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Gut microbial metabolites and its impact on human health
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One of the primary methods by which the gut microbiome interacts with its host is through 
the interactions that occur through the production of the metabolites produced, either directly, 
or indirectly, through microbial metabolism. Decades of research has demonstrated that these 
metabolic products play a vital role in human health, either for its benefit or detriment. This review 
article highlights the main metabolites produced by the interactions between diet and the gut 
microbiome, bile acids and the gut microbiome, and products produced by the gut microbiome 
alone. Additionally, this article reviews the literature on the effects that these metabolites play on 
human health.
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Introduction

The gastrointestinal tract is home to trillions of microbes 
which collectively contain more genes than the human 
genome and produce various metabolites that affect the 
human host [1]. Decades of research have come to demonstrate 
that these metabolic end-products play a vital role in humans, 
affecting components in cardiovascular, neurologic, and 
metabolic health [2]. Collectively, these various metabolic end-
products produced by the microbiome are both synthesized 
and utilized in various ways [3]. The objective of this review 
article is to highlight three main mechanisms by which the 
core metabolites are synthesized and discuss their function and 
impact on human health.

Metabolites produced by the interaction between 
the diet and gut microbiome of the host

Short chain fatty acids

Gut microbes feed on the diet of the host and through this 
interaction metabolic end-products including short chain fatty 
acids (acetate, propionate, and butyrate), trimethylamine-
N-oxide (TMAO), and a litany of tryptophan catabolites are 
produced.

Fermentable dietary fiber that pass through the small 
intestine without being digested or absorbed, are utilized by 
the bacteria in the colon [4]. They undergo fermentation that 
results in the production of acetate, propionate, butyrate, and 
gases (H2 and CO2). The production occurs in a 60:20:20 ratio 
for acetate, propionate, and butyrate respectively with anywhere 
from 90 to 99% being used in the gut [5,6]. Collectively, all of 
the SCFA can bind to the G-protein coupled receptor 41 and 
43 (GPR41/43), which are expressed on the enteroendocrine 
L-cells to exert their metabolic effects [7,8]. Binding to 
GPR41/43 induces secretion of gut hormones glucagon-like 
peptide-1 (GLP-1) and peptide YY which can increase energy 
expenditure, increases fat oxidation, reduces pro-inflammatory 
cytokines, and decreases appetite [9,10]. These receptors are 
known to be found in the most metabolically active tissues 
including muscle, liver, and adipose tissue, indicating the direct 
role SCFA play in systemic energy metabolism [2,10]. Table 1 
highlights the effects of the three short chain fatty acids.

Acetate may be generated by three pathways either by 
direct consumption of acetate-containing foods, through 
endogenous production in tissues through acetyl-CoA, or by 
the fermentation of dietary fiber, particularly acetogenic fibers 
which include inulin and galacto-oligosaccharides [11,12]. 
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Of the various SCFAs, acetate is the most abundant, being 
produced in a 60:20:20 ratio in the colon for acetate, propionate, 
and butyrate respectively. Peripherally, this ratio becomes 
180:5:1, indicating that a majority of propionate and butyrate 
are utilized at the site of production [4]. Interestingly, this ratio 
is altered for hosts that consume western-diets rich on fat and 
low in fiber with lower amounts of peripheral acetate [13]. This 
is a notable finding given the role acetate plays in metabolic 
diseases and in particular with type 2 diabetes mellitus (T2DM). 
Controversy, however, still surrounds the health benefits of 
acetate. While some studies associate acetate with increased 
satiety and weight loss through its interaction with GPR41/43, 
others report its obesogenic properties as it functions as a 
substrate for both hepatic and adipocyte lipogenesis [11,14]. 
Gao et al found that acetate functions as an epigenetic 
metabolite to promote cancer cell survival under hypoxic states 
by serving as a carbon source for lipid synthesis [15]. Still, 
few studies suggest acetate suppresses weight gain, improves 
insulin sensitivity, stimulates the gut-brain axis to suppress 
appetite, and can downregulate inflammation in obesity by 
reducing proinflammatory cytokines and increasing regulatory 
T-cells [16-19]. This discrepancy in data surrounding acetate is 
likely related to its dynamic signaling which may vary based on 
the physiologic state [20].

