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Abstract

Genomic imprinting is the phenomena that leads to silencing of one copy of a gene inherited

from a specific parent. Mutations in imprinted regions have been involved in diseases show-

ing parent of origin effects. Identifying genes with evidence of parent of origin expression

patterns in family studies allows the detection of more subtle imprinting. Here, we use allele

specific expression in lymphoblastoid cell lines from 306 Hutterites related in a single pedi-

gree to provide formal evidence for parent of origin effects. We take advantage of phased

genotype data to assign parent of origin to RNA-seq reads in individuals with gene expres-

sion data. Our approach identified known imprinted genes, two putative novel imprinted

genes, PXDC1 and PWAR6, and 14 genes with asymmetrical parent of origin gene expres-

sion. We used gene expression in peripheral blood leukocytes (PBL) to validate our findings,

and then confirmed imprinting control regions (ICRs) using DNA methylation levels in the

PBLs.

Introduction

Imprinted genes have one allele silenced in a parent of origin specific manner. In humans,

approximately 105 imprinted loci have been identified, many of which play important roles in

development and growth [1–3]. Dysregulation of imprinted genes or regions can cause dis-

eases that show parent of origin effects, such as Prader-Willi or Angelman syndrome, among

others [2]. Imprinted regions have also been associated with complex traits, such as height and

age of menarche [4,5], as well as common diseases such as obesity and some cancers [2]. More

than 80% of imprinted genes in humans are clustered in genomic regions that contain both

maternally and paternally expressed genes, as well as genes that encode non-coding RNAs

[2,6]. Parent-specific expression of the genes within a cluster are maintained by complex epige-

netic mechanisms at cis-acting imprinting control regions (ICRs) [3], which show parent of

origin specific DNA methylation patterns and chromatin modifications [7].
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Using RNA-seq and allele specific expression (ASE) we can map genes to parental haplo-

types and identify those that are expressed when inherited from only the father or only from

the mother, a hallmark feature of imprinted loci. Parent of origin effects and imprinted genes

have been most elegantly studied in mice, where two inbred strains are bred reciprocally to

identify parent of origin effects on gene expression in progeny that have the same genotypes

but different patterns of inheritance [8]. Additionally, uniparental inheritance of imprinted

regions in mice were associated with abnormal developmental phenotypes [9] before it was

shown that imprinting defects are associated with human disease [10,11]. One approach to

identifying imprinted loci in humans has been to test for parent of origin effects on gene

expression and phenotypes in pedigrees [4,12]. For example, Garg et al. used gene expression

in LCLs from HapMap trios to identify 30 imprinting eQTLs with parent of origin specific

effects on expression [13]. A study from the GTEx Consortium used RNA-seq data and allele

specific expression to identify allelic imbalance in 45 different tissues. By considering genes

with monoallelic expression that was evenly distributed to both the reference and alternate

alleles across individuals as evidence for imprinting, they identified 42 imprinted genes, both

known and novel, and used family studies to confirm imprinting of 5 novel imprinted genes

[14]. Santoni et al. identified nine novel imprinted genes using single-cell allele-specific gene

expression and identifying genes with mono-allelic expression in fibroblasts from 3 unrelated

individuals and probands of 2 family trios, and then used the trios to confirm parent of origin

of the alleles [15].

Here, we perform a parent of origin ASE study in a large pedigree to characterize parent of

origin specific gene expression in the Hutterites, a founder population of European descent,

for which we have phased genotype data [16]. We use RNA-seq from lymphoblastoid cell lines

(LCLs) to map transcripts to parental haplotypes and identify known and two not previously

reported imprinted genes. We validated the two putative imprinted genes by showing the

same patterns of parent of origin expression PBLs from different Hutterite individuals, and

show DNA methylation signatures of imprinting in the PBLs at these regions.

