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Background. Pyroptosis has been shown to be involved in the overall process of atherosclerosis. This study was aimed at
investigating pyroptosis-related gene expression patterns in atherosclerosis and their diagnostic significance. Methods and
Results. In GSE100927, fifty-four pyroptosis-related genes were identified. Between atherosclerotic plaques and normal samples,
the expression patterns of pyroptosis-related genes were significantly different. In order to construct a pyroptosis-related risk
score signature (PRSS), the least absolute shrinkage and selection operator (LASSO) was combined with multivariate logistic
regression to screen twelve genes. The diagnostic efficiency of the PRSS performed well in GSE43292, as shown by the results
of receiver-operating characteristics (ROCs). Consensus clustering identified two expression patterns of pyroptosis-related
genes in different statuses of atherosclerotic plaque in GSE163154. The biological behavior of the different clusters was
examined by the gene set variation analysis (GSVA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment analyses revealed that the differentially expressed genes (DEGs) in the two clusters were enriched
in the immune response. The Cytoscape software was used to construct protein-protein interaction (PPI) networks for hub
gene screening. Following that, the Drug Gene Interaction Database (DGIdb) was utilized to find 47 possible medicines and
chemical compounds that interact with hub genes in atherosclerotic plaques. Conclusion. The results of this study showed that
pyroptosis-related genes contribute to the progression of atherosclerosis and may serve as biomarkers in clinical diagnosis as
well as novel therapeutic targets for the treatment of AS.

1. Introduction

Atherosclerosis (AS), a pathological status of the vessels, is
characterized by chronic inflammation, lipid accumulation,
plaque formation, and lumen obstruction [1]. As atheroscle-
rosis progresses, some plaques may become unstable, leading
to plaque rupture, thrombus formation in the vessel lumen,
and clinical events. Atherosclerosis and its complications
significantly contribute to the morbidity and mortality of
patients suffering from cardiovascular disease (CVD) [2].

The retention and oxidation of lipoproteins in the intima
of arteries has been considered a fundamental event in ath-
erosclerosis. Numerous studies have also shown that low-

grade, chronic inflammation of the arterial wall is a compo-
nent in the development of atherosclerosis [3]. This process
could attract cells of the immune system into the atheroscle-
rotic plaque, and the autoimmune response could switch
from a protective to a pathogenic function as atherosclerosis
progresses [4]. However, whether the switch in functionality
represents a cause or consequence of atherosclerosis remains
unknown [5]. At present, AS is not well understood in terms
of its molecular and cellular mechanisms.

Pyroptosis is a type of programmed cell death that is
induced predominantly by activating the GSDMD- (gasder-
min D-) dependent or GSDME- (gasdermin E-) dependent
signaling pathway in cells and exhibits morphological
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changes distinct from apoptosis and necrosis [6, 7]. Pyropto-
sis is an integral part of the innate immune system. Pattern
recognition receptors (PRRs) activate pyroptosis when rec-
ognize pathogen-associated molecular patterns (PAMPs)
and danger-associated molecular patterns (DAMPs) [8, 9].
PRRs are highly expressed in blood vessel cells such as endo-
thelial cells and smooth muscle cells [10]. Once engaged,
PRR signaling can activate pyroptosis and mediate the
assembly of inflammasomes, leading to the production and
release of cellular contents and inflammation [11]. Recent
studies have provided evidence that pyroptosis initiates,
deteriorates, and exacerbates atherosclerosis [12–14]. Zhang
et al. reported that melatonin inhibits pyroptosis in endothe-
lial cells via the MEG3/miR-223/NLRP3 axis and subse-
quently affects atherosclerosis [15]. The study by Meng
et al. found that estrogen can prevent atherosclerosis by low-
ering the inflammatory response and pyroptosis activity in
vascular endothelial cells [16]. Chen et al. also reported that
the shear stress of blood flow at the arterial wall might cause
the pyroptosis of vascular endothelial cells via the TET2/
SDHB/ROS axis, offering new insights into the etiology of
AS [17]. In addition, recent studies in the literature on the
specific interaction between pyroptosis and adaptive immu-
nity also indicated that pyroptosis might play a crucial part
in AS [11].