Propionate is generated through bacterial fermentation 
of indigestible fibers through predominantly the succinate 
pathway and to a lesser extent the acrylate and propanediol 

pathway. The ability to ferment the various SCFAs are 
dependent on genes encoded in the microbiome such as 
the mmdA  gene that encodes for the methylmalonyl-CoA 
decarboxylase in Bacteroidetes and in many Negativicutes 
families of bacteria [21]. Once formed, propionate is utilized 
at the level of the colonocytes as a substrate for intestinal 
gluconeogenesis through the FFAR3 signaling pathway, or it is 
absorbed into the portal system and taken to the liver where it is 
utilized as a substrate in hepatic gluconeogenesis [22]. Human 
studies demonstrate propionate to have an overall anti-obesity 
effect. In a randomized controlled study, daily ingestion of 10g 
of propionate resulted in significantly increased post-prandial 
GLP-1 and peptide PYY plasma levels, reduced weight gain, 
intra-abdominal adipose tissue distribution, intrahepatocellular 
lipid content and prevented the development of insulin 
sensitivity seen in the control group [23]. Propionate also 
has been shown to have anti-inflammatory properties by 
decreasing levels of interleukin-8 and TNF-α release from 
neutrophils [24,25].

Butyrate is perhaps the best studied and the most beneficial 
to human health. Four pathways for butyrate synthesis have 
been described, and occur predominantly through the acetyl-
CoA pathway, followed by the lysine, glutarate, and succinate 
pathways [26]. Butyrate has wide-ranging clinical benefits 
not only for the luminal colonocytes where it is the preferred 
energy molecule, but also at the systemic level. These benefits 
include maintaining mucosal integrity, modulating both local 
and systemic immunity, and inhibiting neoplastic changes at 
the cellular level [27,28].

Butyrate supports mucosal integrity through activation 
of the peroxisome proliferator-activated receptor-γ (PPARγ).
and stimulates β-oxidation and oxygen consumption in the 
gut, resulting to a rich luminal anaerobic environment [29]. 
In addition, it increases mucin production by goblet cells, 
increases immunoglobulin synthesis, and enhances secretion 
of antimicrobial peptides [30,31]. It further supports 
antimicrobial function by enabling the conversion of the 
proinflammatory M1 macrophage to the resolution-phase M2 
macrophage [32]. Apart from the significant immunity role 
butyrate is shown to support a strong anti-neoplastic effect. 
Termed the “butyrate paradox”, they describe the contradictory 
effects of proliferation caused by butyrate in undifferentiated 
neoplastic cells where glucose is the preferred energy molecule, 
and differentiated colonocytes where butyrate is used. In these 
neoplastic cells, at the intra-cellular level, butyrate accumulates 
leading to histone modification which alters transcription 
and halts cell cycle progression, therefore protecting against 
colonic neoplasia [33]. Finally, similar to propionate, butyrate 
also serves to have an anti-obesity effect through its ability to 
stimulate the release of anorexigenic hormones and stimulates 
leptin synthesis [34,35].

Trimethylamine-N-oxide (TMAO)

There has been increasing evidence regarding the role 
trimethylamine-N-oxide (TMAO), a common gut microbiome 

Table 1 Effects of the various short chain fatty acids

Short 
chain fatty 
acid

Mechanism of 
production

Documented effects

Acetate 1. Directly from diet
2. Endogenous 

through 
acetyl-CoA

3. Dietary fiber 
fermentation

Increased satiety, 
weight loss, suppress 
appetite, improves 
insulin sensitivity, reduce 
proinflammatory cytokines
Substrate for lipogenesis
May serve to promote 
cancer cell survival

Propionate 1. Dietary fiber 
fermentation:

   Succinate pathway, 
Acrylate pathway, 
or Propanediol 
pathway

Intestinal and hepatic 
gluconeogenesis
Anti-obesity effect: 
reduces weight gain, 
intra-abdominal adipose 
tissue distribution.
Decreases 
proinflammatory cytokines

Butyrate 1.  Dietary fiber 
fermentation:

    Acetyl-CoA 
pathway, Lysine 
pathway, Glutarate 
pathway, Succinate 
pathway

Maintains mucosal 
integrity
Modulates both local and 
systemic immunity
Protects against colonic 
neoplasia,
Anti-obesity effects: 
stimulates the release of 
anorexigenic hormones 
and leptin synthesis
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derived dietary metabolite, plays in ischemic atherosclerotic 
disease risk [36,37]. Importantly, the essential role of gut 
flora in the ultimate production of plasma TMAO has been 
independently established. Suppression of intestinal flora 
with broad spectrum antibiotics results to decreased plasma 
TMAO; reversal of this affects bacterial recolonization [37]. 
The gut microbiota plays an obligatory role in converting 
various dietary nutrients, such as choline, betaine, 
L-carnitine, ergothioneine, trimethyllysine, y-butyrobetaine, 
phosphatidylcholine, glycerophosphocholine, and TMAO, 
into trimethylamine (TMA) gas which is rapidly absorbed into 
portal circulation where it is subsequently oxidized to TMAO 
by hepatic flavin-containing mono-oxygenase (FMO) [38]. 
These TMA precursor nutrients are primarily derived from 
animal products such as red meat, poultry, fish, and eggs [2]. 
Romano et al identified nine human intestinal strains capable 
of producing TMA derived from choline within the Firmicutes 
and Proteobacteria phyla, and colonization of gnotobiotic 
mice with these microbes resulted in TMAO accumulation in 
serum [39]. A number of specific bacterial enzymes have been 
implicated in the generation of TMA, including choline-TMA 
lyase, carnitine monooxygenase, betaine reductase, and TMAO 
reductase [38,40]. Table 2 highlight the main effects of TMAO.

TMAO has emerged having an important role in 
cardiovascular disease. Wang et al first demonstrated a 
strong correlation between systemic TMAO levels and 
coronary atherosclerotic burden and cardiac risk [41]. This 
was followed by Tang et al who demonstrated that increased 
plasma TMAO levels were associated with significantly 
increased risk of major adverse cardiovascular events, even 
when adjusted for traditional risk factors [36]. The exact 
mechanism by which TMAO plays a role in this space is less 
clear; in rodent models, dietary TMAO or its precursors 
lead to accelerated arteriosclerosis and platelet aggregation, 
while inhibition of TMA production by selective TMA-lyase 
inhibition attenuates these effects [41,42]. On the contrary, 
mice specifically fed L-carnitine diets to increase plasma 
TMAO levels were interestingly shown to have reduced aortic 
atherosclerosis-  perhaps suggesting differential downstream 
effects from different nutrient precursors [43]. Separately, 
the role TMAO plays in patients in heart failure, has also 
been investigated. Those with heart failure are known to have 
functional intestinal dysbiosis secondary associated visceral 
mucosal ischemia, leading to chronic inflammation, increased 
intestinal permeability, and importantly a relative shift in the 
composition of gut microbiota to favor TMA-forming species 
such as Firmicutes and Proteobacteria [44].   TMAO, in turn, 

has been shown to have a number of direct and indirect effects 
that exacerbate heart failure, including promoting myocardial 
hypertrophy and fibrosis, activation of inflammatory pathways 
to induce endothelial dysfunction, pathologic ventricular 
remodeling, and renal interstitial fibrosis [45,46].

A number of interventions have been studied to alter the 
gut microbiome-TMAO-cardiovascular disease axis, including 
dietary changes to reduce plasma TMAO levels, probiotic 
supplementation, and potential enzymatic drug targets to 
reduce TMAO formation [47-50]. As work continues to better 
characterize this pathway, opportunities to identify novel 
therapeutic interventions will continue to emerge which 
are likely to have a profound influence on patient related 
outcomes in cardiovascular disease. Although levels of TMAO 
are dependent on the linkage of diet and gut microbiome it is 
important to note that, its regulation is associated with other 
host-environmental factors such as host comorbidities and 
genetics.

Tryptophan metabolites

While microbiota-generated SCFA and TMAO metabolites 
have been studied for over a century, the role metabolites 
generated by proteolysis has received little attention. 
Historically, products from proteolysis have been associated 
with negative effects, however newer data suggest that 
tryptophan metabolites play a beneficial role in intestinal 
homeostasis.  Table  3 highlights the effects of the various 
tryptophan metabolites.

