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Hebbian changes of excitatory synapses are driven by and enhance correlations between

pre- and postsynaptic neuronal activations, forming a positive feedback loop that can

lead to instability in simulated neural networks. Because Hebbian learning may occur on

time scales of seconds to minutes, it is conjectured that some form of fast stabilization

of neural firing is necessary to avoid runaway of excitation, but both the theoretical

underpinning and the biological implementation for such homeostatic mechanism

are to be fully investigated. Supported by analytical and computational arguments,

we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for

inherently-stable, quick tuning of the total input weight of a single neuron in the general

scenario of asynchronous neural firing characterized by UP and DOWN states of activity.
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1. INTRODUCTION

Since the discovery of long-term synaptic plasticity by Bliss and Lømo (1973), Hebb’s postulate
that “cells that fire together wire together” (Hebb, 1949; Schatz, 1992) has become the prominent
hypothesis whereby the brain learns and forms new memories. Generally speaking, Hebbian
learning may refer to any change of efficacy of synaptic transmission (i.e., the “synaptic weight”)
by synaptic plasticity that solely depends on correlations between firing activities of pre- and
postsynaptic neurons (Abbott and Nelson, 2000). In this regard, spike-timing–dependent plasticity
(STDP) may be considered the experimental hallmark of Hebbian learning, insofar as it allows a
synapse to be potentiated by correlated pre/post spike pairs while being depressed by correlated
post/pre spike pair (Markram et al., 1997; Bi and Poo, 1998).

Despite being appealing for its simple formulation, Hebbian plasticity, and thus STDP, are prone
to instability. Depressed synapses tend to become further depressed, and vice-versa, potentiated
synapses tend to grow even stronger (Sjöström et al., 2008). Ad-hoc mechanisms that compensate
for such instabilities are hypothesized to coexist with Hebbian plasticity. Collectively, these
mechanisms are known as homeostatic plasticity and are experimentally known to prevent runaway
of excitation of single neurons, thereby maintaining a stable level of firing activity (Turrigiano,
2008).

Homeostatic plasticity results in compensatory changes in the overall synaptic drive (e.g.,
synaptic scaling Turrigiano et al., 1998), changes in the neuronal excitability (intrinsic
plasticity Desai, 2003) or changes to the plasticity rules themselves by metaplasticity (Abraham
and Bear, 1996; Abraham, 2008). All these experimentally-found homeostatic mechanisms have a
relatively slow response compared to rapid plasticity, which is thought necessary for learning.While
synaptic weights can change on the timescale of seconds to minutes (Markram et al., 1997; Bi and
Poo, 1998; Sjöström et al., 2008), noticeable changes caused by homeostasis generally take hours or
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even days (Turrigiano et al., 1998; Turrigiano, 1999; Turrigiano
and Nelson, 2004; Watt and Desai, 2010). As a consequence, it
has been conjectured that a further, fast form of homeostatic
plasticity, acting on time scales comparable to those of learning,
must exist to maintain firing stability (Zenke et al., 2013; Yger
and Gilson, 2015) although its biophysical correlates remain to
be explored.

Here we address this conundrum by exploring the
requirements for stability of Hebbian learning in the context of
rhythmic activity which alternates between high and low rate
periods. We refer to these periods as UP and DOWN phases.
In this regard, we show by analytical arguments and numerical
simulations that stability of activity and weight normalization
can be an emergent property of Hebbian plasticity through
postsynaptic spike latency normalization (SLN) with respect to
the onset of an UP phase of activity. We introduce a Hebbian
STDP-based metaplasticity rule, which we refer to as the SLN
rule, that includes online estimation of the total synaptic input
per neuron by making use of the transitions between UP and
DOWN phases. These phases can either be compared to the
scenario, ubiquitous in the brain (Gray and McCormick, 1996;
Lesica and Stanley, 2004; Engel et al., 2016), of activity that varies
strongly and abruptly over time or to long UP and DOWN
phases that occur during sleep (Steriade et al., 2001). The
effect of sleep on plasticity and homeostasis is not completely
established. However, the synaptic homeostasis hypothesis (SHY)
considers that synaptic potentation resulting from increased
neuronal and synaptic activity by sensory stimulation during
wakefulness (Vyazovskiy et al., 2008; Liu et al., 2010; Bushey
et al., 2011; Maret et al., 2011) must be downscaled during sleep
to re-equilibrate the brain’s energy demand, but the homeostatic
mechanism for such rescaling is not understood (Tononi and
Cirelli, 2003, 2006, 2014). Remarkably, the SLN rule results in
fast weight normalization for short UP and DOWNphases which
makes it a candidate for a fast homeostasis mechanism during
periods of wakefulness whereas, for long UP phases, it results in
rescaling of the weights at a lower level in agreement with SHY.
We discuss the biophysical correlates and advantages of this rule
with respect to other models.

2. MATERIALS AND METHODS

2.1. Neuronal models
We study two models which differ at their level of abstraction
and we characterize them by the type of neurons which are
specific to each model. We consider integrate and fire neurons
either without (SIF) or with leak (LIF). Hence, to distinguish
the models, we refer to them as “the model without leak” or
“the model with leak.” When describing the models we adopt
the convention to first describe aspects which are common to
both models along with minor differences. We present then
details pertaining to the model without leak followed by those
of the model with leak. In both models, a neuron fires an action
potential when its membrane potential υ(t) reaches a threshold
θυ , after which it is reset to Vr , and held to this reset potential for
a refractory period τref. The subthreshold dynamics of υ(t) thus
evolves according to:

Cm
d

dt
υ = g(υ)+ Isyn, (1)

where g(υ) is a voltage dependent term and Isyn is a term
which captures synaptic input. Most results concern binary
synapses and therefore we differentiate between weak (w) and
strong (s) synapses whose weights we respectively denote by ww

and ws.

2.1.1. Model without Leak
In Equation (1) we set g(υ) = 0 and the input current is the sum
of current-based synaptic inputs. A spike of neuron j in the input
population I at time tj arrives at the postsynaptic neuron without
delay and is modeled by a Dirac delta scaled by the synaptic
weight wj, i.e., Isyn =

∑

j∈I

∑

tj
wj · δ(t − tj) (see Figure 1Aa).

We consider both deterministic and probabilistic
synapses (Branco and Staras, 2009) for which a transmission
probability pr < 1 is tantamount to multiplying presynaptic
spikes by the outcome of a Bernoulli trial with probability pr .

2.1.2. Model with Leak
In Equation (1) the leak is captured by the term g(υ) = −gL(υ −
EL) and Isyn is the sum of conductance-based synaptic inputs.
The inputs decay exponentially with time constant τsyn and
have a reversal potential Ee, that is Isyn = ge(t) · (V(t) − Ee)
where:

τsyn
d

dt
ge = −ge(t)+

∑

j∈I

∑

tj

wj · δ(t − tj − tdelay). (2)

The sum
∑

tj
δ(t − tj − tdelay) corresponds to presynaptic spikes

of neuron j ∈ I, each occurring at time tj and contributing to
postsynaptic depolarization in an amount of wj after a delay tdelay
(see Figure 1Ab).

2.2. Synaptic Input Configuration
We consider the scenario of a single neuron which receives d
independent synaptic inputs, each associated with a presynaptic
neuron (Figure 1Ba). In the model with leak, we model
background activity by stimulating the postsynaptic neuron by
an external Poisson synaptic current of strength wn at rate ν (Hô
and Destexhe, 2000) (Figure 1Bb).

2.2.1. Model without Leak
We assume that presynaptic neurons fire together in short pulses,
hereafter termed as “volleys” (Figure 1Ca). In particular, the
postsynaptic neuron potential is at rest (i.e., 0) at the start of a
volley, and for a volley of duration TU , at time t, each presynaptic
neuron independently selects a spike uniformly at random in the
interval [t, t + TU ]. The time between two consecutive volleys
is TD ms. Most of our analysis is carried out under the random
order assumption that volley spikes are uniformly distributed,
although we also consider deviations from this assumption in
Section 3.1.2.