Pyroptosis can be both the cause and the consequence of
inflammation, and the respective roles in AS are difficult to
decipher [18]. Although some regulatory factors and cellular
processes acting on pyroptosis have been uncovered, techni-
cal limitations have made it impossible to fully explain
pyroptosis mechanisms in AS.

The continuous development of microarrays and RNA
sequencing technologies has become an effective tool for
basic transcriptomics experiments and provides new
insights into understanding the biology of atherosclerosis
[19]. Therefore, based on bioinformatics analysis, the pres-
ent study sought to identify pyroptosis-related gene
expression patterns as well as validate the diagnostic value
of those in AS.

2. Method

2.1. Data Collection. RNA expression data were collected
from three microarray expression datasets (GSE100927,
GSE43292, and GSE163154) obtained from the Gene
Expression Omnibus (GEO) database, which included ath-
erosclerosis and control conditions [20]. The GSE100927
dataset includes 69 atherosclerotic plaques and 35 healthy
arteries, obtained from the carotid, femoral, and infrapopli-
teal arteries. This dataset was performed using the
GPL17077 platform [21]. Sixty-four samples from 31
patients with carotid endarterectomy were included in
GSE43292. Atheroma plaque with the core and shoulders
of the plaque was paired with macroscopically intact tissue
from a distant location in the same patient. The expression
profile arrays of GSE43292 were generated using GPL6244
platform [22]. In addition, the GSE163154 dataset consists
of 43 pathologically detected absent (N = 16) or present
(N = 27) intraplaque hemorrhages in carotid plaques. The

expression profile arrays of GSE163154 were generated using
the GPL6104 platform [23]. Figure 1 shows the flowchart of
this study.

2.2. Identification of Differentially Expressed Pyroptosis-
Related Genes. The pyroptosis-related genes have been iden-
tified through previous studies [24, 25] and the Molecular
Signatures Database (version 7.5.1), which were listed in
Supplementary Table 1. The differentially expressed
pyroptosis-related genes between atherosclerotic plaques
and normal arteries in GSE100927 and GSE43292 were
screened using the “limma” package. The expression levels
of pyroptosis-related genes were visualized using heatmaps
and boxplots constructed with the “ggplot2” package. In
terms of pyroptosis-related gene expression levels, principal
component analysis (PCA) was employed to analyze domi-
nant patterns and sample distribution.

2.3. Immune Profile Analysis. Immunedeconv integrates six
algorithms to manage various cell component analyses
[26]. The “immunedeconv” package (version 2.0.4) was used
to analyze immune cell component analysis in different
groups using the EPIC method. By using the “GSVA” pack-
age, we compared enrichment scores for multiple immune-
related pathways gene sets between groups by using single-
sample gene set enrichment analysis (ssGSEA) [27].

2.4. Development and Validation of a Predictive Pyroptosis-
Related Gene Signature. To investigate associated variables
in GSE100927, the expression of pyroptosis-related genes
between atherosclerotic plaques and control arteries was
compared using univariate analysis. LASSO regression was
utilized to determine significant independent pyroptosis-
related genes associated with AS [28]. Finally, using multi-
variate logistic regression, a pyroptosis-related risk score sig-
nature (PRSS) was constructed, and the formula is as
follows: P = 1/½1 + exp ð−xβÞ� [29]. To obtain the logistic
LASSO estimator, we used the “glmnet” package in R. The
receiver operation characteristic (ROC) curve was per-
formed, and area under the curve (AUC) was generated uti-
lizing the “pROC” package to verify the diagnostic
performance of the PRSS in GSE43292.

2.5. Consensus Clustering. The expression patterns of
pyroptosis-related genes were used to categorize atheroscle-
rotic plaques into various groups using an unsupervised
clustering algorithm [30]. The consensus clustering
approach was performed, and the “ConsensuClusterPlus”
package was used to determine the number of clusters.

2.6. Gene Set Variation Analysis (GSVA). GSE163154 was
subjected to a genetic variation analysis (GSVA) enrich-
ment analysis to determine the signal pathway for each
AS sample by using the “GSVA” package. The KEGG
pathway retrieved from the MSigDB database was used
as the background pathway database. A statistically signif-
icant difference between the different clusters was defined
as adjusted P < 0:05.
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2.7. Analysis of Functional Enrichment of DEGs between
Different Clusters. The DEGs between the two different clus-
ters in GSE163154 were identified using the criterion: jlog
2FCj > 1 and adjusted P < 0:05. GO and KEGG pathway
enrichment analyses for DEGs between different clusters
were performed using the “ClusterProfiler” package (version
3.12.0). The protein-protein interaction (PPI) networks of
DEGs were generated by the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database (http://
string-db.org/), and Cytoscape (http://cytoscape.org) was
then used to visualize the PPI networks [31]. The top 20
genes with high node gene degrees were identified as hub
genes, which were determined using the CytoHubba utiliz-
ing the maximum neighborhood component (MNC)
method.

