets for AML treatment. Also, CD123 is
generally expressed in somemyeloid progenitor cells, monocytes,
plasmacytoid dendritic cells (pDC), basophils, and endothelial
cells (12, 13).

Chimeric antigen receptor (CAR) T cell targeting CD19 have

demonstrated remarkable potential in B cell malignancies (14–

17). At present, research on CAR T cell for the treatment of

AML has drawn considerable attention worldwide. Preclinical

data have revealed several targets, such as CD44v6, FRβ, CD38,
FLT-3, CD7, and CLEC12A. Targets, such as Lewis Y, CD33,
CD123, and NKG2D-ligands, have been applied to clinical trials
(18). To date, several groups have reported different clinical
results of CD123-targeted CAR T cell (CART123). The first
patient who received CART123 achieved a partial remission
(PR) (19). Researchers from Cellectis recently reported two
patients treated with UCART123, and both patients rapidly
developed severe cytokine release syndrome (CRS) and capillary
leak syndrome (CLS), one of whom died (20). The clinical results
of “biodegradable” T cells that were electroporated with anti-
CD123 CAR mRNA revealed no anti-tumor effect and toxicities
other than fever or CRS (21). Although the outcome of Budde
L’s study exhibited that the hematopoietic toxicity of CART123
is quite limited, the CR rate is still needed to be improved (22).
From the preliminary clinical results of CART123, the efficacy is

much lower than that of CD19-targeted CAR T cell (CART19),
possibly due to the specificity of targets. Therefore, the efficacy
of CART123 remains to be improved. Considering the poor
prognosis of FUS-ERG+ AML patients, a stronger treatment
should be given.

Although a high objective response rate was achieved after
CART19, the high relapse rate remains the major problem (23–
25). It is gratifying that remission induced by CAR T cell can
be consolidated by allo-HSCT (26–29). Therefore, CAR T cell is
more likely to be a mean of bridging transplantation to enhance
the efficacy of transplantation by eliminating tumors. Moreover,
it can’t be ignored that preclinical studies have demonstrated that
CART123 causes severe cytopenia, and allo-HSCT could rescue
the hematopoietic toxicity caused by CART123 in a mouse model
(30, 31). Taken together, donor-derived CART123 was selected as
part of conditioning regimen for haplo-HSCT to treat a patient
with FUS-ERG+ AML relapse after allo-HSCT.

CASE PRESENTATION

Background of Patient
A 25-year-old male was diagnosed with AML-M2 1 year
ago, according to the French-American-British classification.
Bone marrow (BM) morphology revealed 62.2% blasts, and
peripheral blood (PB) was manually sorted by 39% blasts. The
morphology examination exhibited megakaryocyte dysplasia,
erythrophagocytosis, vacuolation in both cytoplasm and nucleus
in leukemia cells in BM (Figures 1A–D).

Immunophenotyping by flow cytometry (FCM) analysis
revealed positive results for CD34, CD38, HLA-DR, CD13,
CD33, CD15, CD64, CD11b, CD56, CD117, CD123, MPO,
and CyCD3 in BM. His karyotype showed 46, XX, t(4;8)
(q28;q24.1,t(16;21) (p11.2;q22) (20) /46, XY (1) (Figure 1E). The
FUS-ERG fusion gene was positive at 21.96% quantitatively in
BM. He received induction chemotherapy DA (daunorubicin,
cytarabine) and reinduction MA (mitoxantrone, cytarabine) and
achieved CR. Then, he received two cycles of chemotherapy
MA and IDA (idarubicin, cytarabine) and achieved minimal
residual disease (MRD) negative by FCM. He received a
human leukocyte antigen (HLA)-matched unrelated donor
allo-HSCT after cyclophosphamide and total body irradiation
(TBI) as preconditioning followed by Cyclosporine A (CsA),
mycophenolate mofetil (MMF), basiliximab and short-term
Methotrexate (MTX) for prophylaxis of graft-vs-host disease
(GVHD). He achieved MRD-negative CR 1 month after HSCT
but relapsed 2 months later.