Results

Mapping transcripts to parental haplotypes

For each of 306 individuals, the total number of transcripts at each gene was assigned as mater-

nally inherited, paternally inherited, or unknown parent of origin. The last group included

transcripts without heterozygote SNPs or transcripts with SNPs without parent of origin infor-

mation. Transcripts were assigned to the parentally inherited categories using SNPs in the

reads and matching alleles to either the known maternally or paternally inherited alleles

(Table 1). All the genes analyzed had some transcripts of unknown origin (average 97.8%,

range 8.3–100%). For each gene we assigned parental origin to an average of 1.8% of tran-

scripts (range: 0–34.7%), and for each individual we assigned parental origin to an average of

Table 1. Summary statistics for parental origin of transcripts.

Mean Standard

Deviation

Range

Proportion of transcripts from each gene assigned to transcripts of

unknown origin

0.978 0.031 (0.083,

1)

Proportion of transcripts from each gene assigned to parental origin 0.018 0.019 (0,

0.347)

Proportion of transcripts for each individual assigned to parental origin 0.014 0.0015 (0,

0.017)

https://doi.org/10.1371/journal.pone.0203906.t001
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1.4% of transcripts (range: 0–1.7%). On average, about 40 SNPs per gene were used to assign

the transcripts of a gene to parent (range 1–1839 SNPs). See S2 Table for all SNPs used to

assign parental origin.

Transcripts in 15,889 genes were detected as expressed in 306 individuals (see Methods).

Some transcripts for 14,791 of those genes could be assigned to a parent. Of these, 75 genes

were only expressed on the paternally-inherited allele in at least one individual and not on the

maternally inherited allele in any individuals. Similarly, 64 genes were only expressed on the

maternally-inherited allele in at least one individual and not on the paternally inherited allele

in any individuals (S1 Table). See S2 Table for all SNPs used to assign parental origin for genes

in S1 Table and Table 2.

Imprinted genes in lymphoblastoid cell lines (LCLs)

Among the 139 genes with only paternally inherited expression or only maternally inherited

expression, there are three known imprinted genes (CDKN1C, NDN, SNRPN) paternally

expressed and one previously predicted to be imprinted (IFITM1) maternally expressed [17].

We expect some imprinted genes to have ‘leaky’ expression, such that there is some expres-

sion from the parental chromosome that is normally silenced. Slight bias in allelic expressed

that results in leaky imprinting could be due to detection of a biallelically expressed isoform or

to a minority of cells that are biallelically expressed. To detect these genes, we used a binomial

test to find patterns of gene expression asymmetry by parental transcript levels. This analysis

identified 28 genes with an FDR <5% (Table 2). The 11 genes that showed the most asymme-

try are genes with prior evidence of imprinted expression: ZDBF2, PEG10, SNHG14, NHP2L1,

L3MBTL1, ZNF331, LPAR6, FAM50B, KCNQ1, NAP1L5, and IGF1R. Parent of origin expres-

sion for ZDBF2 is shown in Fig 1A. We identified two additional genes that showed asymme-

try, with expression from mostly one parent (PXDC1,PWAR6), which we consider potentially

new candidate imprinted genes. The remaining fourteen genes showed significant patterns of

asymmetry but had expression from both maternal and paternal chromosomes. These genes

are likely not imprinted but could have asymmetry in expression due to an expression quanti-

tative trait loci (eQTL).

Two genes showed gene expression signatures consistent with imprinting but have not

previously been recognized as imprinted genes. The first potentially new imprinted gene is

PXDC1, which is in the same region and next to (<100kb) a known imprinted gene,

FAM50B. The second potentially novel imprinted gene is PWAR6, or Prader Willi Angel-

man Region RNA6, a gene encoding a regulatory class of RNA. Although this gene is located

within the intron of a known imprinted gene, SNHG14, this noncoding RNA has not previ-

ously been recognized as having parent of origin specific expression. It is possible that

PWAR6 is a processed exon of the UBE3A-ATS/SNHG14 non-coding transcript. The plots

of parental expression of PWAR6 and PXDC1 are shown in Fig 1B and 1C. The few individ-

uals that have more expression from the parental allele that should be silenced (n = 2 in

ZDBF2, Fig 1A) could be due to errors in genotyping, errors in the assignment of parentally

inherited alleles, or from errors in RNA-seq.