2.8. Identification of the Potential Drugs. The Drug Gene
Interaction Database (DGIdb) (version 4.2.0, https://www
.dgidb.org) [32], an online resource that provides linkages
between genes and their known or potential drug associa-
tions, was used to identify potential medications and chem-
ical substances that interacted with hub genes, and alluvial
diagram was used to display the drug-gene interaction
network.

2.9. Statistical Analysis. To compare differential expression
of pyroptosis-related genes between two groups, Student’s t
-tests were used, and P value of 0.05 considered statistically
significant. To investigate the discriminatory performance
of PRSS in validation data, a receiver-operating characteris-
tic (ROC) curve was constructed and the area under the
ROC curve (AUC) was calculated with 95 percent confi-
dence intervals (CIs). A model for prediction of atheroscle-
rosis was developed using multivariate logistic regression.

The statistical analyses were conducted with R (version
4.0.0; https://cran.r-project.org/src/base/R-4/).

3. Result

3.1. Expression Variation of Pyroptosis-Related Genes in
Atherosclerosis. 54 pyroptosis-related genes were identified
in GSE100927, and the expression differences between ath-
erosclerotic lesions (n = 69) and normal arteries (n = 35)
were calculated. Figures 2(a) and 2(b) show 28 genes upreg-
ulated and 15 genes downregulated in atherosclerotic
lesions. PCA results showed that atherosclerosis and normal
arteries were better distinguished by pyroptosis-related
genes (Figure 2(c)). Furthermore, enrichment analysis indi-
cated that these genes were involved in pyroptosis and
inflammatory responses (Figure 2(d)). To confirm the result,
the expression of pyroptosis-related genes was tested in
GSE43292. As shown in Figure 2(e), most pyroptosis-
related genes are expressed differently in atheroma plaques
and control samples. We also analyzed the expression corre-
lation between the pyroptosis-related genes in all samples or
only in AS (Figures 2(f) and 2(g)).

3.2. Construction of the Pyroptosis-Related Risk Score
Signature. To investigate whether pyroptosis-related genes
can be utilized as diagnostic biomarkers for atherosclerosis,
in order to reduce the risk of overfitting, we used univariate
logistic regression analysis (Figure 3(a)) followed by LASSO
regression analysis (Figures 3(b) and 3(c)), and 12 genes
were included based on the optimum λ value. Finally, the
diagnostic pyroptosis-related risk score signature (PRSS)
was generated using multivariate logistic regression, and 12
genes were able to enter the equation as diagnostic biomark-
ers, namely, CHMP2B, PRKACA, CASP5, CHMP4,
HMGB1, CASP4, SCAF11, CASP6, IL1A, TNF, CHMP4A,

GSE100927 (N = 104)

Healthy artery samples
(N = 35)

Atheromatous plaques
(N = 69)

Pyroptosis-related DEGs analysis

Pyroptosis-related genes
(N = 57)

Univariate logistic regression analysis

LASSO/multivariate logistic regression analysis

Pyroptosis-related risk score signature (PRSS) model

GSE43292 (N = 64)

Paire control artery samples
(N = 32)

Paire atheroma plaque samples
(N = 32)

Verify

Verify

ROC curve

GSE163154 (N = 43)

Non-intraplaque hemorrhage in carotid plaques
(non-IPH, N = 16) 

Intraplaque hemorrhage in carotid plaques
(IPH, N = 27)

Consensus clustering analysis

Cluster 1 (N = 32) Cluster 2 (N = 11) 

Differentially expressed
genes analysis 

Immune infiltration
analysis GSVA

Protein-protein
interaction network

Identification of
potential drugs 

GO and KEGG
pathway enrichment

Figure 1: Flowchart of this study. DEGs: differentially expressed genes; LASSO: least absolute shrinkage and selection operator; GSVA: gene
set variation analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; ROC: receiver-operating characteristic.
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and TP53. In GSE43292, the validation of the diagnostic effi-
ciency of PRSS achieved a good level of performance
(AUC = 0:816) (Figure 3(d)).