2.2.2. Model with Leak
Each presynaptic neuron fires according to an inhomogeneous
Poisson process (unless differently specified). The rate of the
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FIGURE 1 | The model without leak (left column) vs. the model with leak (right column). (A) In both models the neurons spike when their membrane potential

reaches a threshold θv after which it is reset to a value Vr and held at that value for τref ms. In the model without leak (a), the neuron receives current-based input

(Continued)
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FIGURE 1 | Continued

whereas in the model with leak (b), the input is conductance-based and the membrane potential decays exponentially. The spikes are shown as stars. We refer to the

purple spikes as “distinguished” spikes (DSPs). They block other postsynaptic spikes from receiving that label for a period of Tburst ms. (B) Network models. A single

target neuron that receives input from a population (a). In the model with leak (b), the neuron additionally receives constant noise input with weight wn at rate ν. The

synapses are binary and can be either weak (light gray), with weight ww, or strong, with weight ws (dark gray). (C) Input spike model. (a) Each input neuron spikes

once at a time chosen uniformly at random within a short interval. Presynaptic spikes which occur before (after) the postsynaptic spike lead to a potentiation

(depression) signal which is highlighted with a green (red) shaded region. (b) The input spikes are modeled as an inhomogeneous Poisson process. The input neurons

switch between a high rate UP phase and a low rate DOWN phase (orange curve with respect to right y-axis). The presynaptic spikes which occur in a window before

(after) the distinguished postsynaptic spike trigger potentiation (depression) signals and the window is highlighted in green (red). (D) Learning rule. Each synapse has a

memory trace m(t) that is modified for certain spike pair events, similar to standard STDP. (a) Potentiation and depression signals are always with respect to spike

pairs and we track the spikes with the variables 1pre and 1post. The memory in the model without leak contains the last M potentiation and depression signals and the

memory trace is the fraction of potentiation signals. (b) Variables to define distinguished spikes (DSPs), potentiation and depression signals, and the memory trace

m(t) (see Section 2.3 for details).

process alternates between DOWN phases of low rate values (λD)
and UP phases of high rate values (λU). The duration of each
DOWN and UP phase corresponds to the parameters TD and
TU , respectively (Figure 1Cb). The volleys in the model without
leak may be regarded as the limiting case of short UP phases and
they lead to analytical tractability of the model. In one setting
when we study robustness against input parameter variations
we shift the input rate function of each input neuron by some
random delay, independently drawn from a uniform distribution
in [0, σ ].

2.3. Learning Rule
2.3.1. Memory Trace
Each synapse tracks pre- and postsynaptic spikes by means of a
scalar memory trace m(t) which is updated similarly to classical
STDP (Morrison et al., 2008). Accordingly, presynaptic spikes
that happen in a short interval Tearly before a postsynaptic spike,
all increase m(t) promoting synaptic potentiation. Conversely,
presynaptic spikes following a postsynaptic spike in a time
window Tlate, decrease m(t) which can lead to synaptic
depression (see green and red shaded regions in Figure 1C). We
refer to these spike pair events as potentiation and depression
signals and we denote them by the binary indicator variables
1↑(t) and, respectively, 1↓(t).

2.3.2. Model without Leak
For volley input, these signals simply correspond to the spike
order of a synapse in each volley, that is 1↑(t) is 1 at the
time of a postsynaptic spike if it was preceded by a presynaptic
spike in that volley and similarly 1↓(t) is 1 at the time of a
presynaptic spike if it was preceded by a postsynaptic spike in that
volley.

The memory trace in this setting is given by the moving
average of learning signals which are potentiation signals (see
Figure 1Da), that is, let S(signals)(M) be a set containing the time
of the lastM learning signals, then

m(t) ≡ M−1
∑

t′∈S(signals)(M)

1↑(t
′). (3)

2.3.3. Model with Leak
The main difference in this setting is that the neurons can spike
more than once in anUP phase instead of at most once in a volley.

The memory trace is updated for spikes pairs corresponding to
potentiation and depression signals as in the model without leak.
However, we restrict the pairs which trigger such signals to those
which involve the first postsynaptic spike in an UP phase (purple
stars in Figure 1). We will hereafter dub such postsynaptic spikes
as distinguished spikes (DSPs). This restriction accounts for the
fact that STDP may involve more complex interactions between
pre- and postsynaptic firing rather than those considered in
classic doublet STDP models (Pfister and Gerstner, 2006). To
define the memory trace and its update rules formally we
therefore first define all relevant variables (for an overview, see
Figure 1Db).

For a synapse, we denote by 1pre(t) and 1post(t) the indicator
variables which are 1 at time t if the corresponding pre- or
postsynaptic neuron spiked and 0 otherwise. We use these
variables to derive indicator variables for potentiation and
depression signals, however, for the derivation, we also require
variables which monitor whether a DSP recently occurred and
whether presynaptic spikes occur in a time window around it. In
this regard, we introduce the binary variable oburst(t) which is 1
if a DSP occurred in [t − Tburst, t), and 0 otherwise. We define it
recursively as follows:

oburst(t) =
∑

t′∈Spost(t−Tburst,t)

(1− oburst(t
′)) (4)

where Spost(t1, t2) denotes the set of all postsynaptic spikes in
the interval [t1, t2). Similarly, we monitor the depression signal
window by the binary variable olate(t) which is 1 in a time window
Tlate after a DSP and 0 otherwise, i.e.,

olate(t) =
∑

t′∈Spost(t−Tlate ,t)

(1− oburst(t
′)). (5)

Accordingly, the depression and potentiation signal indicator
variables are given by

1↓(t) = 1pre(t) · olate(t),

1↑(t) = 1post(t) · (1− oburst(t)) ·min{1, |Spre(t − Tearly, t)|}

(6)

where Spre(t1, t2) denotes the set of all presynaptic spikes in the
interval [t1, t2).
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Whenever 1↓(t) is 1 we update the memory trace m(t) as
follows

m(t)←−1+ γm(t) (7)

where γ defines the attenuation of the pre-existingmemory trace.
Similarly, whenever 1↑(t) is 1 we apply

m(t)← 1+ γm(t) (8)

for each presynaptic spike in the interval [t − Tearly, t), i.e., we
apply the update |Spre(tpost − Tearly, tpost)| times.

2.3.4. Weight Update
The plasticity of the synapse depends on the value of m(t). In
both the model with and without leak, the update of the synaptic
weight is applied similarly. The main difference is that in the
model without leak the weight update rule is applied only after
every L-th update to the memory trace (L ≥ M) whereas for
the model with leak the weight update follows every memory
trace update. In a weight update, the weight can change if and
only if m(t) > θP or m(t) < θD, where θP and θD are
the depression and potentiation thresholds (the interval [θD, θP]
is shown as a shaded green region in Figure 1Db). Formally,
the change in synaptic weight is probabilistic, which has been
considered before (Standage and Trappenberg, 2006), and, in
particular, is subjected to the outcome of a Bernoulli trial with
probability ps→w for depression and pw→s for potentiation. This
approach is necessary to prevent many synapses from changing
their weight together with the risk of destabilizing postsynaptic
firing (see Section 3.2.1). The weight update rule is given as
follows

w(t)← w(t)+











1dw(t) with probability ps→w ifm(t) < θD,

1pw(t) with probability pw→s ifm(t) > θP,

0 otherwise.

(9)
With binary synapses, which have weights ws and ww, the weight
changes according to:

1pw(t) =

{

ws − ww if w(t) = ww,

0 otherwise.

1dw(t) =

{

ww − ws if w(t) = ws,

0 otherwise.
(10)

2.4. Spike Latency Normalization
In the model with leak, we achieve homeostatic plasticity by
normalization of the mean timing of the first postsynaptic spike
(that is, the DSP) with respect to an UP phase. In this regard it
may be noted that for a given input rate function, the distribution
of inter-spike intervals f (t) of a neuron receiving ds strong
synaptic inputs out of d inputs in total is known (Burkitt,
2006a,b), and so is the mean first passage time (Cox and Miller,
1977; Ricciardi, 1977; Tuckwell, 1988). Accordingly, denoting
by tDSP the relative time of the first postsynaptic spike in an
UP phase, and keeping in mind that f (t) is defined for t ∈

[0,TU], the expected first passage time, that is the average
relative timing of DSP with respect to the onset of an UP
phase is:

tDSP ≡ E[tfirst|tfirst < TU ] =

∫ TU

t = 0
t · f (t)dt. (11)

For convenience we define r ≡ tDSP
TU

to be the expected time
of the first spike within an UP phase relative to the length of
the UP phase. It may then be noted that setting the duration
of a DSP (i.e., Tburst) such that Tburst ≥ TU , ensures that only
one DSP occurs in an UP phase. In this fashion, it is possible
to distinguish between early vs. late presynaptic spikes, that
is input spikes arriving Tearly before and Tlate after the DSP
as required by our learning rule (6). Furthermore, choosing
Tearly,Tlate ≥ TU enables the contribution of all presynaptic
spikes to potentiation/depression in an UP phase (for results
related to a large value of TU see Section 3.2.2). In this fashion,
for UP phases sufficiently apart from each other, so as to
neglect synaptic changes due to overlapping learning signals from
consecutive UP phases, our learning rule performs normalization
of the expected spike latency tDSP. The details of how this is
possible are reported in Sections 3.1.1, 3.1.2, and 3.2.1.