Then, he successively received DCAG (decitabine, cytarabine,
aclacinomycin, G-CSF), DMA (decitabine, mitoxantrone, Ara-
c), and CLAG (cladribine, Ara-c, G-CSF) combined with donor
lymphocyte infusion (DLI) and achieved transient CR with MRD
positive. He developed an anal fissure and perianal abscess,
and the infection was controlled by anti-infective therapy. He
subsequently relapsed 1 month later with central nervous system
leukemia (CNSL) and was administered four cycles of Ara-c,
MTX, and DXM by intrathecal injection and CLAG + DLI.
CNSL was controlled, but the disease progressed (Figure 2A).
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FIGURE 1 | Morphologic examination of leukemic cells obtained from bone marrow aspirates exhibit (A) Leukemic cells with nucleonic vacuolation. (B)

Megakaryocyte dysplasia (C) hemophagocytosis (D) cytoplasmic vacuolation. (E) G-banded bone marrow karyogram showing 46,XY,t(4;8)(q28;q24.1),

t(16;21)(p11.2;q22). Black arrows indicate abnormal karyotypes.
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FIGURE 2 | Evaluation of clinical response and hemogram changes during treatment. (A) Changes in tumor burden and donor chimerism during treatment in BM. *

data from day 56 were obtained from PB samples because the BM samples were unobtainable. (B) Hemogram changes during treatment. (C) Process of

donor-derived CART123 infusion and haplo-HSCT. The patient received a RIC regimen of TVFB and CART123 infusion. Given that the patient possibly developed an

(Continued)
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FIGURE 2 | intense reaction during ATG infusion, basiliximab was administered. CsA/MTX/MMF was administered for GVHD prophylaxis after PBSC. Thus, PBSC

was infused on day 0 and 1. Due to poor implantation, the patient received infusions of PBSC again on days 18 and 19. CART123, CD123-targeted chimeric antigen

receptor (CAR) T cell; BM, bone marrow; FCM, flow cytometry; PB, peripheral blood; CRi, complete remission (CR) with incomplete blood count recovery; PLT,

platelet; Hb, hemoglobin. DA, daunorubicin, cytarabine; MA, mitoxantrone, cytarabine; IDA, idarubicin, cytarabine; allo-HSCT, allogeneic hematopoietic stem cell

transplantation; DCAG, decitabine, cytarabine, aclacinomycin, G-CSF; DMA, decitabine, mitoxantrone, Ara-c; CLAG, cladribine, Ara-c, G-CSF; DLI, donor lymphocyte

infusion; TVFB, therarubicin, teniposide, fludarabine, busulfan; RIC, reduced-intensity conditioning; THP, therarubicin; FLU, fludarabine; VM-26, teniposide; Bu,

busulfan; CsA, Cyclosporine A; MMF, mycophenolate mofetil; MTX, Methotrexate; Cy, Cyclophosphamide; haplo-HSCT, haploidentical hematopoietic stem cell

transplantation; PBSC, peripheral blood stem cell; ATG, anti-thymocyte globulin; GVHD, graft-vs-host disease.

Treatment of a Patient With CART123 as
Part of Conditioning for Haplo-HSCT
The patient received reduced-intensity conditioning (RIC)
regimen of TVFB (therarubicin 60mg on d1 and 40mg on d2-
3; teniposide 200mg on d1 and 150mg on d3 and d5; fludarabine
50mg on d1-5; and busulfan 3 mg/kg on d6-8) and CART123
1 day after preconditioning. The total infused CART123 was 1.1
× 108 cells, and 9 × 107 cells (CAR+ 80.2%) were CAR+ cells
(1 × 106/kg). This second-generation CAR consisted of anti-
CD123 single chain fragment variable (scFv), CD8a hinge region,
CD8 transmembrane domain, 41BB costimulatory domain, and
CD3ζ cytoplasmic region. Truncated human Epidermal Growth
Factor Receptor (EGFR) polypeptide (tEGFR) was integrated
with CAR gene through a P2A peptide (Figure 3A). The viability
was 89.0%, and the CD4+/CD8+ ratio was 1.81. Of the infused
cells, 98.2% were CD3+ cells principally composed of the CD8+