Tryptophan is one of the nine essential amino acids that 
humans are unable to produce, thus it must be consumed 
from protein sources including meats, fish, eggs, and 
nuts [2]. A  majority is absorbed in the small intestine and 
a smaller amount does reach the colon where bacteria 
convert tryptophan into indole and various indole derivates. 
These derivatives include indoleacetic acid, indolepropionic 
acid, indolelactic acid, indoleacrylic acid, indolealdehyde, 
indoleethanol, tryptamine, and skatole [51,52]. The function 
of these tryptophan metabolites are multiple including 
antimicrobial effects and modulating the immune system, 
as well as maintaining mucosal homeostasis by affecting 

Table 2 Effects of TMAO

Trimethylamine-N-oxide (TMAO)

Food Sources Main precursors Documented effects

Eggs, milk, 
meat (red meat, 
poultry), and 
fish

Phosphatidylcholine
L-carnitine
Ergothioneine

Increased levels 
are associated with 
increased risk of major 
adverse cardiovascular 
events

Table 3 Effects of tryptophan metabolites

Tryptophan

Food 
sources

Various metabolites Documented effects

Meats, 
fish, eggs, 
nuts

Indole-derivatives, 
tryptamine, and 
skatole

Antimicrobial effects
Modulating innate and 
adaptive immune system
Maintain intestinal barrier
Anti-obesity: affects insulin 
secretion, suppress appetite, 
slow gastric emptying
Acts as free oxygen radical 
scavenger
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systemic hormone secretion and possessing anti-oxidant 
properties [53,54].

Studies on indole demonstrate its antimicrobial effects. It 
exerts anti-bacterial activity against Staphylococcus aureus, 
Salmonella, Lactobacillus, E. coli, and B. cereus. In addition, 
indoleethanol inhibits bacteriophage replication in certain 
bacterial strains and also prevents proliferation of parasitic 
protozoa [55,56]. Metabolites of tryptophan are also capable of 
modulating the innate and adaptive immune system, through 
its ability to bind to the aryl hydrocarbon receptor (AHR), 
present on cells of the immune system including dendritic 
cells and T-cells [53]. These metabolites function as AHR 
ligands and in several murine models have been shown to 
limit intestinal inflammation. For example, low levels of AHR 
ligands are implicated in the pathogenesis of inflammatory 
bowel disease [57,58]. Additionally, indole and IA maintain 
the intestinal epithelial barrier by promoting goblet cell 
differentiation and mucus production, which further aids in 
mitigating potential intestinal inflammation [54,59].

Systemically, tryptophan and its metabolites also play a 
role in hormone secretion with anti-inflammatory properties. 
Indole functions as a signaling molecule at the colonic 
enteroendocrine L cells to stimulate GLP-1 secretion, thereby 
affecting insulin secretion from pancreatic B-cells, suppressing 
appetite, and slowing gastric emptying [60,61]. Further, IPA 
serves as scavenger for free oxygen radicals to prevent oxidative 
damage [62]

Metabolites produced by interaction between bile 
acids and gut microbiome

Bile acids

Bile acids (BA) are amphipathic molecules, which contain 
both hydrophilic and hydrophobic regions. They serve to 
solubilize dietary lipids by forming micelles in the small 
intestine to help facilitate lipid absorption or excretion. In 
addition to their role in the absorption of dietary fat and 
homeostasis of cholesterol, bile acids also serve as signal 
molecules through interactions with several nuclear hormone 
receptors, including farnesoid X receptor (FXR), peroxisome 
proliferator-activated receptor (PPAR), G-protein coupled 
receptor (TGR5), vitamin D receptor (VDR), and thyroid 
hormone receptor, allowing bile acids to act as hormones with 
far reaching effects throughout the body [63].

Approximately 1 liter of bile is produced daily by hepatocytes 
as the end product of cholesterol metabolism. BA synthesis is 
initiated in one of two pathways in humans: through cholesterol 
7α-hydroxylase termed the classic pathway, or through sterol 
27-hydroxylase termed the alternative pathway. The end 
products of these reactions form the primary BAs cholic acid 
and chenodeoxycholic acid. These are subsequently conjugated 
with glycine or taurine, forming bile salts which are then stored 
in the gallbladder. Table 4 highlights the effects of bile acids.