2.5. Heterogeneous (Multimodal) Synaptic
Weights
Besides binary synapses, we also consider multimodal synapses
for the model without leak in Section 3.2.3, that is synapses
whose weight can assumemore than two values. In this regard we
explore two updating schemes. The first, additive scheme merely
changes synaptic weights by a fixed value±ω, i.e.,

1dw(t) = −ω, 1pw(t) = ω. (Additive scheme) (12)

The second scheme, which may be regarded as a multiplicative
scheme (Van Rossum et al., 2000) instead changes synaptic
weights by a randomly rescaled fraction of their value prior to
the onset of plasticity, i.e.,

1dw(t) = (−cd + κ)w(t), 1pw(t) = cp + κw(t)

(Multiplicative scheme) (13)

where cp and cd are non-negative constants, κ is a normal
distributed random variable with mean 0 and standard deviation
ζ > 0, and for both rules w(t) is set to 0 if negative to ensure
w(t) ≥ 0.

2.6. Computational Methods
For the model with leak, we use the NEST-simulator (Gewaltig
and Diesmann, 2007) (NEST, RRID:SCR_002963) with temporal
resolution 0.1 ms and the neuron model iaf_cond_exp,
which was introduced by Kumar et al. (2007). For a detailed
summary of model parameters and their values used in the
simulations, see Tables 1–3.
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TABLE 1 | Summary of the model parameters and the default values in the

model without leak.

Symbol Brief description Value Unit

TU Volley length 1 ms

TD DOWN phase length 1 ms

d Number of neurons in input layer 100 a.u.

τref Refractory period 1 ms

θv Firing threshold 10 a.u.

Vr Reset potential 0 a.u.

Tburst Blocking duration of a distinguished spike (DSP) 1 ms

Tearly Potentiation signal window 1 ms

Tlate Depression signal window 1 ms

ws Strong weight 1 a.u.

ww Weak weight 0 a.u.

pr The probability of successfully transmitting a spike 1 a.u.

M The size of the memory 39 a.u.

pw→s Probability of a weak synapse turning strong 0.05 a.u.

ps→w Probability of a strong synapse turning weak 0.2 a.u.

θD Memory threshold for weight depression 0.26 a.u.

θP Memory threshold for weight potentiation 0.72 a.u.

ω Additive weight constant 1 a.u.

cp Potentiation constant in multiplicative weight

update

1 a.u.

cd Depression constant in multiplicative weight

update

0.2 a.u.

ζ Standard deviation of noise in multiplicative weight

update

0.15 a.u.

The parameters θD and θP, pw→s, and ps→w were chosen using the formulas in
Section 3.1.1 with ε = 0.5, δ = 0.2.

3. RESULTS

3.1. Mathematical Analysis
3.1.1. Mechanism of Normalization
We start our analysis by deriving some formal results in the
model without leak. We restrict our analysis to the scenario of
a single neuron which receives d excitatory synaptic inputs from
presynaptic neurons in a population I, of which ds are strong.
We show that there is an equilibrium input of d∗s strong synapses
such that when the total input weight is≫ d∗s , then all synapses
have a high chance to decrease their weights. On the other hand,
if the total input weight is≪ d∗s , then all synapses are more likely
to increase their weights. Thus, the equilibrium d∗s is stable. The
analysis also shows an interval around d∗s in which changes of the
input weights happen only with very low frequency per volley.

For a single synapse, the total input weight of the postsynaptic
neuron determines the expected ratio of potentiation to
depression signals. We capture this property by deriving the
probability that a synapse receives a potentiation signal instead
of a depression signal as a function of the input weight. First,
recall that each presynaptic neuron emits exactly one spike per
input volley which, in the generic scenario, may be transmitted
to the postsynaptic neurons by some probability pr ≤ 1
(Section 2.1) and, therefore, the postsynaptic neuron spikes
at most once per volley. Hence, a potentiation (depression)

TABLE 2 | Summary of the model parameters and the default values in the

model with leak.

Symbol Brief description Value Unit

γ The memory trace decay constant 0.95 a.u.

TU UP phase length 30 ms

TD DOWN phase length 50 ms

λU UP phase input rate 40 Hz

λD DOWN phase input rate 0 Hz

d Number of neurons in input layer 100 a.u.

ν Noise rate 1,000 Hz

C Membrane capacity 250 pF

EL Leak reversal potential −70 mV

gL Leak conductance 16.67 nS

Ee Excitatory reversal potential 0 mV

τsyn Synaptic time constant 0.2 ms

tdelay Synaptic delay 1 ms

τref Refractory period 2.5 ms

Vth Firing threshold −55 mV

Vr Reset potential −60 mV

Tburst Blocking duration of a distinguished spike (DSP) 35 ms

Tearly Potentiation signal window 35 ms

Tlate Depression signal window 35 ms

ws Strong weight (in the model with leak) 40 nS

ww Weak weight (in the model with leak) 1 nS

wn Noise weight 1 nS

TABLE 3 | Summary of plasticity parameters.

Symbol Brief description Unit r = 1/3 r = 1/2

pw→s Probability of a weak synapse turning

strong

a.u. 0.05 0.05

ps→w Probability of a strong synapse

turning weak

a.u. 0.05 0.16

θD Memory threshold for weight

depression

a.u. −14.51 −8.42

θP Memory threshold for weight

potentiation

a.u. 1.48 8.70

The last two columns contain parameter values which fix the relative spike time r for
parameters in Table 2.

signal corresponds to a pre/post (post/pre) spike pair within
a volley. It should be noted that learning signals are only
triggered if both the presynaptic neuron j and the postsynaptic
neuron spike and, therefore, one needs to condition on a
postsynaptic spike. Furthermore, recall from Equation (3) that
the memory of the synapse is the moving average of the number
of potentiation signals amongst the last M learning signals.
These signals can be viewed as M Bernoulli random variables,
where the probability of them being 1 (0) corresponds to the
probability of a potentiation (depression) signal. Denote by X
the number of strong synapses that transmit a spike in a volley.
The postsynaptic neuron spikes if X ≥ θv. For a synapse from
the j-th input neuron, when ds out of d synapses are strong, X
is binomially distributed such that X ∼ Bi(ds, pr); accordingly,
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the probability of the synapse receiving a potentiation signal
instead of a depression signal is given by the following expression:

Pr[pot. signal] =



















p′
early

(ds) ≡
1

Pr[X ≥ θv]
·

ds
∑

i = θv

θv

i + 1
· Pr[X = i] if wj(t) = ww,

pearly(ds) ≡
1

Pr[X ≥ θv]
·

ds
∑

i = θv

θv

i
· Pr[X = i] if wj(t) = ws.

(14)

It thus follows that if the pre- or postsynaptic neuron do not
spike in a volley, the memory of the synapse does not change.
Hence, the probability of a depression signal is 1−Pr[pot. signal].
The expressions in Equation (14) are shown in Figure 2A for
deterministic synapses (pr = 1, orange) and probabilistic
synapses (pr = 0.5, purple). The small difference between a

weak and a strong synapse is caused by the factor
θv

i
for strong

synapses and
θv

i+ 1
for weak ones. For strong synapses this factor

corresponds to being amongst the first θv input signals out of
i strong input signals whereas for weak synapses this factor
corresponds to the signal arriving before any of the first θv strong
input signals where the number of possible places in the order is
i+ 1.

The memory trace m(t) from Equation (3) is an unbiased
estimator of Pr[pot. signal] from Equation (14). Furthermore, the

probability depends in a monotone fashion on ds (Figure 2A).
This monotone dependence is the principle behind the intrinsic
homeostasis effect of the learning rule which allows a synapse to

estimate if the total input weight toward the target neuron is too
large or too small by just observing and keeping track of recent

spike pair orders within a volley. This mechanism results in a
stabilizing effect on ds that we quantify below.

In the model without leak, recall that we apply the weight

update rule after every L-th volley. For deterministic synapses,
we set L = M. This assumption makes the weight updates

independent and, thus, greatly simplifies analysis (see Appendix

in Supplementary Material). In the setting with probabilistic
synapses, this property holds with high probability by choosing
L a bit larger. There, we set L = 2M

pr ·Pr[X≥ θv]
where, as above, X

FIGURE 2 | Principles of the intrinsic homeostasis mechanism in the model without leak. Orange curves correspond to a setting with “deterministic”

synapses, which reliably transmit spikes, and the purple curves correspond to a setting with “probabilistic” synapses that transmit spikes with probability pr = 0.5.

(A) Probability of a potentiation signal conditioned on the postsynaptic neuron spiking and the synapse being reliable. The gray area corresponds to the value of the

memory trace where synapses neither potentiate nor depress. (B) Expected drift toward the stable input weight in each weight update as a function of the total input

weight. The arrows correspond to the stable input weights to which the input weight converges in the two settings (the stable state). (C) Convergence to the stable

input weight for three different starting conditions in each setting, where one is the stable state. The curves represent the mean over 50 trials and the envelope

corresponds to a standard deviation estimate. (D) The total input weight, which is the same as the number of strong synapses ds, distribution for deterministic

synapses after applying 200 weight updates (darker orange) when ds = 30 before the first weight update. The total input weight distribution is similar to a setting

where potentiation is forbidden (pw→s = 0, lighter orange), which illustrates that the negative feedback does not undershoot the stable state by much. For all panels,

M, θD and θP, pw→s, and ps→w are set as in Table 1.
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is the number of synapses that transmit a spike. L depends on
ds for probabilistic synapses because the target neuron cannot be
reliably activated if ds is small.