subset (30.2%) and CD4+ subset (54.7%), and 8.43% and 90%
of CAR+ cells were characterized with the central memory
phenotype (CD45RO+/CD62L+) and effect memory phenotype
(CD45RO+/CD62L−), respectively (Figure 3B). Both the stem
cells and the CAR T cells were from his father, who exhibited
a 5/10 HLA loci matching and ABO incompatibility with the
patient. Subsequently, 4 days after CART123 infusion, anti-
thymocyte globulin (ATG; 2.5 mg/kg/d 3d) was administrated
for prophylaxis GVHD. However, during the second infusion
of ATG, the patient developed tachypnea, tachycardia, and
persistent hypoxemia. Given these serious side effects, the third-
day infusion of ATG was canceled. Instead, the prophylactic
regimen is adjusted to basiliximab (20 mg/d; days 0, 4, and 8),
CsA, MTX (0.33g d1 0.02g d3, 6), mycophenolate mofetil (MMF;
1.8g 1/day 1.5g 1/night), and ATG (2.5 mg/kg/d 2d). Granulocyte
colony-stimulating factor–mobilized peripheral blood stem cells
(G-PBSC) was infused (mononuclear cells 11.77 × 108/Kg,
CD34+ 4.8× 106/Kg, CD3+ 4.1× 108/Kg) 6 days after CART123
infusion. Considering the potential hematopoietic toxicity of
CART123, the second infusion of PBMC will be performed
to promote implantation if the hematopoietic system remains
unrecovered within about 14 days (Figure 2C).

Response to Treatment
The blasts in BM decreased from 40.8 to 10.3% by FCM 6
days after CART123 infusion and decreased from 38 to 8% by
morphology 14 days after CART123 infusion. On day 18, the
second donor engraftment achieved 97.7% in BM. Although G-
CSF was administrated to promote implantation from day 6, the
hematopoietic system remains unrecovered until day 16. Thus,
cyclophosphamide (4150mg) was administered as conditioning

regimen and G-PBSC was infused again on day 18 and day
19 (mononuclear cells 14.28 × 108/Kg, CD34+ 4.74 × 106/Kg,
CD3+ 4.44 × 108/Kg). On day 32, blasts in BM were 0.5, 0.05,
0.042, and 0.02% by morphology, FCM, Wilms tumor-1 (WT1)
and FUS-ERG detection, respectively. Compared to the first allo-
HSCT, the second allo-HSCT was conducted in non-remission
status using a RIC regimen, indicating the anti-leukemic activity
of CART123. The patient achieved myeloid implantation on day
42 but was not weaned from platelet (PLT) and red blood cell
(RBC) transfusion (Figures 2A,B).

Expansion of CAR T Cell
The proportion of T lymphocytes (CD3+, CD4+, and CD8+)
in PBMC was significantly increased after CART123 infusion.
Then, T cells were sharply reduced after the administration of
medications, such as methylprednisolone, ATG, and basiliximab
(Figure 3C). Direct evidence of CART123 amplification was
detected by qPCR (Figure 3D).

Toxicities and Side Effects
CRS

The patient developed a fever (>39◦C), hypotension (92/58
mmHg) and pneumonia within 24 h after infusion, and these
effects were evaluated as grade 3 CRS. He was immediately
administered tocilizumab, a pressor agent and empirical anti-
infective therapy. Assessment of cytokines in serum revealed
an increasing trend for IL-6 and IFN-γ, and the effects in
IL-6 was most obvious. Four days later, dyspnea, progressive
pneumonia, and fever persisted (up to 41◦C), and these features
were evaluated as grade 4 CRS. The changing trend of C-
reactive protein (CRP), lactate dehydrogenase (LDH), and
body temperature was consistent with the level of cytokines
and the clinical symptoms of the patient. Considering that
tocilizumab on days −5 (240mg) and −3 (400mg) was invalid,
methylprednisolone was administered from days −2 to 8 (day
4–7: 2 mg/kg for the first dose, 1 mg/kg q12h; d8-10: 2 mg/kg
q12h) and the dose was gradually decreased. CRS was rapidly
controlled after the infusion of methylprednisolone and ATG,
with the decline of CRP, LDH, body temperature, and IFN-γ
(Figures 4A–C).