The remaining fourteen genes show significant asymmetry using the binomial test but

do not have expression from mostly one parental chromosome. One of these genes, SNHG17,

is a noncoding RNA. Another gene with parent of origin asymmetry, ZNF813, is next to a

known imprinted gene, ZNF331. The remaining genes with asymmetrical parent origin

expression have expression from both parental chromosomes, unlike imprinted genes. These

genes include DAAM1, which is involved in cytoskeleton, specifically filopodia formation

[25,26], and has a suggested role for cytoskeleton organization during Mammalian testis
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morphogenesis and gamete progression [27]; RP11-379H18.1, a noncoding RNA gene;

HMGN1P38 [28]; MTX2, a nuclear gene that interacts with mitochondrial membrane protein

metaxin 1 and is involved in mitochondrial protein import and metabolism of proteins in

mice; MAF1, a negative regulator of RNA polymerase 2; ZNF714, CPNE1, IL16, ATP6V0D1,

FAHD1, HSP90AB3P, and CNN2 are the remaining genes that show parent of origin asymme-

try but not with a pattern consistent with imprinting (S1 Fig).

Table 2. Results for gene with parent of origin expression asymmetry. Genes listed by category of imprinting status: (A) Known Imprinted, (B) Conflicting Evidence

for Imprinted Status, (C) Candidate Imprinted Genes, (D) Genes with Asymmetrical Parent of Origin Expression but Not Likely Imprinted. Genes are ordered by signifi-

cance within each category.

Gene p-value Number of individuals with more maternal

expression than paternal expression

Number of individuals with more paternal

expression than maternal expression

References

A. Genes with prior evidence of imprinted expression

ZDBF2 1.59e-41 2 148 geneimprint.com, Baran et al.[14], and

Babak et al.[8]

PEG10 5.51e-38 2 136 geneimprint.com, Baran et al.[14], and

Babak et al.[8]

SNHG14 1.64e-36 2 131 Baran et al. [14]

NHP2L1 1.24e-33 23 189 Babak et al. [8] and Docherty et al.[18]

L3MBTL1 6.72e-31 2 107 geneimprint.com and Li et al.[19]

ZNF331 4.05e-25 36 184 Daelemans et al. [20]and Baran et al. [14]

LPAR6 2.65e-23 0 76 Baran et al. [14]

FAM50B 5.29e-23 0 75 geneimprint.com, Baran et al. [14]

KCNQ1 1.34e-22 79 1 geneimprint.com, Baran et al. [14]

NAP1L5 3.76e09 0 29 geneimprint.com

IGF1R 1.11e-05 14 49 Geneimprint.com, Sun et al. [21,22],

Boucher et al. [23], Al Adhami et al. [24]

B. Conflicting Evidence for Imprinting Status in the literature

PRIM2 5.53e-05 30 71 geneimprint.com, Santoni et al. [15]

C. New Candidate Imprinted Genes

PXDC1 9.83e-14 12 81 -

PWAR6 2.27e-13 0 43 -

D. Genes with Asymmetrical Parent of Origin Expression but Not Likely Imprinted

SNHG17 6.2e-08 113 45 -

ZNF813 8.7e-07 63 132 -

DAAM1 1.78e-05 66 126 -

RP11-
379H18.1

2.09e-05 52 106 -

HMGN1P38 2.43e-05 32 6 -

MTX2 3.05e-05 0 16 -

ZNF714 4.61e-05 35 79 -

MAF1 4.45e-05 17 51 -

IL16 5.71e-05 61 115 -

CPNE1 5.56e-05 111 58 -

ATP6V0D1 7.03e-05 32 7 -

FAHD1 9.34e-05 68 29 -

CNN2 1.18e-04 127 72 -

HSP90AB3P 1.16e-04 7 31 -

https://doi.org/10.1371/journal.pone.0203906.t002
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Validation of imprinted genes in PBLs

Using the same methods described above, we assigned parent of origin to transcripts in PBLs

from 99 Hutterite individuals not included in the LCL studies. Maternal and paternal expres-

sion in PBLs for all 28 genes identified in LCLs showed similar trends of asymmetry as in LCLs

(Fig 2).