Denote by1s→w(ds) (1w→s(ds)) the number of strong (weak)
synapses that turn weak (strong) after applying the weight update
rule. Recall that the weights are binary 0 and 1 in the model
without leak, so the number of strong synapses is the same as
the total input weight. The expected number of weight changes
of each type is given by

E[1s→w(ds)] = Pr[Bi(ds, pearly(ds)) ≤ θDM] · ds · ps→w, (15)

E[1w→s(ds)] = Pr[Bi(d − ds, p
′
early(ds)) ≥ θPM]

· (d − ds) · pw→s. (16)

The expected number of weight changes of each type is shown in
Figure 2B for deterministic (orange) and probabilistic synapses
(pr = 0.5, purple). The total input weight change (or “weight
drift”) after a learning step is given by

1w→s(ds)−1s→w(ds). (17)

For ε > 0, the expected number of weight changes 1w→s(ds) +
1s→w(ds) for a fixed number of strong input synapses can be
bounded by choosing

θD = (1− ε) · pearly(ds) and θP = (1+ ε) · p′early(ds), (18)

and for some δ > 0 by choosing

M =

⌈

3 log(δ−1)

ε2p′
early

(ds)

⌉

. (19)

A detailed derivation of Equation (19) may be found in the
Appendix (Section A2 in Supplementary Material). For this
choice of ds, the expected fraction of synapses that change their
weight is less than δ; i.e., E[1w→s(ds)+1s→w(ds)] ≤ δd. It may
be noted that this choice of M is independent of the parameters
ps→w and pw→s. Their roles in the learning rule are simply to
reduce the weight drift. Details on how to choose them are given
in Section 3.1.2.

In the following, we argue that in the model with leak, the
memory trace is a biased estimate of the expected relative spike
time r of a DSPwithin anUP phase. Because of this feature wewill
refer to the learning rule as the spike latency normalization (SLN)
rule. Assume we are in a static setting where the weights are fixed
such that the expected relative spike time is r. Let Yi denote the
result of the i-th learning signal: 1 if it was a potentiation signal
and 0 otherwise. By ignoring the effect of a specific input neuron
on the spike time of the post neuron (which is valid if θv is large
with respect to ws) and by assuming that the input neuron spikes
only once in the interval [0,TU] (which is valid if TU is small
compared with 1/λU ), a synapse expects a potentiation signal
with probability r. That is, the variables Yi can be assumed to be
Bernoulli random variables with parameter r. The expected value

of the memory trace after ℓ learning signals depends linearly on r
and is given by

E[m(t)] =

ℓ−1
∑

i = 0

E[γi(2Yi − 1)] =

ℓ−1
∑

i = 0

γi(2r − 1)
ℓ→∞
−−−→

2r − 1

1− γ
.

(20)

Since the trials are independent, the variance of the distribution
can also be easily computed and equals

Var[m(t)] =

ℓ−1
∑

i = 0

Var[γi(2Yi − 1)]

=

ℓ−1
∑

i = 0

γ2i4r(1− r)
ℓ→∞
−−−→

4r(1− r)

1− γ2
. (21)

An example of the memory trace distribution is presented in
Section 3.2. Furthermore, in Section 3.2.5 we show the expected
value of the memory trace E[m(t)] as a function of ds for a
fixed UP phase length TU . E[m(t)] decreases monotonously as a
function of ds. Thismonotone dependence is the principle behind
the intrinsic homeostasis mechanism just as pearly is in the model
without leak.

3.1.2. Convergence, Fast Homeostasis, and the

Random Spike Order Assumption
In the model without leak, our rule converges to a value d∗s of the
total input weight that represents the stable state (or attractor) of
the learning process. This state minimizes the expected learning
error, which may be quantified by the absolute value of the mean
weight drift, that is

d∗s ≡ argmin
ds

E
[
∣

∣1w→s(ds)−1s→w(ds)
∣

∣

]

. (22)

The stable state is shown with an arrow in Figure 2B.
Equations (15) and (16) show that the stable state depends on
the parameters θP, θD, ps→w, and pw→s.

In the previous section,M, θP, and θD were chosen to enforce
low expected weight change in some state ds. We will apply these
choices to the steady state d∗s . Observe that since E[1w→s(ds)] is
a decreasing function and E[1s→w(ds)] is an increasing function
(Figure 2B) we can scale both expectations independently by
changing pw→s and ps→w, respectively. In this way, d∗s can be
adapted.

Starting with ds > (1 + 2ε)d∗s , it may be shown that
(Appendix A3 in Supplementary Material) the expected number
of weight updates T applied, until ds < (1 + 2ε)d∗s is upper
bounded as follows

E[T] ≤
1

(1− 2ε) · ps→w
·

(

1

d∗s
+ log(ds − (1+ 2ε)d∗s )

)

. (23)

That is, the average number of weight updates is logarithmic
in the distance from the target value and inversely proportional
to ps→w, which is the probability of a strong synapse turning
weak when m(t) < θD. To avoid dangerous oscillations on
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synaptic weights however, this latter probability should be small
so as to prevent the total input weights from dropping to 0. A
similar consideration, could also be made for pw→s insofar as
a large value of this probability could result in an overshooting
(i.e., strong global potentiation) of synaptic weights, with the
important difference however, that, in our formulation, strong
potentiation still allows the postsynaptic neuron to fire, whereas
strong depression would ultimately result in the shutdown of
synaptic inputs. In this catastrophic scenario, the postsynaptic
neuron would not be able to fire further, and would become
disconnected.

To avoid this possibility and unnecessary weight fluctuations,
we present a heuristic criterion to choose ps→w and pw→s which
allow to upper bound the expected weight change by ⌈ε1d

∗
s ⌉ if

ds ∈ [(1 − 2ε1)d
∗
s , (1 + 2ε1)d

∗
s ] for some ε1 > 0. For ds =

(1+2ε1)d
∗
s the expected number of synapses that depress when a

weight update is applied is given by E[1w→s((1 + 2ε1)d
∗
s )] as in

Equation (16). Similarly, the number of synapses that potentiate
in when a weight update is applied is given by E[1s→w((1 −
2ε1)d

∗
s )] as in Equation (15). To prevent undershooting when

ds > (1 + 2ε1)d
∗
s , it suffices to choose ps→w <

c′(d∗s−θv)
d

for
a sufficiently small c′ (e.g., c′ = 2 in this study). The above
conditions translate to setting the model parameters such that:

ps→w = min

(

c′(d∗s − θv)

d
,

ε1d
∗
s

E[1w→s((1+ 2ε1)d∗s )]

)

(24)

pw→s =
ε1d
∗
s

E[1s→w((1− 2ε1)d∗s )]
. (25)

Convergence to a stable state where ps→w and pw→s are set
as in Equations (24) and (25) is shown in Figure 2C, for both
deterministic (orange) and probabilistic (purple) synapses in the
model without leak. The distribution of the total input weight at
equilibrium is shown for the deterministic synapses in Figure 2D,
where it is compared with a setting where potentiation is turned
off, i.e., where the rule only provides negative feedback. The
result in Figure 2D shows that if negative feedback is the only
requirement, then it suffices to use the memory trace exclusively
for weight depression. If the input to the neuron increases too
much, e.g., through some other form of short-term Hebbian
learning, then the negative feedback provided by the memory
mechanism of the strong synapses can quickly reduce the input
weight back to a stable state without undershooting it. In both
settings described above, the initial total input weight was ds = 30
and the distribution in the figures is shown after 200 weight
updates have been applied.

Figure 3A shows how the stable state d∗s is affected by
probabilistic synapses. In particular, in this case d∗s increases by
a factor of p−1r if other parameters remain fixed. The intuition
behind this relation comes from two observations. First, for
that state, the expected total input weight is the stable state for
deterministic synapses. Second, if the number of strong synapses
ds is large enough, then the total input X = Bi(ds, pr) is
concentrated around its meanµX = dspr with standard deviation
σX =

√

dspr(1− pr). Asymptotically for growing θv, ds, and d,

the main contribution in the sum in Equation (14) comes from
terms close to the mean of the form

θv

µX ±2(σX)
=

θv

µX(1±2(σ−1X ))
=

(

1∓2(σ−1X )
)

·
θv

µX

=
(

1∓2
(

d−1/2s

))

·
θv

dspr
. (26)

In Equation (26) above, the notation f = 2(g) means that f is
bounded by g both above and below asymptotically.