3.3. Atherosclerotic Plaque Classification Based on the
Pyroptosis-Related Genes. Consensus clustering was
employed to determine the expression pattern of
pyroptosis-related genes in different status of atherosclerotic
plaques in GSE163154. To divide the samples in GSE163154
into different clusters, the clustering variable (k) was raised
from 2 to 5. For the intragroup correlations were low, k = 2
was used to divide the samples into two clusters
(Figures 4(a)–4(c)). As shown in Figure 4(d), most AS sam-

ples in cluster 1 were intraplaque hemorrhage (IPH) athero-
sclerotic (26/32, 81%), and the majority of samples in cluster
2 were nonintraplaque hemorrhage (non-IPH) atherosclero-
tic (10/11, 91%).

The biological behaviors between the two different
pyroptosis-related clusters were explored by GSVA enrich-
ment analysis. As shown in Figure 4(e), immunity activation
pathways such as the RIG-like receptor signaling pathway
and Toll-like receptor signaling pathway were enriched in
cluster 1.

3.4. Immunological Activation in Various Groups. Based on
the enrichment analyses, we used the immunedeconv and
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Figure 2: The expression of pyroptosis-related genes in atherosclerotic lesions. (a) Heatmap and (b) boxplot shown the expression of
pyroptosis-related genes between normal and atherosclerotic arteries in GSE100927. (c) Principal component analysis (PCA) plot for
atherosclerotic and normal arteries based on pyroptosis-related genes. (d) Gene Ontology (GO) enrichment analyses for pyroptosis-
related genes. (e) Differential expression of pyroptosis-related genes between atherosclerotic arteries and their adjacent normal arteries in
GSE43292. Analysis of pyroptosis-related genes expression correlations of (f) all samples and (g) atherosclerotic samples in GSE100927.
AS: atherosclerosis. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001; ns: not statistically significant.
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GSVA to analyze immune cell components and the
immune-related pathway gene sets in different groups. In
GSE100927, atherosclerotic lesions exhibited higher levels
of B cells, neutrophils, macrophages, NK cells, and CD8+
T cells than normal arteries (Figure 5(a)). Except for the
cytokines, interferon receptor, and TGF-β member receptor,
the other immune-related pathway gene sets showed more
activity in normal arteries (Figure 5(b)).

The relative proportions of immune cells differed mark-
edly in the two clusters in GSE163154 (Figure 5(c)). Of these
immune cells, NK cells, neutrophils, and T cell regulatory
appeared in a higher proportion in the cluster 2 group than
in cluster 1. The other five sorts of immune cells, on the
other hand, had the inverse result. And the immune-
related pathway gene sets showed more activity in cluster 2
than in cluster 1 during AS (Figure 5(d)).

3.5. Functional Analyses Based on the Pyroptosis Subtypes. In
addition, the differences in gene functions and pathways
involved in the two pyroptosis-related clusters were further
investigated. Adjusted P < 0:05 and jlog 2FCj ≥ 1 were uti-
lized as criteria for the extraction of DEGs by “limma” R
package. Between the two clusters of GSE163154, 5475
DEGs were identified. 5426 genes were upregulated in clus-
ter 1, while the other 49 genes were upregulated in cluster
2. GO enrichment analysis (Figures 6(a) and 6(b)) and
KEGG pathway analysis (Figures 6(c) and 6(d)) were then
performed in both clusters, and DEGs were significantly
enriched in the immune response. In addition, the common
biological processes in both clusters were neutrophil activa-
tion and degranulation.

3.6. Identification of the Potential Drugs. The PPI networks
of DEGs were constructed (Supplementary Figure 1), and
Cytoscape was also used to identify 20 hub genes in cluster
1 and cluster 2 (Figures 7(a) and 7(b)). The application of
DGIdb is to select drugs or molecular compounds that have
the potential to affect hub genes in two pyroptosis-related
clusters. As illustrated in drug-gene interaction network
(Figure 7(c)), we identified forty-seven molecular com-
pounds or drugs. Prasterone, enzalutamide, and dromosta-
nolone propionate were identified to differentially
modulate androgen receptor expression (AR). In addition,
pemetrexed has been found to interact with GART. Seven
molecular compounds or medications, such as adenosine
and aminophylline, have been associated with Adenosine
A3 Receptor (ADORA3). Four molecular compounds or
drugs modulated C-X-C Motif Chemokine Receptor 4
(CXCR4), while abatacept and belatacept modulated CD86.