Methylation at imprinting control regions

One of the mechanisms underlying parent of origin effects on expression at imprinted loci is

differential methylation at cis-acting imprinting control regions (ICRs). DNA methylation

from the Illumina HumanMethylation 450K array was available in PBLs from the same indi-

viduals included in the validation study described above. To determine the expected patterns

Fig 1. Plots of maternal (x-axis) and paternal (y-axis) gene expression counts for four genes that were significant

in the asymmetry test, reflecting more expression from one parental haplotype than the other. Each point

represents an individual. The units of x- and y-axis are gene count measures. (A) Maternally imprinted gene ZDBF2
(paternally expressed). Most individuals have expression solely from the paternal haplotype (shown in blue); some

individuals have low expression from the maternal haplotype. Two individuals have more maternal expression than

paternal expression (shown in red). (B) Maternally imprinted candidate gene PXDC1 (paternally expressed). Most

individuals (n = 81) have more paternal expression than maternal expression; a few individuals have expression solely

from the paternal haplotype (maternal expression is 0) and a few (n = 12) have more maternal than paternal

expression. (C) Maternally imprinted candidate gene PWAR6 (paternally expressed). All 43 individuals have more

paternal expression; four also have very low amounts of maternal expression. (D) Asymmetric parental expression

MAF1. This gene is likely not imprinted. The numbers of individuals with equal maternal and paternal expression,

more maternal expression, or more paternal expression are shown in the legend.

https://doi.org/10.1371/journal.pone.0203906.g001
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of methylation at known imprinted loci, we first looked at previously characterized methylated

regions at known imprinted regions from Court et al. and Joshi et al. [29,30].

The methylation patterns at the two potentially novel imprinted genes identified in this

study, PXDC1 and PWAR6, lie in or near known imprinted regions that contain previously

characterized ICRs. These previously characterized ICRs show about 50% methylation (beta

value of between 0.25 and 0.75) in our DNA methylation data, which likely reflect methylation

at only one parental chromosome in all the cells in the sample. Methylation patterns in PBLs at

these two ICRs fall within this partial methylation range, further suggesting that these two

genes are indeed imprinted (Fig 3). To provide proof of principle, we also looked at methyla-

tion near a known imprinted gene that was identified with our test, PEG10 (Fig 3A). PXDC1
does not have a methylated promoter, suggesting long-range regulation by the FAM50B DMR.

Discussion

Dysregulation of imprinted genes can have a large impact on mammalian development and

has been associated with significant diseases in humans [1,2]. Studies aimed at identifying

imprinted genes at genome-wide levels have used allele specific expression and imbalance to

infer parent of origin [14,15]. Here we used a large pedigree with assigned parent of origin

alleles to map transcripts to chromosomes with known parent of origin and identify imprinted

genes.

Using this approach, we found genes with expression primarily from either the maternal or

paternal haplotype. Surprisingly, CDKN1C showed patterns opposite of what has been

reported [31,32]. This could be due to the small sample (only three individuals showed

Fig 2. Histogram showing the number of individuals with more maternal expression (M>P) or more paternal

expression (P>M) for the 28 genes showing parent of origin asymmetry in (A) LCLs and (B) the same 20 genes

with expression from PBLs. Genes are ordered by the magnitude of the difference in the number of individuals with

more maternal expression than paternal expression in LCLs.

https://doi.org/10.1371/journal.pone.0203906.g002
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Fig 3. DNA methylation levels near known and novel candidate imprinted genes previously defined by Joshi et al.