Infections

The patient has an anal fissure before transplantation, and
then it progressed to anal fistula with perianal infection after
transplantation. However, the perianal infection caused repeated
sepsis and pneumonia. Intermittent fevers occurred and were
accompanied by sharp elevations in CRP and LDH after allo-
HSCT. Repeated anti-infective, symptomatic and supportive
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FIGURE 3 | CAR design and expression; the expansion of CART123. (A) The structure of retroviral vectors encoding anti-CD123 CARs (32). The 41BB CAR

consisted of anti-CD123 scFv FMC32716, a CD8a hinge region, CD8 transmembrane and cytoplasmic regions, and a CD3ζ cytoplasmic region. tEGFR was

connected with the anti-CD123 CAR via the P2A peptide in this investigation. (B) CAR expression and CD3, CD4, CD8, CD45RO, and CD62L on T cells was

detected by flow cytometry. CAR expression on T cells was detected by anti-EGFR antibodies. (C) Changes in the proportion of T lymphocytes in PB after CART123

infusion. (D) Changes in CAR copies in PB after CART123 infusion by qPCR. CAR, chimeric antigen receptor; CART123, CD123-targeted CAR T cell; PB, peripheral

blood; qPCR, quantitative polymerase chain reaction; EGFR, human Epidermal Growth Factor Receptor.

treatment was administered to the patient and exhibited effective
results. On day 28, he developed disseminated intravascular
coagulation (DIC) due to infection and was controlled by the
symptomatic treatment (Figure 4C).

GVHD

On day 32, after CRi was achieved, he soon developed
fever, vomit, stomachache, and severe diarrhea. Total
bilirubin (TBiL) progressively increased, mainly direct
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FIGURE 4 | Trends of serum cytokines, body temperature, and major blood biochemical indexes after CART123 infusion. (A) Cytokines changed after CART123

infusion. Serum cytokine levels were measured at the indicated time points before or after CART123 and PBSC infusions. (B) Changes in body temperature after

CART123 infusion. (C) Changes in CRP and LDH levels after G-PBSC infusion. (D) Changes in Cre, TBiL, DBiL, and ALT levels after G-PBSC infusion. CART123,

CD123-targeted chimeric antigen receptor (CAR) T cell; PBMC, peripheral blood mononuclear cell; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; CRP,

C-reactive protein; ALT, Alanine transaminase; aGVHD, acute graft-vs-host disease; CsA, Cyclosporine A; MMF, mycophenolate mofetil; GC, glucocorticoids;

UCB-MSC, umbilical cord blood mesenchymal stem cells; DIC, disseminated intravascular coagulation; LDH, lactate dehydrogenase; Cre, creatinine; TBiL, total

bilirubin; DBiL, direct bilirubin.

bilirubin (DBiL). He was diagnosed with aGVHD and
administered by CsA, glucocorticoids (GC), MMF, basiliximab,
tacrolimus, and maraviroc were successively for the
treatment of aGVHD. On day 48, a total number of 7 ×

107 umbilical cord blood mesenchymal stem cells (UCB-
MSC) were administered for the treatment of aGVHD.

Finally, he was diagnosed with grade IV aGVHD involving
liver and gut. In the final stage, creatinine increased
progressively, reflecting the deterioration of renal function.
Unfortunately, the patient died of aGVHD, severe pneumonia,
intestinal obstruction, and multiple organ failure on day 56
(Figure 4D).
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DISCUSSION

Still, relapse after allo-HSCT remained a ticklish question
(33). In addition, for the FUS-ERG+ AML patients, who
poorly response to standard treatment and have a dismal
outcome, a novel therapy is urgently required (3). CART123
is promising immunotherapy targeting AML blasts and LSC.
Compared to CART19, the preliminary clinical results of
CART123 for patients with AML remained to be improved,
possibly due to the specificity of targets. CART123 serves
as a novel conditioning regimen to induce remission and
bridges to transplantation is promising (34). However, the low
remission rate limits this scheme. Also, prolonging the interval
for transplantation may result in serious complications, such
as infection and hemorrhage possibly caused by CART123
(30, 31). Thus, we designed and conducted a treatment using
chemotherapy combined with donor-derived CART123 as a
precondition of haplo-HSCT in a patient with FUS-ERG+ AML
relapse after allo-HSCT. Theoretically, CART123 could kill the
CD123+ LSC, which is resistance to chemotherapy, improving
the effect of allo-HSCT. Meanwhile, immunosuppressors,
including ATG and basiliximab, might kill or inhibit the
proliferation of the CAR T cells (35, 36), and subsequent
allo-HSCT could serve as a rescue for possibly hematopoietic
toxicity of CART123.