4. Discussion

The most of the pyroptosis-related genes were found to be
differently expressed between atherosclerotic lesions and
normal arteries in this study. To further evaluate the
pyroptosis-related gene signatures and the diagnostic value
associated with AS, we constructed the PRSS model, which
performed well in the external validation dataset. The cur-
rent study also discovered that the expression patterns of
pyroptosis-related genes differed significantly at two differ-
ent statuses of atherosclerotic plaques. According to GSVA
enrichment analysis, the two different clusters were associ-
ated with different metabolism and immune-related
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Figure 3: Development and validation of pyroptosis-related risk score signature. (a) Forest plot presenting the result of univariate logistic
regression of pyroptosis-related genes. (b) LASSO coefficient profiles. (c) Cross-validation for tuning parameter selection in the LASSO
model. (d) ROC analysis of PRSS for diagnosis of AS in GSE43292. PRSS: pyroptosis-related risk score signature; LASSO: least absolute
shrinkage and selection operator; ROC: receiver-operating characteristic.
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Figure 4: Pyroptosis subtype clustering in atherosclerosis. (a) Consensus matrices of the GSE163154 cohort for k = 2. (b) CDF curve. (c)
Relative change in area under the CDF curve. (d) The clustering of pyroptosis-related genes among two clusters in GSE163154. (e) The
heatmap for the biological pathways in different pyroptosis-related clusters. IPH: intraplaque hemorrhage; non-IPH: nonintraplaque
hemorrhage; CDF: cumulative distribution function.
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pathways. In both clusters, DEGs were associated with
immune pathways as determined by GO and KEGG analy-
ses. The activity of immune-related pathway gene sets, as
well as the infiltration of immune cells in the two clusters,
was investigated. The findings revealed a significant differ-
ence in immune response activation between cluster 1 (most
cases were IPH) and cluster 2 (most cases were non-IPH). In
addition, we used the DGIdb to identify molecular com-
pounds and drugs with potential effects on hub gene expres-
sion regulation in atherosclerotic plaques.

We identified twelve pyroptosis-related DEGs from the
GEO dataset as potential biomarkers for the diagnosis of
AS. Among the pyroptosis-related genes, tumor suppressor
p53 (TP53) has been identified as a classical tumor suppres-
sor, which is also involved in lipid metabolism and athero-
sclerosis process [33, 34]. In the study by Kolovou et al.,
TP53 levels were upregulated in atherosclerotic coronary
artery tissue, suggesting that the TP53 gene contributes to
the progression of atherosclerosis development [35]. Consis-
tent with that, this study found that TP53 was significantly
increased in atherosclerotic plaques compared with normal
controls. However, Wu et al. found that the absence of p53
could accelerate the development of atherosclerosis in

ApoE-/- mice [36]. CHMP4A belongs to the family of
chromatin-modifying proteins and charged multivesicular
body proteins (CHMPs). As a component of the ESCRT-
III complex (intranuclear endosomal sorting complex
required for transport III), it regulates cell cycle progression
[37]. Previous studies have shown that after inflammasome
activation, pyroptosis and interleukin-1β release could be
greatly enhanced by inhibition of the ESCRT-III machinery
in both human and murine cells [38]. In the present study,
we found significant elevations of tumor necrosis factor
(TNF) and interleukin- (IL-) 1 in atherosclerotic plaques.
TNF encodes a multifunctional proinflammatory cytokine
that plays a key role in mediating the inflammatory response
in atherosclerosis, including induction of the expression of
various cell adhesion molecules, monocyte/macrophage
migration, and local proliferation [39]. The role of TNF-α
in atherosclerosis has been extensively investigated [40].
Recent studies have shown that caspase-6 is involved in
mediating innate immunity and promotes pyroptosis by
facilitating the assembly of the inflammasome [41].
Although this study found that caspase-6 expression was sig-
nificantly increased in atherosclerotic plaques, its role in AS
is yet unknown.
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Figure 5: Immune status in various groups in GSE100927 and GSE163154. Boxplots for the (a, c) fraction scores of immune cells and the (b,
d) relative scores of immune-related pathway gene sets. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001; NS: not statistically significant.
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In this study, pyroptosis-related gene expression was uti-
lized to divide AS patients into two clusters, with cluster 1
being much more likely than cluster 2 to have intraplaque
hemorrhage, suggesting that pyroptosis may affect the stabil-
ity of atherosclerotic plaques. We further investigated the
immune cell infiltration in different pyroptosis-related sub-
sets. We discovered that B cells, macrophage M1, macro-
phage M2, and NK cells were highly expressed in cluster 1
compared with cluster 2, whereas Tregs and monocytes
had low expression in cluster 1. The differences in immune
cell expression were also found between atherosclerotic
lesions and normal arteries. Macrophages have been found
to play a key role in the formation of inflammatory response
and the progression of atherosclerosis in previous studies
[42]. It should be noted that atherosclerosis is a complex
process with a dynamically changed microenvironment in
which different subsets of macrophages may belong to pro-
or anti-inflammatory types [43]. Tregs are known to protect