Our hitherto analysis has considered the input order to be
uniformly distributed (i.e., “random order” assumption), yet one
may also ask how the SLN rule performs if this assumption is
relaxed. Indeed, spikes are known to have a precise repeating
temporal structure in some cortical areas related to sensory
processing (Bair and Koch, 1996; Heil, 1997; Fellous et al., 2004)
and standard STDP is known to tune to the first spike for such
repeating spike patterns (Guyonneau et al., 2005). To model the
transition from an orderly spike distribution to a uniform one
the expected relative spike time of every input neuron in a volley
is fixed but the deviation of the spike time is varied. Formally,
for the i-th neuron a normal random variable Zi ∼ N (i/d, σZ)
is sampled. These variables impose an order on the input spikes
within a volley in a natural way. For the resulting order, the
input neurons spike in an equi-spaced manner. This approach
is valid since we ignore membrane leakage and, therefore, the
spike order is the only temporal structure that has any influence
on the distribution of potentiation and depression signals. For
σZ = 0, the ordering is fixed as 1, 2, . . . , d and for a growing σZ ,
the ordering approaches a uniform distribution. Figure 3B shows
how this choice of input spike distribution affects the stable state
d∗s . Not surprisingly, if the order is fixed (σZ = 0), then only the
first θv synapses get strengthened as was the case in Guyonneau
et al. (2005) where classic STDP by a repeating spike pattern
turned the neuron into a detector for the start of the pattern.
However, already a small value of σZ quickly shifts the stable state
toward the same one as for a random input order. For σZ = 2.0
the first 20 input neurons are close to a random permutation
since the probability of the 20th neuron being earlier than the first
neuron is approximately 0.47. Figure 3C shows the mean index
of strong synapses. Even though the stable state remains close to
the same for small values of σZ , the early synapses are the ones
that are preferably strengthened in agreement with Guyonneau
et al. (2005). For other choices of spike order distributions, the
negative feedback of the intrinsic homeostasis mechanism still
applies (Appendix A4 in Supplementary Material).

3.2. Numerical Simulations
3.2.1. Stability in the Model with Leak
As in the model without leak, the number of weight changes in
the model with leak is mainly determined by two factors: (i) the
number of synapses whose memory trace lies outside the target
interval [θD, θP] and (ii) the weight update parameters ps→w and
pw→s. How the width of the interval [θD, θP] affects plasticity
is shown in Figures 4A–C, whereas an example of how ps→w

and pw→s can affect plasticity is shown in Figure 4D. The width
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FIGURE 3 | Noisy input and the random order assumption in the model without leak (Section 3.1.2). (A) The stable state d∗s scales by 1/pr for probabilistic
synapses. The initial value of ds is set to 20/pr for each pr and the plot shows the mean value of ds · pr after 50 weight updates over 100 trials. (B–C) From a fixed

order to a random order. Spike order distributions that are not uniform are considered in these panels. The parameter σ brings them from a fixed order (σ = 0) to a

uniform order (σ →∞). (details are explained in Section 3.1.2). Initially, each synapse is strong independently, with probability 4θv/d. (B) Small variability brings the

stable state d∗s close to same state as when the spike order is uniform. (C) The plasticity mechanism prefers early neurons when σ is small. This is reflected by the

mean index of the strong synapses, which are indexed from 1 to d in ascending order of expected spike time. However, as σ increases, the early neurons become

less distinguishable from later neurons. In (B,C) each data point is the mean of 250 trials, where for each trial 250 weight updates are simulated. For all panels, the

plasticity parameters are chosen as in Table 1 and the envelopes represent standard deviation estimates.

of the target interval [θD, θP] determines how many synapses
can change their weight in the stable state. Such intervals are
laid over the memory trace distribution in Figure 4A, which
was sampled by fixing ds = 20. The tails of the distribution
outside the interval correspond to the synapses that can change
their weight. Since these tails fall off exponentially if the
learning signals are independent Bernoulli trials, the fraction
of synapses that can update their weights in the stable state
can be made arbitrarily small by choosing a large interval. It
may be noted that the parameter γ also needs to be chosen
sufficiently close to 1, which corresponds to choosing M larger
in the model without leak. Therefore, one can choose parameters

such that a region around the stable state induces almost no
weight changes, thus avoiding unnecessary fluctuations of total
input weight. However, choosing a large interval also leads to
diminished plasticity in regions further away from the stable
state (Figure 4B). This suggests that a trade-off exists between
synaptic weight plasticity and the time to reach close to the stable
state.

Figure 4C shows such trade-off where the orange curve
represents the expected number of weight updates per UP phase
when ds = 20 (over all synapses) whereas the purple curve shows
the mean time to remain with 25 strong synapses starting from
80. For Figures 4A–C, the parameters ps→w and pw→s were set
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FIGURE 4 | Plasticity vs. stability in the model with leak (Section 3.2.1). (A) Distribution of the memory trace in a static setting, with ps→w = pw→s = 0 and

ds = 20 strong input synapses. The colored vertical bars represent the target interval [θD, θP ] used in (B,C). (B) The mean fraction of synapses whose memory trace

lies outside the interval [θD, θP ] in a static setting. (C) The trade-off between the number of weight changes in the stable state and convergence time to the stable

state. The light purple curve shows the mean number of weight changes per UP phase over all input synapses. The dark purple curve shows the mean time for the

weights to converge from ds = 80 to ds = 25. The ticks on the x-axis are colored and correspond to the thresholds in (A) and curves in (B). In this setup, the number

of strong synapses in the stable state is ds = 20. This is achieved by choosing ps→w and pw→s such that they satisfy the equation dsps→w = (d − ds)pw→s; i.e.,

pw→s = 0.0625 and ps→w = 0.25. The error bars represent standard deviation estimates. (D) Comparison of the effect ps→w and pw→s have on convergence. In

this figure, θD = −5.1 and θP = −1.1, and three different values of pw→s (0.05, 0.25, and 1.0) are compared (the corresponding ps→w values are 0.01, 0.06, and

0.25). If too many synapses change their weight simultaneously because of a small target interval and large weight change probabilities, then the weights can

overshoot the stable state and oscillate around it. (E,F) Stability for different weight distributions. (E) Density function for two different weight distributions of the strong

synapses. The dark orange is the density function of N (40, 5), and the light orange is the density function for the random experiment, where we either draw the weight

from the distribution N (35, 5) or N (45, 5) based on a fair coin toss. (F) The corresponding memory trace distribution for each weight distribution when ds = 24 in a

static setting with ps→w = pw→s = 0. By choosing θD = −16 and θP = 5, the weight remains unchanged for both weight distributions over a period of 50 s and

oscillating input (data not shown). In (A) the distribution is obtained by sampling memory traces of all d synapses after a simulation of 500 UP phases in 250 trials. In

(B) each data point is the mean of 100 trials. In (C) each curve is the average over 40 trials. In (D) each curve is the average over 200 trials with a data point every 125

ms. For all panels, error bars and envelopes represent standard deviation estimates. In (F) the distribution is sampled from 100 synapses over 200 trials of a 50

second simulation.
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to 0.25. In combination with a small target interval, a bad choice
of ps→w and pw→s can lead to plasticity over- or undershooting
as in the model without leak (see Section 3.1.2). Undershooting
the input weight in the stable state is a concern if it results
in the weights being too small to activate the target neuron.
Overshooting is less of a concern for activation, but it is wasteful
since fewer weight updates can be used to reach the stable state.
An example of undershooting is shown in Figure 4D, where
θP = −1.1 and θD = −5.1. Over- and undershooting happen
in this setting because the memory trace depends on learning
signals from the past that are irrelevant when the weights are
close to converging. To handle this effect, weight updates can be
limited by choosing ps→w and pw→s small enough. Furthermore,
since input neurons in the model with leak do not always spike
in an UP phase only a fraction of the input synapses update their
memory trace and trigger the weight update rule. This results in
a natural tie-breaking mechanism that prevents all synapses from
updating their weights simultaneously.

The SLN rule achieves normalization quickly. Though speed
is a desirable property (see the work of Zenke et al., 2013 for a
discussion on the necessity of a fast-homeostatic mechanism), it
is also important to be energy efficient; that is, the total number
of synaptic weight changes should be small. Different synaptic
weight distributions can result in the same value of expected
relative postsynaptic spike time. A feature of stability in the
SLN rule is that this does not result in further weight changes.
We highlight these features in Figures 4E,F. Figure 4E shows
two different synaptic weight distributions for the strong weight
synapses. One is normally distributed with mean 40 nS and
standard deviation 5 nS (dark orange). The other is obtained
by sampling from a normal distribution as well, with the same
standard deviation, by first flipping a fair coin to decide if
the mean should be 35 or 45 nS (light orange). The resulting
distribution of the memory trace is shown in Figure 4F when
ps→w = pw→s = 0 and ds = 24. By setting θD = −16 and
θP = 5, the synaptic weights remain unchanged over 1 min of
input activity (data not shown). That is, both weight distributions
are stable.