and Court et al. (A) PEG10, (B) PXDC1 and FAM50B, (C) PWAR6. The x-axis shows chromosome and basepair

location of CpGs. The y-axis is the beta value of methylation between 0 and 1. The grey interval marks beta values of

methylation between 0.25 and 0.75. The location of genes are in purple boxes above methylation values and previously

defined DMRs are in pink boxes below methylation values. Each boxplot represents beta values for all individuals at

that CpG. The boxplot itself represents 50 percent of the data with box edges defining the 25th and 75th percentiles of

the data. The line in the box represents the median of the methylation data.

https://doi.org/10.1371/journal.pone.0203906.g003
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expression from one parent) or to the different cell types used here (LCLs) and in previous

studies (developing brain and embryonal tumors for CDKN1C).

Because gene silencing at imprinted loci may be incomplete, we used a binomial test on par-

ent of origin gene expression and identified 11 known imprinted genes and two potentially

novel imprinted genes. One of the previously characterized genes, IGF1R, has been reported to

be both imprinted and not imprinted in humans [21–23,33]. Both of the novel genes, PWAR6
and PXDC1, lie in known imprinted regions but have not themselves been characterized as

imprinted. The remaining genes that have significant parent of origin asymmetry in gene

expression do not show clear imprinting expression patterns. To validate these findings, we

mapped gene expression in PBLs from Hutterite individuals not included in the LCL study.

The same genes showed similar patterns of asymmetry in these different cell sources (trans-

formed B cells and peripheral blood leukocytes) from different individuals.

We also characterized methylation patterns near genes showing asymmetry. Using results

from studies that had previously characterized ICRs in patients with uniparental disomy at

many imprinted regions [29,30], we estimated regions for defining partial methylation near

the genes identified in our study. Using this approach, we were able to provide additional sup-

portive data for the two potentially new imprinted genes to be true imprinted genes regulated

by previously characterized ICRs.

Although our study is the largest pedigree-based study to date to search genome-wide for

imprinted genes, it has limitations. First, we are able to determine the parent of origin for a

many transcripts in the Hutterites but we could not assign every RNA sequencing read to a

parent due to lack of heterozygous sites or missing parent of origin information for alleles. Sec-

ond, we conducted these studies in lymphoblastoid cell lines, and therefore could only study

genes imprinted in this cell type and would miss the many imprinted genes that are tissue-spe-

cific and/or developmentally regulated [1,2,14,34]. Third, while we can verify previously char-

acterized ICRs, our study is not designed to identify novel ICRs because DNA methylation

values from an array cannot be assigned to parental haplotype. It is also possible that short-

read RNA-seq cannot discriminate isoforms with alternate transcription start sites so some

genes with both biallelic and imprinted transcripts will be missed in our study. Lastly, although

we characterized the gene expression and methylation patterns for two candidate imprinted

genes, replication of these genes in a different population and in different tissues, and func-

tional characterization of these genes are required to confirm their status as imprinted genes.

Similarly, some of the other genes with parent of origin asymmetry in the blood cells examined

in this study may show more clear-cut evidence for imprinting in other tissues or at specific

periods of development.

In summary, we have identified two new candidate imprinted genes using gene expression

from a founder population. The genes with asymmetrical parental expression had similar pat-

terns of asymmetry in a different source of blood cells and in different individuals, and we

were able to replicate the methylation patterns in known ICRs near the known and potentially

novel imprinted genes in this study. Our method and study population allowed us to map

reads to parental haplotypes and uncovered PWAR6 and PXDC1 as candidate imprinted genes

that could potentially impact disease risk and development.

Methods

Genotypes

Hutterite individuals (n = 1,653) were genotyped using one of three Affymetrix genotype

arrays, as previously described [16], of which 121 underwent whole genome sequencing by

Complete Genomics, Inc (CGI) (n = 98) or Illumina whole genome sequencing (n = 27). A
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total of 10,235,233 variants present in the sequenced individuals were imputed and phased to

the remaining 1,532 genotyped individuals using PRIMAL [16]. Parent of origin was assigned

to 89.85% of the alleles with call rate 81.6842% after QC. For this study, we included individu-

als with genotyped parents in the primary analyses in LCLs. Written consents for these studies

were obtained from the adult participants and parents of children under 18; written assents

were obtained from all children. This study was approved by the University of Chicago Institu-

tional Review Board. The accession number for the Hutterite data reported in this paper is

dbGAP:phs000185.