Numerous reports suggested that second allo-HSCT
may produce a better prognosis for patients with favorable
performance status, remission at the time of the second
transplant and most importantly, a long interval between
initial transplant and relapse (37, 38). However, this FUS-
ERG+ patient with AML relapsed within 3 months after the
first allo-HSCT and maintained non-remission before the
second allo-HSCT. The patient had progressive disease after a
total of nine prior lines of therapy including ineffective DLI.
Overall, this patient had an extremely dismal prognosis. He
received a donor-derived CART123 as part of conditioning
regimen for haplo-HSCT and achieved CRi status, full donor
chimerism, and myeloid implantation. This is the first report
of allogeneic CART123 as part of conditioning regimen for
haploidentical HSCT in the treatment of relapsed AML after
transplantation. This regimen could provide possible options
for AML patients with an abysmal prognosis, including who is
FUS-ERG positive.

CRS is the most common adverse effect after CAR T cell
treatment, with an incidence ranging from 18 to 100% while
severe CRS from 8 to 46% in the previous major CART19
clinical studies (39). Onset of CRS is approximately 1-6 days
after CAR T cells infusion, with >95% of CRS occurring
before day 12 following CAR T infusion (40). After CART123
infusion, this patient rapidly developed grade 4 CRS and
controlled by glucocorticoid and other immunosuppressors.
Although CRS was mostly controlled before PBMC infusion,
a high level of IL-6 still exists. It can be seen from the
previous study that the decrease in IL-6 levels lags behind
other cytokines (41). It is reported that the development
of CRS is related to factors significantly impacting in vivo
CAR T cell expansion, such as disease burden, intensity of

precondition regimen, the CAR T cell dose, and design of
CAR (40, 42, 43). Thus, the rapidly occurred severe CRS
of our patient was possibly related to high disease burden
and intensive chemotherapy. It still remains unknown whether
the antigen target of the CAR affects the rate of CRS (43).
However, CD123 is the α subunit of IL-3 receptor, which
might have critical roles in inflammation and anti-apoptosis
(44–48). As previously reported, severe CRS and CLS also
occurred in two patients in Cellectis’ UCART123 clinical
trials. Our previous study demonstrated that the expression
of CD123 on endothelial cells could be upregulated when co-
cultured with CART123 and IFN-γ/TNF-α could aggravate
endothelial damage caused by CART123 in vitro, although the
underlying mechanism needs further study (32). Therefore,
the upregulation of CD123 expression under inflammation or
apoptosis possibly aggregate CRS and even CLS, which need
to pay more attention in subsequent research. Tocilizumab is
now the FDA-approved standard treatment and widely used
for CAR-T-cell-induced severe or life-threatening CRS, and a
dose of 8 mg/kg is recommended for patients ≥30 kg, although
the optimal dose is undefined (49, 50). Seventy percentage of
patients responded to 1–2 doses of tocilizumab within 14 days,
with a median time to response of 4 days (49, 50). Thus,
additional immunosuppression with corticosteroids is needed in
some cases of severe CRS refractory to tocilizumab. Although
corticosteroids suppress T-cell function and/or induce T-cell
apoptosis (51–53), it does not affect short-term anti-tumor
efficacy of CART19 (54, 55). Recently, Gardner et al. (56)
shown that early intervention with the use of tocilizumab and/or
corticosteroids in subjects with early signs of CRS reduces the
frequency of CRS without attenuation anti-leukemic potency of
CART19. Therefore, early, adequate, full-course treatment for
CRS may benefit patients more.

However, the patient developed several complications after
allo-HSCT, including infections, poor graft function (PGF),
and GVHD, which closely related to his disease status. Park
et al. (57) showed that the presence of grade ≥3 CRS
was a factor independently associated with any infection
especially bloodstream infection, but whether tocilizumab or
corticosteroids used to treat high-grade CRS increases the
risk of infection independent of CRS remain unknown. Also,
Hill et al. (58) demonstrated most infections occurred early
after CAR T cells infusion and CRS severity was the only
factor after CAR T cells infusion associated with infection
in a multivariable analysis. Tocilizumab has been shown
to confer increased risk of cytopenias and infections in
patients with rheumatoid arthritis (59). Until now, although
both corticosteroids and/or tocilizumab may increase infection
risk in patients with severe CRS (58), further study will
be required.