Postprandial secretion of cholecystokinin leads to 

primary BA release into the proximal duodenum to aid with 
fat digestion, nutrient absorption, metabolic regulation, 
and mucosal barrier protection [64]. While ~95% of BA are 
reabsorbed in the distal ileum through the apical sodium-
dependent bile acid transporter (ASBT) and recycled into 
enterohepatic circulation, bacterial deconjugation prevents 
reuptake into enterocytes allowing ~5% of the BA to continue 
to the colon. In the colon, this population of BA interact with 
the gut microbiota to produce secondary BA deoxycholic 
acid (DCA) and lithocholic acid (LCA). Over 50 different 
secondary bile acids have been characterized as the products 
of the interaction between primary bile acids and the gut 
microbiota through various deconjugation, dehydrogenation, 
and dihydroxylation reactions with DCA and LCA being the 
two most abundant [65].

The balance between primary and secondary bile acids 
are crucial to host health, as an imbalance is associated 
with detrimental effects on the host. This is likely due 
to such intricacies as host microenvironment, antibiotic 
exposure, diet, and microbiota composition. For example, 
Clostridioides difficile infection (CDI) can occur when the 
normal gut microbiota is depleted by antibiotics. The native 
microbiota is required to convert primary to secondary 
bile acids which help prevent CDI. Theriot et al were able 
to demonstrate that specific bile acids are able to initiate C. 
difficile spore germination, while other secondary bile acids 
are able to inhibit its growth [66]. An imbalance is also seen 
in inflammatory bowel disease where BA metabolism is 
distinctly dysregulated. Stool studies demonstrate elevated 
levels of primary BAs and reduced levels of secondary BAs. 
Duboc et al demonstrated that this change induces a greater 
inflammatory response and may participate in the chronic 
inflammation loop of IBD [67].

The association of BA with inflammation, also implicates 
the secondary BAs, namely DCA and LCA, to gastrointestinal 

Table 4 Bile acids and their effects

Site of 
production

Documented 
effects

Primary bile acids
– Cholic acid
–  Chenodeoxycholic 

acid

Liver, through 
cholesterol 
metabolism

Aid with fat 
digestion 
and nutrient 
absorption
Metabolic 
regulation
Mucosal barrier 
protection

Secondary bile acids
– Deoxycholic acid
– Lithocholic acid

Produced in 
colon through 
interaction 
between primary 
bile acids and gut 
microbiota.

Inhibit 
Clostridioides 
difficile spore 
germination
Low levels seen 
in inflammatory 
bowel disease
Associated with 
colorectal and 
hepatocellular 
carcinogenesis
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cancer, particularly colorectal cancer and hepatocellular 
cancer. Because DCA and LCA are more hydrophobic than the 
primary BAs, they more readily disrupt cellular membranes 
and induce cell damage. DCA can also directly degrade p53. 
An additional mechanism leading to carcinogenesis is through 
the creation of reactive oxygen species which formed through 
cell damage caused by DCA and LCA. Finally, taurine-
conjugated BA are deconjugated and metabolized into H2S, a 
known potent carcinogen.

While such findings implicate bile acids in the mechanisms 
of antibiotic resistance and carcinogenesis, it also may position 
bile acids as novel therapeutic targets. The central role of bile 
acids in regulation of metabolic and immune homeostasis is 
beginning to be explored for therapeutic use in other settings 
as well. Oral delivery of a probiotic in a multi-site randomized 
control trial was able to increase bile acids with a subsequent 
decrease in markers of inflammation including CRP and 
TNF-a and modulation of bile acids through FXR signaling 
is now being investigated as a therapy for NAFLD and non-
alcoholic steatohepatitis [68,69]. Additionally, LCA activates 
vitamin D receptors in a highly selective manner, leading to 
expression of CYP3A, a cytochrome P450 enzyme which helps 
metabolize LCA to less harmful metabolites, and may be a 
mechanism through which vitamin D exerts a protective effect 
against colon cancer [70,71].