against atherosclerosis and to be involved in different stages
of atherosclerotic progression by suppressing inflammation
[44, 45]. The decrease in Tregs during the progression of
atherosclerosis was confirmed by single-cell RNA sequenc-
ing [46]. Classification of atherosclerotic plaques based on
pyroptosis-related genes might help better understanding
of the molecular processes of intraplaque hemorrhage.

According to recent research, pyroptosis has an impact
on the entire course of atherosclerosis [47]. Therefore,
appropriate intervention in the activation of pyroptosis in
atherosclerotic plaques may provide a new therapeutic strat-
egy for patients with AS [48]. To predict effective therapeutic
agents for atherosclerotic plaques, the DGIdb was used to
identify drugs and molecular compounds that affect upregu-
lated hub genes in the two pyroptosis-related clusters.
According to previous studies, the androgen receptor (AR)
and androgens each play distinct roles in the atherosclerotic
process. In alleviating atherosclerosis, targeting AR may
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Figure 6: Enrichment analysis based on the DEGs between the two clusters. (a, b) GO and (c, d) KEGG enrichment analyses for the two
pyroptosis-related clusters, respectively. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; BP: biological process;
CC: cellular components; MF: molecular function.
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yield better results than interfering with androgen expres-
sion because androgen deficiency leads to an elevated lipid
profile [49]. ADORA3 encodes a protein that belongs to
the adenosine receptor family and is part of the adenosine-
mediated anti-inflammatory pathway [50]. The study by
Yoshino et al. found that genetic variations within ADORA3
can mediate testosterone or its receptors, which has been
associated with epicardial coronary endothelial dysfunction
and has negative effects on cardiovascular morbidity and
mortality [51]. A previous study has shown that selective
enhancement of CXCR4 can maintain arterial integrity,
endothelial barrier function, which could contribute to novel
atherosclerosis treatments [52].

In this study, several limitations should be addressed.
First, there were no clinical data from AS patients in
GSE100927, the correlations between pyroptosis-related
gene signature were investigated in datasets, and the individ-
ual characteristics of patients could not be analyzed. A pro-
spective cohort of patients with atherosclerosis will be used
to confirm the predictive efficacy of pyroptosis-related genes.
Second, the atherosclerosis plaques in GSE100927 originated
from different arteries. The process of atherosclerosis has a
similar phenotypic pattern, even in different anatomical sites
of the cardiovascular system [53]. Therefore, the pyroptosis-
related genes derived from the deterioration of atherosclero-
sis at different anatomical sites might share some common
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characteristics [54]. Third, the accuracy of the discovery was
limited because of the relatively small sample sizes of the
study cohorts. Finally, no cell or animal experiments were
performed in this study, so further experimental studies will
be needed to verify our findings.

In conclusion, our study showed that pyroptosis activa-
tion was closely associated with the progression of athero-
sclerosis. Pyroptosis-related genes might be used as
atherosclerosis diagnostic biomarkers. The expression pat-
terns of pyroptosis-related genes in different statuses of ath-
erosclerotic plaques may provide additional information
about the deterioration of atherosclerotic plaques and guide
therapeutic strategies.
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