PGF, which can be a life-threatening complication, occurs
in 5–27% of patients after allo-HSCT (60–63). The patient
experienced a primary PGF after allo-HSCT. He achieved full
donor chimerism and myeloid implantation while presented
with thrombocytopenia and erythropenia associated with a
hypercellular marrow after transplantation. The occurrence
of PGF in this patient after allo-HSCT may be related
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to major ABO incompatibility, HLA mismatching, GVHD,
the RIC regimen, and septicemia, according to previous
studies (61, 63–66). Moreover, CART123 remained detectable
14 days after CART123 infusion. Although the persistence
of CART123 is short, it is consistent with the reduction
in tumor burden and the occurrence of CRS. It may
be due to the use of ATG and basiliximab that might
kill or inhibit the proliferation of the CAR T cells (35,
36). This result indicated that CAR T-cell ablation using
cetuximab, an anti-EGFR antibody (67), is not necessary before
transplantation. Although full donor chimerism was achieved
in the presence of CART123, the myeloid implantation was
achieved after the second infusion of PBMC, accompany
with the CAR copies undetectable. Thus, the persistence of
CART123 may affect the development and differentiation
of hematopoietic cells. Therefore, the interval between the
infusion of CART123 and G-PBSC need to be explored in
further research, to guarantee the elimination of CART123
before allo-HSCT.

In this study, the patient developed a fatal aGVHD after
achieved CRi. It is most likely related to recurrent infections after
transplantation. Infectious diseases can theoretically promote
the elevation of inflammatory cytokines after allogeneic HSCT
and the activation of various immune effector cells, which
might lead to aggravation of acute GVHD (68). Unfortunately,
perianal infections in this patient were challenging to be
effectively eliminated and caused repeated sepsis and pneumonia,
possibly leading to severe aGVHD, and eventually death due
to multiple organ failure. Moreover, higher CD3+ doses had
an increased incidence of aGVHD or grade III-IV aGVHD
in allo-HSCT (69, 70). The reinfusion of G-PBSC to promote
engraftment may aggravate the occurrence of aGVHD in this
patient. Hence, many factors, such as infections, CD3+ cell
doses, and disease status, possibly results in the occurrence
of aGVHD. Anwer et al. (71) found that GVHD occurred in
only 6.9% of patients who relapsed after HSCT and received
donor-derived CART19. It can be seen that the incidence
of GVHD after donor-derived CART19 is lower in patients
who have relapsed after transplantation. However, it remains
to be seen whether the infusion of a haploidentical CAR T
cell to a patient who has not been transplanted will produce
GVHD. Haploidentical CAR T cell has been used as part
of a pretreatment regimen to treat B-ALL and achieved full
donor engraftment, with a mild “GVHD-like” reaction or
no GVHD (35, 72). A haploidentical CAR T cell without
previous allo-HSCT had a clinically significant antitumor activity
without serious side effects (73). Therefore, according to these
preliminary studies, haploidentical CAR T cell for B cell
malignancies has a low risk of GVHD. In the current study,
CAR T cell was undetectable by q-PCR when GVHD occurred.
However, unlike CD19, which is restricted to B cells, CD123
is customarily expressed in kinds of hematopoietic and non-
hematopoietic cells, especially endothelial cells (12, 13, 44).
The expression level of CD123 on T and endothelial cells
even could be upregulated under proliferation and cytokines

induction, respectively (44, 74). Theoretically, CART123 might
have a stronger off-target effect and is more prone to a
wide range of inflammatory cytokines release compared to
CART19, thereby aggravating GVHD. In conclusions, the
influencing factors of GVHD in this patient are complicated,
of which CART123 is not excluded. The CRS possible off-
target effect and of CART123 and its effects on GVHD needs
further study.

Taken together, our results hint that haploidentical CART123
reduces the chemotherapy-resistant AML blasts for FUS-ERG-
positive AML without affecting the full donor chimerism
and myeloid implantation. However, the long-term anti-
leukemic effect, the interval between infusions of CART123
and G-PBSC, and the prophylaxis of GVHD still require
further study.

MATERIALS AND METHODS

See the Materials and Methods section in the
Supplementary Material.
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