Metabolites produced by the gut microbiome alone

Polyamines

Polyamines (PA) are defined as small polycationic 
molecules, present in millimolar concentrations that 
spontaneously interact with various macromolecules such as 
DNA, RNA, phospholipids and proteoglycans. The three main 
PAs important to human health are putrescine, spermidine 
and spermine. PAs are the non-protein amino acids that are 
essential across all living organisms are associated with a wide 
range of biological functions that include gene and stress 
regulation, cell proliferation and differentiation, and in the 
regulation of enzymatic activity. PAs are found in both natural 
and processed foods, and the intestinal lumen concentration is 
dependent on both diet and synthesis by gut microbiota [72]. It 
is believed that the exogenous PAs derived from food are nearly 
almost absorbed by the upper gastrointestinal (GI) tract while 
the PA in the lower part of the GI tract are synthesized by the 
gut microbiota [73]. Table 5 highlights the effects of PAs.

Gut microbiota are able to synthesize polyamines using 
constitutive or inducible forms of amino acid decarboxylase 
enzymes located in the cytosol. Synthesized by ornithine 
decarboxylase (ODC), putrescine can then be converted into 
spermidine with the addition of an aminopropyl moiety donated 
from decarboxylated S-adenosylmethionine (dcAdoMet) by 
spermidine synthase [74,75]. Additionally, Matsumoto et al, 
recently demonstrated that the intestinal luminal levels of 
putrescine and spermidine are mainly dependent on colonic 
microbiota [76]. Spermine can then be created through the 

donation of an additional aminopropyl group to the amino 
butyl end of spermidine, through the use of spermine synthase. 
After synthesis, PAs are transported to the proximal gut via the 
portal circulation and biliary tree [75].

Putrescine, spermidine and spermine are some of the 
most important metabolites produced by the gut microbiota, 
as they affect the overall health of the host. PAs have been 
shown to have antioxidant effects and inhibit production of 
inflammatory cytokines, as well as influence the intestinal 
mucosal barrier. These benefits, in addition to resistance to 
oxidative stress, can increase the longevity of the host through 
administration of probiotics that lead to suppression of chronic 
low-grade inflammation as a result of higher PA levels [76]. 

Recent epidemiological studies have demonstrated a decrease in 
cardiovascular events and mortality with an increased PA intake, 
specifically spermidine [76-78]. In addition, AdoMet is a major 
contributor to DNA methylation, which is a molecular marker 
used to both monitor aging and predict life expectancy [79]. 
Recent studies have demonstrated that low levels of spermidine 
and spermine levels can increase the accumulation of dcAdoMet, 
and therefore reduce DNA methylation levels [75].

However, dysregulation of PA metabolism can lead to pro-
carcinogenic effects, as high concentrations of these PAs have 
been suggested to be involved in the tumorigenesis of colorectal 
cancer and other tumors [80]. Tumors have been shown to 
induce the PA biosynthetic pathway, and a high level of PAs 
can therefore create a beneficial environment for tumor growth. 
Recent work has been investigating this by looking at inhibiting 
the ODC enzyme; however, this has not been successful as the 
tumors supplement their PA environments through exogenous 
sources. For patients with advanced adenomas, a recent 
proposal suggests that a PA deficient diet could help avoid 
recurrence after use of PA-inhibitory drugs [75]. Although 
systemic PA concentrations are tightly controlled through 
complex networks, additional work is needed to understand 
how the gut microbiota and regulation of PA biosynthesis can 
serve as an effective prevention or treatment of human diseases.

Branched-chain amino acids (BCAAs)

Of the twenty amino acids, nine are unable to be produced 
within the human body and are therefore considered to 

Table 5 Polyamines and their effects

Polyamines Source of polyamines Documented effects

Putrescine
Spermidine
Spermine

Upper gastrointestinal 
system

–  Derived from food
Lower gastrointestinal 
system

–  Synthesized by gut 
microbiome

Gene and stress 
regulation
Cell proliferation and 
differentiation
Regulation of enzymatic 
activity
Antioxidant effects, 
inhibits production of 
inflammatory cytokines
Undetermined role in 
cancer
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be essential. Although diet is the largest source of leucine, 
isoleucine and valine, these branched-chain amino acids 
(BCAAs) are also both degraded and synthesized by the 
metabolic pathways of the gut microbiota [81,82]. Given that 
BCAAs are important synthesis substrates, there is an increased 
demand for them during bacterial invasion [81]. In addition to 
providing energy via catabolism, activating the mTOR pathway 
and serving as signaling molecules that regulate glucose, lipid 
and protein synthesis, BCAAs are required for the upkeep of the 
high metabolic status of activated T-cells [81,83]. Disruption 
in the levels of BCAAs and their derivatives have been 
identified as potential biomarkers for diseases such as insulin 
resistance, T2DM, cancer and cardiovascular diseases [83]. 