RNA-seq in lymphoblastoid cell lines (LCLs)

RNA-seq was performed in LCLs as previously described [35]. For this study, sequencing

reads were reprocessed as follows. Reads were trimmed for adaptors using Cutadapt (reads less

than 5 bp discarded) then remapped to hg19 using STAR indexed with gencode version 19

gene annotations [36,37]. To remove mapping bias, reads were processed and duplicate reads

removed using WASP [38]. We used a custom script modified from WASP to separate reads

that overlap maternal alleles or paternal alleles. Reads without informative SNPs (homozygous,

or no parent of origin information) were categorized as unknown where the unknown, mater-

nal, and paternal make up the total gene expression. Gene counts were quantified using STAR

for each category. VerifyBamID was used to identify sample swaps [39]. Genes mapping to the

X and Y chromosome were removed; genes with a CPM log transformed value less than 1 in

less than 20 individuals were also removed. Gene counts were not normalized or standardized

since we are using gene count data and comparing maternal and paternal gene expression

from the same individual.

RNA-seq in peripheral blood leukocytes (PBLs)

RNA-seq was performed in whole blood as previously described [40]. For this study, sequenc-

ing reads were reprocessed as described above for the studies in LCLs. For these analyses, we

excluded 32 individuals who were also in the LCL study.

Identifying imprinted genes

We used a binomial test to detect asymmetry in parent of origin gene expression to detect

genes that are more highly expressed and potentially imprinted. We used individuals and

genes that had a parental gene count of at least 5. Using the paternally and maternally assigned

reads, we generated a binomial Z-score for each individual for each gene (Zi) and excluded

those where Zi = 0. For each gene, the number of subjects with Zi >0 can be modeled by a

Binomial distribution with probability ½, under the null hypotheses of symmetric expression.

For imprinted genes that show patterns of asymmetry, we expect a distribution of Z-scores

that are skewed to one direction corresponding to asymmetric expression. Because we are only

asking whether there are more individuals with more maternal expression or more paternal

expression and not gene expression measures there is no need to model over-dispersion.

DNA methylation profiling and processing in PBLs

One milliliter of whole blood from 145 Hutterites was drawn into TruCulture (Myriad RBM;

Austin, Texas) tubes containing proprietary TruCulture media. DNA was extracted using All-

Prep DNA/RNA Mini Kits (Qiagen). DNA samples were bisulfite converted and hybridized to

the Illumina HumanMethylation 450K array at the University of Chicago Functional Geno-

mics Center. Samples were processed using default parameters using the R package minfi [41],

Imprinted genes in a founder population
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normalized using SWAN (subset within-array normalization [42]) and quantile normalized

similar to previous methylation studies [43]. Probes were removed if: (1) mapped non-

uniquely to a bisulfite-converted genome; (2) mapped to sex chromosomes; (3) had a probe

detection p-value >0.01 in at least 25% of samples; and (4) contained common SNPs within

the probe sequence, as previously described [44]. Principal components analysis (PCA) was

used to identify significant technical covariates, and the ComBat function [45] within the R

package sva [46] was used to correct for chip effect. Analyses of DNA methylation levels were

conducted using beta values, which were converted from M-values using the lumi R package

[47].

Supporting information

S1 Table. Single parent expressed genes. Genes expressed only on maternal or only on pater-

nal haplotypes in LCLs.

(XLSX)

S2 Table. Parent of origin SNPs. SNPs used to assign parental gene expression for genes in

Table 1 and in S1 Table.

(XLSX)

S1 Fig. Expression of genes with parent of origin asymmetry. Plots of maternal (x-axis) and

paternal (y-axis) gene expression for remaining genes with parent of origin asymmetry.
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