3.2.2. Short vs. Long UP Phases
For short UP phases the SLN rule normalizes the expected
relative spike time r of the postsynaptic neuron within an UP
phase whereas for long UP phases the rule normalizes the
absolute expected latency of the postsynaptic neuron, which is
equivalent to normalizing the total input weight in this setting.
Figures 5A,B demonstrate how the number of strong input
synapses ds and the relative spike time r change when varying
the length of the UP phase if we start with ds = 25 and run
the process until the weights converge. We use a log-scale for
the x-axis to show data for very long UP phases. Figure 5A
shows that for long UP phases the input weight is normalized
whereas Figure 5B shows that for short UP phases the relative
spike time is normalized. We show UP phases of length
20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0, 80.0, 100.0, 500.0, and
1000.0 ms. The length of the down phase is set to 1000.0
ms and we set Tburst = 1000.0 such that there can be only
one DSP per UP phase. We use the plasticity parameters in

Table 3 for r = 1/3 (dark purple) and r = 1/2 (dark orange)
where the lighter colored curves correspond to a setting with
pw→s = 0.0 as in Section 3.1.2. The schematic in Figure 5C

explains the reason for this difference. The figure shows two
different rate functions with short (30 ms) and long (500 ms)
UP phases. Postsynaptic spikes are drawn on top of the rate
function for reference where darker spikes represent DSPs. The
windows for potentiation and depression signals are drawn
in black over the DSPs. For short UP phases the windows for
potentiation and depression signals cover the whole UP phase.
In this setting, the fraction of potentiation signals represents
the relative spike time within an UP phase. In contrast, for long
UP phases, the window of depression lies completely within
the UP phase. To compensate for more depression signals the
input weight needs to decrease such that the ratio of potentiation
to depression signals is within the target regime. Figure 5D
shows the weight over time for short UP phases of 30 ms with
ds = 17 at t = 0 (left panel) and long UP phases of 0.5 s with
ds = 27 at t = 0 (right panel). In both panels the DOWN
phases are of length 1 s. We use the plasticity parameters for
r = 1/3 in Table 3 which corresponds to the dark purple curve
in panels A-B. Each timescale captures 400 UP phases and
we show 20 example runs with one highlighted in orange for
clarity.

For long UP phases we chose Tburst sufficiently large to permit
only one DSP per UP phase. However, for short DOWN phases
this leads to a DSP blocking first spikes of subsequent UP phases
becoming DSPs. As an alternative, one can assume that a DSP
is only triggered if the membrane potential was recently in a
low state of activity and a DSP blocks further DSPs until a
low activity state is reached again. One can further assume that
spike pairs are only considered to trigger learning signals if the
subthreshold activity remains above some threshold between
both spikes. This voltage based approach fixes the issue above
with short DOWN phases and it implies that for constant or high
rate input (as we study in Section 3.2.6), where the subthreshold
potentiation remains large, neither the memory nor, hence, the
synaptic weight, would change.

3.2.3. Heterogeneous/Multimodal Weights
The SLN rule also works for heterogeneous and multimodal
synapses although the exposition so far was restricted to binary
synapses. This more general scenario is discussed in the model
without leak of mere SIF neurons, with results from simulations
presented in Figure 6.

In the setting with heterogeneous weights ww = 0 for all
synapses, whereas ws is drawn independently for each synapse
from a distribution as in Barbour et al. (2007). The distribution
is the one reported in Loewenstein et al. (2011), where ws =

eN (µ,σ ) with µ = 1.74 and σ 2 = 0.1002. The mean of the

distribution is 10µ+σ 2/2 ≈ 5.726. To compare this with the
binary weight setting where θv = 10, the threshold is set to θv =

10 · eµ+σ 2/2. Convergence to a stable state is shown in Figure 6A.
Initially 20, 40, or 80 synapses are strong. After convergence, the
weight distribution of synapses selected to be strong is compared
with the lognormal distribution from above (Figure 6B). The
empirical distribution is composed of 5.000 trials and the neuron
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FIGURE 5 | Comparison of short and long UP phases. (A,B) Dependence of number of strong input synapses ds and relative spike time on the lengths of UP

phases. We set TD = 1000.0 ms and we set Tburst = 1000.0 such that there can be only one DSP per UP phase. (A) shows that for long UP phases the mechanism

normalizes ds. (B) shows that for short UP phases the mechanism normalizes the relative spike time r within an UP phase. (C) Depression is stronger for sufficiently

long UP phases. For two different rate functions the postsynaptic spikes are drawn on top of an UP phase where darker spikes represent DSPs. The black bar

represents the learning windows. The time window of the depression signal is completely within the UP phase if the UP phase is long. This increases the expected

number of depression signals. To compensate, the input weight needs to decrease in order to correct the ratio of potentiation to depression signals. (D) Weight

change for short UP phases of 30 ms with ds = 17 at t = 0 (left panel) and long UP phases of 0.5 s with ds = 27 at t = 0 (right panel). We show 20 example runs with

one highlighted in orange for clarity.

and synapse parameters (except θv and the weight) are in
Table 1.

Figures 6C,D compare convergence and weight distribution
for the two different setups from Section 2.5. The plasticity
parameters are the same as in Figure 2. The additive weight
update rule is slower to converge since the weight updates are
smaller for large input weights compared with the multiplicative
rule. Figure 6D shows that in this specific setting, the synaptic
weights do not need to be explicitly upper bounded. This
holds because the input arrives in a random order and the
causative effect of a single synapse is small. Figure 6D also
shows that the additive (multiplicative) weight update rule
converges to a bimodal (unimodal) distribution. Both uni- and
bimodal distributions have been observed for earlier plasticity
rules, whereas bimodal distributions are considered a sign of

competition since some synapses being strong force others to be
weak.

3.2.4. Robustness of Convergence
We show that the stability of the rule does not depend on
the exact input parameters and that perturbations do not
qualitatively affect it. Figure 7 illustrates this robustness in
the model with leak. The different panels show two different
plasticity parameter settings that correspond to r = 1/3 (purple)
and r = 1/2 (orange) in Table 3. In Figures 7A–C, the lengths
of UP and DOWN phases (TU and TD), and the number of
inputs d are varied. The process is first simulated for 200 UP
phases starting with ds = 25 such that the input weight reaches
the stable state. The data in the figures is based on UP phases
201–400 in 40 trials. Figure 7A shows that the SLN rule fixes
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FIGURE 6 | Heterogeneous and multimodal weights in the model without leak (Section 3.2.3). (A,B) Heterogeneous weights. (A) Input convergence with the

spike threshold θv adapted to the synaptic weights. (B) Comparison between the distribution of strong synaptic weights (lognormal distribution, shaded) and the

strong weights after convergence (dots). (C,D) Multimodal synapses. Two different weight update rules are presented: one additive and one multiplicative (see

Section 2.5 for details). (C) Convergence for the two different setups where all the synapses start with weight 10 and θv is set to 100. (D) The input weight

distributions are compared for the multimodal weight update rules in (C) after 250 extra weight updates. The additive weight update rule produces a bimodal weight

distribution whereas the multiplicative one produces a unimodal distribution. None of the update rules imposes a hard upper bound on the weights and all resulting

weights are less than 10, which was the starting weight of the synapses. For all panels, the parameters were chosen as in Table 1 unless otherwise specified. In (A,C)

each curve is the mean of 30 and, respectively, 100 trials; the envelopes represent a standard deviation estimate. In (B) the distribution is obtained from 5.000 trials,

where in each one 50 weight updates were simulated.

the relative spike time r of the postsynaptic neuron. The stable
value of r mildly depends on TU , which arises from the choice
of synaptic delay tdelay = 1 ms. To explain this, denote by t1 the
spike time of the pre spike which triggers the postsynaptic spike at
time t2. Any presynaptic neuron that spikes in the interval (t1, t2)
receives a potentiation signal, which leads to a mild bias toward
potentiation that is stronger for short UP phases. The variable r
determines the number of spikes per UP phase (Figure 7B) since
the number of spikes is inversely proportional to r. The number
of spikes per UP phase has a mild dependence on TU since the
refractory period has a stronger effect for short UP phases and
the reset potential makes repeated spikes easier. Figure 7C shows
that the intrinsic homeostasis mechanism does not fix the rate of
the output neuron since it is determined by TU and TD.

Figure 7D shows the effects of single parameter variations.
The darker colored curves correspond to the same plasticity
parameters as in Figures 7A–C and the lighter colored curves
correspond to a setting without positive feedback, i.e., when
pw→s = 0 (see Section 3.1.2 for a similar setting in the model
without leak). Observe that most single parameter variations in
this setting do not cause large plasticity undershooting. The main
effects caused by TU and TD are covered above so we do not cover
the first two rows here (the lower order effects of TU on r are
covered in the next paragraph). The third row corresponds to
varying the phase shift of the inputs randomly (see Section 2.2).