Given that gut microbiota are able to produce BCAAs via their 
own biosynthetic pathways, it is hypothesized that intestinal 
microbiota can also contribute to and effect BCAA host 
availability. When accessing the microbial source of amino 
acids (AAs), the ileal microbiota is of most importance because 
the small intestine is most responsible for AA uptake [82]. In 
vitro experiments have demonstrated Clostridium, Bacillus-
Lactobacillus-Streptococcus, and Proteobacteria groups as the 
most abundant AA-fermenting bacteria in the small intestine, 
while Clostridia and Peptostreptococci groups are the most 
abundant in the large intestine [83].

Three mechanistic studies involving mice have demonstrated 
that manipulation of the gut microbiota, including the low-
abundant bacteria, can have significant effects on the systemic 
BCAA pool and host metabolism [82,84]. Elevated BCAA 
concentrations are also associated with obesity, diabetes and 
cancer in humans [82]. Altered BCAA concentrations are 
significantly associated prior to and after development of 
T2DM. Pedersen et al demonstrated this in a study looking at 
277 insulin-resistant, non-diabetic subjects, of which insulin 
resistance positively correlated with BCAA synthesis [83,85]. 
This is further correlated with a gut microbiome that has an 
enhanced biosynthetic potential for BCAAs. Furthermore, a 
metagenome wide study demonstrated that obese individuals 
have a depleted BCAA degradation pathway and thus have 
a higher capacity to produce aromatic amino acids and 
BCAAs [86]. Additionally, BCAAs are essential for cancer 
growth, and the tumors are able to use BCAAs as an energy 
source [83]. Increased plasma levels of BCAAs are also found 
in both pancreatic and breast cancers [83,87].

Recent studies are looking at modulating host systemic 
BCAA’s by manipulating the gut microbiota and have shown 
promising results [82]. Although these studies are in their 
early stages and data is limited, these studies warrant further 
investigation in order to fully understand the effect of the 
BCAAs produced from gut microbiota.

Bacterial vitamins

Essential vitamins are either obtained from the diet or 
synthesized by gut microbiota [81]. Vitamins can either be 
fat-soluble or water-soluble, and each serve a vast array of 
functions within the body. While fat-soluble vitamins are 

important components of the cell membrane, water-soluble 
vitamins function as coenzymes in metabolic reactions. It 
has been demonstrated that the gut microbiota are able to 
synthesize vitamin K2 and most water-soluble B vitamins, 
such as biotin, cobalamin, folates, nicotinic acid, pantothenic 
acid, pyridoxine, riboflavin and thiamine [88]. While dietary 
vitamins are absorbed in the small intestine, the majority of the 
uptake of vitamins produced from gut microbiota occur in the 
colon [81,88]. Table 6 outlines the symptoms caused by these 
vitamin deficiencies.

The main vitamins produced by the gut microbiota include 
vitamin K2 and various members of the vitamin B family, 
including vitamin B1 (thiamine), B2 (riboflavin), B3 (nicotinic 
acid), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin), 
B9 (folate), and B12 (cobalamin) [81]. Recent studies have 
also shown the production of vitamin C (ascorbate) from gut 
microbiota as well, although less abundant. While the metabolic 
pathways utilized by microbes to produce ascorbic acid via 
gut microbiota are unknown, low concentrations of ascorbate 
have been reported in the inflamed mucosa of patients with 
IBD [88]. In addition, ascorbate was reported to suppress 
T-effector cells and inhibit T-cell activation [89]. A recent study 
by Pham et al demonstrated that colon-delivered vitamin C 
results in significantly increased microbial alpha diversity and 
fecal SCFAs [90]. Further investigation is needed to determine 
both the metabolic pathways and the effect of ascorbate levels 
on preventing microbiota-related human diseases.

Synthesis of these B-vitamins occur through a variety of 
bacterial strains. For example, B12 (cobalamin) synthesis 

Table 6 Symptoms caused by vitamin deficiencies

Vitamins produced 
by gut microbiome

Symptoms of deficiency

Vitamin K2 Osteoporosis; deficiency results in increased 
risk of hip, vertebral, and non-vertebral 
fractures, decreased bone mineral density

Vitamin B1 
(Thiamine)

Congestive heart failure (wet 
beriberi), aphonia, peripheral 
neuropathy, Wernicke encephalopathy 
(ataxia, nystagmus, ophthalmoplegia)

Vitamin B2 
(Riboflavin)

Edema of mucous membranes, angular 
stomatitis, glossitis, seborrheic dermatitis

Vitamin B3 
(Nicotinic acid)

Pellagra: diarrhea, dermatitis, dementia, 
peripheral neuropathy, memory loss, 
delirium

Vitamin B5 
(Pantothenic acid)

Numbness/burning sensation in extremities, 
dermatitis, diarrhea

Vitamin B6 
(Pyridoxine)

Anemia, weakness, insomnia peripheral 
neuropathy, cheilosis, stomatitis

Vitamin B7 
(Biotin)

Altered mental status, myalgia, anorexia, 
dermatitis

Vitamin B9 
(Folate)

Megaloblastic anemia; may include sensory 
neuropathy

Vitamin B12 
(Cobalamin)

Megaloblastic anemia, peripheral 
neuropathy with impaired proprioception, 
slowed mentation
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occurs in the phylum Fusobacteria and B2 (riboflavin) is 
synthesized by phyla Bacteroidetes, Fusobacteria, Proteo-
bacteria, and Firmicutes [81]. Recent studies have shown that 
the intermediate 5-(2-oxopropylideneamino)-6-D-ribitylami-
nouracil (5-OP-RU) during riboflavin synthesis regulates the 
mucosal-associated invariant T (MAIT) cells and respond to 
microbiota in an MHC-related molecule 1 (MR1) in a dose 
dependent manner [81,91]. Although typically an unstable 
intermediate, 5-OP-RU becomes trapped in MR1 and is thus 
used as an antigen to activate MAIT cells. This activation leads 
to cytotoxic effector functions, migration, and proliferative 
expansion [92].

In contrast, vitamin B9 metabolite 6-formylpterin (6-FP) 
competes with 5-OP-RU and inhibits this MAIT activation by 
binding to MR1 [81,92]. Although MAIT cells were discovered 
more than 25  years ago, it has only recently captured the 
attention of researchers. While some studies have reported that 
MAIT cells have a role in various diseases, there is considerable 
disagreement in the amplitude of their affect. However, it 
is known that MAIT cell abundance varies among people, 
with those at high risk, such as the very young, elderly and 
immunocompromised, having low abundance. It is important 
to continue investigation in this area to determine how 5-OP-
RU could be used to enhance adaptive immunity, and how 
6-FP can block MAIT functions when MAIT cells become 
lymphomas [92].

Limitations

A limitation inherent to this review article is that the 
majority of the published data focus on the blood and serum 
metabolome. An increasing emphasis in recent literature has 
highlighted the need to also address the impact of fecal, urine, 
and saliva metabolome on health as the two do not always 
correlate [93]. It is possible that an incomplete picture and 
conclusions are being drawn when studying and evaluating 
only one biofluid. Additionally, many confounders affect 
the gut microbiome and in effect, the metabolites produced. 
Therefore, more studies stratifying those confounders are 
warranted

Concluding remarks

Decades of research have impacted our understanding 
of the gut microbiome and the role they play in maintaining 
homeostasis. Through their litany of metabolic end-products, 
produced in a variety of pathways, these products alter 
human physiology, pathology, immunity, and metabolism. 
There ultimately still remain a plethora of unknown chemical 
metabolites that have yet to be discovered and much research 
is still needed to fully elucidate the effects of the known gut 
microbiome-derived metabolites. In addition, this review 
covers the metabolites produced by the bacterial inhabitants of 
the gut, yet there still remains the need to evaluate the metabolic 

end-products produced by viruses, fungi, and bacteriophages. 
While much of this research is still in its discovery phase, 
future studies in this area will undoubtedly reveal novel 
strategies, therapies, and treatments that will integrate the gut 
microbiome to inform clinical practice.
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