For that setting we replace TU by TU + σ in the definition
of r. We see r increase due to a reduced input weight like
we observed for more orderly input distributions in the model
without leak (see Section 3.1.2). Rows four and five correspond
to the number of input neurons and noise rate, respectively.
Variations on both of these parameters have similar effects, as
increasing these parameters helps activate the target neuron.
Consequently, ds must decrease to compensate (D 4,2 and D 5,2).
The last row corresponds to varying the membrane capacitance
Cm. Increasing the capacitance decreases the leak conductance,
but it also reduces the excitatory synaptic conductance, which
makes it harder to activate the neuron. Despite large variations, r
remains fixed.

To conclude this section, let us consider the lower order effects
from TU , d, and noise strength on r. For simplicity assume that
θP and θD are chosen such that a δ fraction of the strong (weak)
synapses satisfies m(t) /∈ [θD, θP] in the stable state. For the
corresponding input weight d∗s , the parameters ps→w and pw→s

satisfy

(d − d∗s ) · δ · pw→s = d∗s · δ · ps→w. (27)

However, if we increase TU , the noise, or d, then d∗s will
change to compensate such increase. If d∗s needs to decrease
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FIGURE 7 | Robustness against varying input parameters in the model with leak (Section 3.2.4). (A–C) Results for two different sets of plasticity parameters

corresponding to r = 1/3 (purple) and r = 1/2 (orange) in Table 3 are shown. Three parameters of the input are varied: the length of an UP phase TU; the number of

(Continued)
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FIGURE 7 | Continued

input neurons d; and the length of a DOWN phase TD. (A) r, the expected time of the first postsynaptic spike within an UP phase scaled by the UP phase length. The

plasticity parameters fix r; thus, varying the input parameters has a negligible effect on it. (B) Variations in the number of spikes per UP phase. The number of spikes

per UP phase depends on r, but it also has a mild dependence on the refractory period and the reset potential, which explains the variations seen when varying TU.
(C) Output rate variations. The rule does not fix the output rate of a neuron: the rate depends mainly on TU and TD. (D) Single parameter variations. Variations for six

different parameters are shown. The darker colored curves correspond to the same plasticity parameters as in the top three panels, and the lighter colored curves
correspond to a setup with no positive feedback (pw→s = 0). The first row is for TU, the second is for TD, the third is for random phase shifts of the input neurons, the

fourth is for d, the fifth is for the noise rate ν, and the sixth is for the membrane capacitance (for details see Section 3.2.4). The orange curves start with ds = 17 and

the purple curves start with ds = 25. Each data point in (A–C) is the mean of 40 trials and in (D) the mean of 10 trials. The error bars represent standard deviation

estimates. For each trial, the process was simulated for 200 UP phases to reach the stable state and then the data points were collected over a continued simulation

of 200 UP phases (r, rate, spikes per UP phase), or at the end (ds).

by x to obtain the correct value of r, then the left-hand side
in Equation (27) increases by xδpw→s whereas the right-hand side
decreases by xδps→w. Therefore, the number of strong synapses
will not converge to exactly d∗s − x. However, if the interval
[θD, θP] is large enough such that δ is small, then this effect is
reduced.

3.2.5. All-to-All vs. Distinguished Spikes
The principle of sampling the expected spike time of the
postsynaptic neuron in an UP phase also applies if the synapse
considers all pre/post and post/pre spike pairs within an UP
phase to constitute potentiation and depression signals. In this
section, we show the advantage of using a single DSP: it improves
the signal-to-noise ratio. Furthermore, later postsynaptic spikes
in an UP phase have more preceding presynaptic spikes in the
UP phase and, thus, carry a weaker signal. Figure 8A compares
the memory value for these two rules in a static setting where
synapses have fixed weights. The figure shows the advantage
of DSPs. They reduce the variance of the memory trace and
increase its range, which makes the two different values of
ds more distinguishable. It may be noted that both versions
of the rule perform similarly for small values of ds because
then only one postsynaptic spike is expected (i.e., both act as
with DSPs). However, as ds grows, and the postsynaptic rate
increases the memory traces for the two rules start to differ.
The difference arises from the fact that if the postsynaptic
neuron spikes for example five times, then the update to the
memory trace for DSPs is only −1 or 1 (for a single presynaptic
spike), whereas it can range from −5 to 5 in the all-to-all
setting. Furthermore, depression signals are more common in
the DSP setting for large ds, whereas potentiation dominates
in the all-to-all setting. This effect comes from the spike
time distribution of the postsynaptic neuron within an UP
phase.

3.2.6. Fixed Rate Input
So far we assumed that the input signal oscillates between
high and low states of activity. One may also ask, however,
what happens if the input rate is constant, which is a common
assumption in modeling studies (Burkitt, 2006a). In this regard,
the behavior of the SLN rule is determined by the ratio
of potentiation and depression signals as before. However,
for constant input rate the rule does not have a frame of
reference to measure the input strength anymore. The ratio of
potentiation and depression signals is, therefore, determined by

the parameters Tearly and Tlate. If we choose the parameters θP,
θD such that the memory trace lies entirely within the interval
[θD, θP] for constant input rate, then the weights do not change.
However, if a larger fraction of the memory trace distribution lies
below θD than above θP, then the total input weight decreases up
to a point where activation of the neuron becomes unreliable.
For the opposite case, all the synapses get strengthened, which
is not desirable. Figure 8B illustrates this by showing how the
system responds to constant input for three different sets of
plasticity parameters. For parameters that result in r > 1/2,
the weights decrease to a point where the target neuron shows
almost no reaction to the input. Indeed, this seems a reasonable
response as such an input does not carry any information.
On the other hand, for parameters that result in r < 1/2
the weights and the firing rate of the target neuron grow to
the maximum value, which is undesirable if the activity of the
neuron should be limited. These observations indicate that the
parameters should fix r to be at most 1/2, which corresponds
to several spikes of a neuron in an UP phase (≈ 1/r) and is
in good agreement with experimental findings (Connors and
Gutnick, 1990). Furthermore, the synapses should not expect
disproportionally more potentiation signals than depression
signals.

4. DISCUSSION

There are two forms of homeostasis prominently discussed in
the literature. First, there is the concept of normalization (or
scaling) of total input weights with respect to a target total
weight (Von der Malsburg, 1973). Second is the concept of rate
normalization, where rate of the postsynaptic neuron should
stay within a target regime. The latter option is regarded to be
more plausible than the former, insofar as it can be implemented
locally at the level of a single synapse so that the computation
is restricted to the sole information available at that synapse.
In contrast, the first option requires computation of the total
input weight which was not considered a synapse specific
computation but rather a neuron specific computation (Zenke
et al., 2013). In this paper, we introduce a third option: a
fast-acting local homeostasis mechanism that normalizes the
expected spike time of a neuron in an UP phase of an
oscillatory input rate function. Two independent studies have
identified the order of the time scale for fast homeostasis to be
seconds (El Boustani et al., 2012; Zenke et al., 2013), which is
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FIGURE 8 | (A) Advantage of DSPs (Section 3.2.5). With DSPs in the model with leak, the variance of the memory trace is considerably smaller than for an all-to-all

rule. The curves show the mean memory trace value when varying the number of strong inputs ds in a static setting with ps→w = pw→s = 0. The orange curve
corresponds to the SLN rule. The purple curve corresponds to a rule where all pre–post and post–pre spike pairs within an UP phase trigger learning signals. (B)

Constant rate input at 40 Hz in the model with leak (Section 3.2.6). The two different sets of plasticity parameters from Table 3 are compared. For each setting, the

number of strong synapses ds is initially set in the stable state for the oscillating input. For the r = 1/3 parameters, all the synapses increase their weights since the

synapses receive potentiation signals half of the time instead of one-third of the time, which they expect. For the r = 1/2 parameters, there is no such disagreement

and for the r = 2/3 parameters it is the opposite and the input weight decreases to a point where activation becomes unreliable. In (A) the mean is taken after a

50-s-simulation over 10 trials, where in each trial samples are taken from all 100 synapses. In (B) the curves show means of 50 trials. In both panels the envelopes

represent standard deviation estimates.

well within the parameter regimes of the SLN rule presented
in this paper (for a recent review see Zenke and Gerstner,
2017). Furthermore, normalization is applied on a fast time
scale in most, if not all, computational studies (Chistiakova
et al., 2015). The fact that the SLN rule is Hebbian challenges
the belief that regulation of neuronal excitability is difficult
if synapses are modified independently by such rules (Abbott
and Nelson, 2000). Furthermore, for long UP phases the rule
results in input weight normalization which challenges the belief
that estimating the input weight cannot be done through local
synaptic computation. Moreover, the rule is energy-efficient
in the sense that the synaptic weights do not change in the
stable state for parameters favoring stability. In particular, if
the postsynaptic neuron is spiking with the correct expected
relative spike time, then the homeostasis mechanism does not
intervene. Hence, the weights do not converge to a unique
distribution.

4.1. Related Literature
4.1.1. Related Metaplasticity Rules
The SLN rule bears some resemblance to the metaplasticity rule
proposed by Brader et al. (2007). Common to both rules is
a synapse specific memory trace represented by a real value
which is updated for certain spike events. Other metaplasticity
rules depend on discrete states within the synapses such as
the synaptic integration rule by Elliott and Lagogiannis (2012)
which can be considered a multimodal version of the cascade
rule by Fusi et al. (2005). However, these metaplasticity rules
have not been studied in the context of SLN for UP/DOWN
state input activity where, in particular, the fast and robust
weight convergence for such activity has not been demonstrated
before.

4.1.2. Volley-Like and Repeating Input Patterns
The effect of standard STDP on spike timing was studied and
analyzed in detail in the context of volley-like input spike

distributions in Gerstner and Kistler (2002, Chapter 12.2).
Furthermore, if the relative effect of potentiation is reduced then
STDP leads to convergence of the input weights to a stable
distribution for random input activity (Van Rossum et al., 2000).
For both these cases, the synaptic weights perform random
walks in the stable setting whereas the SLN rule provides a
stronger stability guarantee since it implicitly fixes the weights
at equilibrium and the weight distribution at convergence is
not unique. Hence, the SLN rule is economical in the sense
that synaptic weights are only changed when it is necessary
which is in agreement with other studies since not all spike
pairs necessarily lead to a weight change (Yger and Gilson,
2015).

Other theoretical studies have considered repeating spike
inputs as the ones presented in Section 3.1.2. Guyonneau
et al. (2005) studied standard STDP for repeated stimulation
of a neuron with the exact same spike pattern. Through
such repeated exposure the postsynaptic neuron becomes a
coincidence detector for the given pattern. Further studies
showed that this feature is robust to noise (Masquelier et al., 2008,
2009).

4.1.3. Other Activity Dependent Homeostasis

Mechanisms
Perhaps the most prominent example of homeostasis in plasticity
models is the BCM rule (Bienenstock et al., 1982). The weight
update in the BCM rule normalizes postsynaptic rate by using a
threshold which varies slowly with the postsynaptic rate. Nearest-
neighbor STDP has been shown to perform a simplified version
of this operation, i.e., without the sliding threshold, when pre-
and postsynaptic activity is weakly correlated (Izhikevich and
Desai, 2003).

Other studies have focused more directly on preventing
single weights from being driven to extreme values. Gütig et al.
(2003) presented a plasticity model where the plasticity rule
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is weight dependent and, therefore, leads to an implicit upper
bound on synaptic weights through a mixture of additive and
multiplicative weight changes. Babadi and Abbott (2010) had
an even more implicit approach by shifting the effective STDP
temporal window by roughly 2 ms such that pre/post pairs that
are close in time lead to depression instead of potentiation. This
effect works against synapses with a large causative spiking effect.
It may be noted that the same principle can also be applied for
the SLN rule.

Another variable which could be controlled through
homeostasis is the type of activity in a neural network. In
this regard, STDP is known to sustain a stable background
state in balanced networks (Kempter et al., 1999, 2001; Song
et al., 2000; Van Rossum et al., 2000; Rubin et al., 2001) and to
regulate activity (Kempter et al., 1999, 2001; Song and Abbott,
2001; Pfister et al., 2006; Watt and Desai, 2010) but these
models have been criticized for parameter fine-tuning (for a
review see Chistiakova et al., 2015). Theoretical investigations
showed that fast detection of postsynaptic rate changes can solve
the problem (Zenke et al., 2013; Yger and Gilson, 2015) but
these studies do not consider the scenario of UP and DOWN
phases.

It is plausible that homeostatic plasticity is controlled by
more than a single mechanism (Tononi et al., 1999; Watt and
Desai, 2010) as many alternatives, like we discussed, which
have a homeostatic effect on various parameters of neurons
or network activity have been proposed (Bienenstock et al.,
1982; Rabinowitch and Segev, 2006; Vogels et al., 2011; Remme
and Wadman, 2012). It is known that homeostatic plasticity
is affected by a complex web of signaling processes many of
which are likely undiscovered (Pozo and Goda, 2010) and
which might even be shared between, or belong to, different
homeostasis mechanisms. As an example, weight normalization
is considered biologically plausible because a neuron might
have finite resources dedicated to maintaining its synapses,
but there is a lack of experimental evidence to support
this.

4.2. Biophysical Bases for Memory Traces
For the SLN rule, we require the synapses to hold a trace of
learning signals from the past. Some previous learning models
depend on a synapse-specific memory trace that represents
global information shared by all or many input synapses of a
neuron (Brader et al., 2007; Urbanczik and Senn, 2009; Brea
et al., 2013, 2016; Urbanczik and Senn, 2014). Several hypotheses
propose that some form of memory can reside in a synapse.
Min and Nevian (2012) suggest that astrocytes could act as
a memory buffer to store previous coincident spike events.
Astrocytes could further provide the signal that determines if a
synapse should increase or decrease its weight (De Pittà et al.,
2016; De Pittà and Brunel, 2016). Another candidate that has
been proposed to represent a long-lasting memory trace of
past synaptic activity is calcium/calmodulin-dependent protein
kinase II (CaMKII) (Hell, 2014). This protein kinase can assume
two stable states depending on whether it is phosphorylated
(active) or not (auto-inhibited). Earlier results have shown that
LTP induction induces a persistent translocation of CaMKII

to synaptic spines, causing it to be considered as a form of
a long-term memory trace (Otmakhov et al., 2004). Other
more short-lived memory traces have also been proposed such
as transient neurotransmitter concentrations, like dopamine,
which can extend the window of potentiation in STDP and is
supported by experimental evidence (Zhang et al., 2009), and
the local membrane potential at a synapse (Urbanczik and Senn,
2014).

4.3. Rhythmic Input
The intrinsic homeostasis effect of the SLN rule is designed
for input activity that switches between high and low states.
Oscillations of activity are ubiquitous in the brain (Reyes, 2003;
Buzsáki and Draguhn, 2004), but their exact functional role
is still not fully understood. The most prominent hypothesis
of the functional role of oscillations in brain activity is
the “communication-through-coherence” hypothesis, see the
reviews in Fell and Axmacher (2011) and Thut et al. (2012). This
hypothesis posits that neural populations communicate through
phase-locked oscillations. If the subthreshold potentials of the
two populations are phase locked, then the source population
can activate the target if it is in an UP state when the signal
arrives, which is considered to lead to long-term potentiation.
Correspondingly, if the target population is in a DOWN state,
then the activation becomes harder and is believed to lead to
long-term depression. Recent evidence indicates that retrieval
of information in the hippocampus is discretized with respect
to slow-wave gamma oscillations and sharp-wave ripple events,
which are recognized as the most synchronous patterns in
the brain (Pfeiffer and Foster, 2015). However, synchronous
and rhythmic activity is also observed during sleep and then
the duration of UP and DOWN phases is typically in the
order of seconds (Steriade et al., 2001; Jercog et al., 2016).
Even though these observations were first made some decades
ago (Steriade et al., 1993a,b,c) the functional role of UP and
DOWN phases is still not apparent (Vyazovskiy and Faraguna,
2014).

4.4. Conclusion
We have shown that Hebbian learning can be intrinsically stable
through postsynaptic spike latency normalization in the context
of activity that alternates between UP and DOWN phases.
Remarkably, the mechanism is fast since only a few cycles of UP
and DOWN phases are necessary to normalize the postsynaptic
spike latency. This highlights a potential functional role of UP
and DOWN phases, that is, they provide a frame of reference
in which synapses can measure postsynaptic spike latency which
results in a homeostatic effect on postsynaptic activity. In
particular, for long UP phases, spike latency normalization is
equivalent to input weight normalization which was considered
not to be possible locally at the synapse level. Furthermore,
the total input weight to which the SLN rule converges is
inversely related to the length of the UP phase for short UP
phases and is independent of the length of the UP phase for
long UP phases. This feature is in agreement with the synaptic
homeostasis hypothesis (Tononi and Cirelli, 2003, 2006, 2014)
which proposes that synaptic weights are downscaled during
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slow-wave sleep when long UP and DOWN phases are typically
observed (Steriade et al., 2001). Future work will involve the
study of spike latency normalization in recurrent and feed-
forward networks. Denève and Machens (2016) have shown that
UP and DOWN phases can be a characteristic of simulated
recurrent networks. Our preliminary results indicate that in feed-
forward networks the rule increases synchrony with network
depth and the expected number of spikes in an UP phase
converges to approximately 1/r for deep layers and short UP
phases.
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