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Abstract: Vision-based fall-detection methods have been previously studied but many have
limitations in terms of practicality. Due to differences in rooms, users do not set the camera or
sensors at the same height. However, few studies have taken this into consideration. Moreover, some
fall-detection methods are lacking in terms of practicality because only standing, sitting and falling
are taken into account. Hence, this study constructs a data set consisting of various daily activities
and fall events and studies the effect of camera/sensor height on fall-detection accuracy. Each activity
in the data set is carried out by eight participants in eight directions and taken with the depth camera
at five different heights. Many related studies heavily depended on human segmentation by using
Kinect SDK but this is not reliable enough. To address this issue, this study proposes Enhanced
Tracking and Denoising Alex-Net (ETDA-Net) to improve tracking and denoising performance and
classify fall and non-fall events. Experimental results indicate that fall-detection accuracy is affected
by camera height, against which ETDA-Net is robust, outperforming traditional deep learning based
fall-detection methods.
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1. Introduction

Elderly individuals (over 65 years old) represent the fastest growing segment of the population
worldwide [1]. In China, the percentage of elderly individuals was 8.87% in 2010 and is expected
to quadruple between 2015 to 2050 [2]. In the United States, this was 13% in 2010 and is expected
to reach 20.2% by 2050. In Europe, this was 22.5% in 2005 and is expected to reach 30% by 2050 [2].
In Japan, this was already 27.7% in 2017 and will reach 35.3% by 2040 [3]. Worldwide, the population
of elderly individuals over 80 years old was 126.5 million in 2015 and is expected to be more than
triple that by 2050, increasing to 446.6 million [1]. According to the World Health Organization,
28%–35% of elderly individuals have an accident involving a fall each year [4]. According to the
National Safety Council, 21,600 Americans lost their lives from falling in 2007 and over 80% were
elderly [5]. Globally, accidents involving falls, which are the second leading cause of unintentional
death, are considered one of the most hazardous incidents for the elderly, with over 424,000 deaths
occurring in 2008 [4]. Although many falls do not cause physical injuries, 47% of the elderly who
have fallen cannot stand up without assistance [6]. If a solitary elderly individual falls, he or she may
be lying on the floor for a long time without any help. Therefore, a fall-detection method that can
automatically detect a fall in real time and send alerts to certain caregivers (such as family members,
hospitals or health centers [7]) is important for solitary elderly individuals as well as playing an
important part in the health care system for the elderly [8].
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Fall-detection methods are roughly categorized into four groups, that is, radio-wave based,
wearable/mobile-device based, pressure-sensor based and vision based. Vision-based methods are
considered promising [9]. Although such methods have been studied, many have limitations in terms
of practicality [10]. Some methods [11–14] establish a background model and use an image-subtraction
method to segment the individual then extract features of that individual to detect a fall. However,
such image-difference-based methods fail if the layout or lighting of the room changes, for example,
switching lights on or changing the lighting level. The study in Reference [15] also used a
dual subtraction method (background subtraction and frame subtraction) to determine the effect
of moved furniture on fall-detection accuracy but the effect of light has remained a problem.
Three-dimensional (3D) molding [9,16] and deep-learning [17,18] methods provide a good solution
to this problem since they are robust against light conditions. However, they cannot be used in
dark rooms. Few studies used infrared cameras instead of RGB cameras [19].

A depth camera/sensor [20,21] is independent of illumination and many fall-detection methods
have benefited from depth-based algorithms [22]. Previous studies [23–26] used the 3D coordinates
of the skeleton as features to successfully detect falls. However, these methods heavily depend on
the skeleton-detection results from Kinect SDK or OpenNI, which are not reliable [8,22]. Previous
studies [27–29] analyzed the 2D or 3D shape of humans to detect falls. However, there are problems
with such shape-based methods. If an individual falls on the floor, the depth information of the
floor and that of the individual are very similar, according to previous studies [8,22] and our
experimental results. This results in many tracking loss or wide-ranging noise. This study proposes
Enhanced Tracking and Denoising Alex-Net (ETDA-Net) to solve this problem. The experimental
results indicate that ETDA-Net outperforms traditional deep-learning-based methods (LeNet, AlexNet
and GoogLeNet).

Due to differences in rooms, users may set a camera or sensors at the same height. Does
camera height affect fall-detection accuracy? Few studies take this into consideration [26,30].
Moreover, few open data sets for fall detection are available to analyze the effect of camera height.
The data set created in Reference [12] represents various falls in different directions. That created in
Reference [13] recorded numbers of daily activities and falls in different directions. The data set created
Reference [31] is a well-constructed data set and images taken in different rooms, for example offices
and coffee rooms, are provided. However, only a single camera was used for this data set and the
camera height is not mentioned for their experiments. The data set created in Reference [32] includes
depth images but there are only 21,499 images. That created in Reference [33] is a well-constructed
data set and 12 people participated in their experiment. However, the camera was set at only one
height, which was too low to avoid occlusion problems. The data set created in References [14,34] is
also well-constructed and includes 30 fall videos and 40 videos of daily activities. Synchronization and
accelerometer data were also recorded. However, the camera was set at a very low position, which
may be occluded by furniture (although another camera was placed on the ceiling, it only recorded
fall videos). Thus, this study creates a data set and analyzed how the camera affects fall-detection
accuracy. In this data set, 16 types of daily activities (walking with a stick, sitting on a chair, sitting on
the floor, using a smartphone, drinking water, etc.) and 16 types of falls (facing left, right, floor, ceiling,
with/without leg bending, etc.) are carried out in eight directions and taken with the depth camera at
five different heights. Eight people participated in the experiment and about 350,000 images (frames)
are included in our data set. Not only depth images but also human segmentation results are provided,
which will be convenient for comparative analysis.

From the experimental results, the proposed ETDA-Net provides better tacking and denoising
performance than Kinect SDK and is robust against camera height. It automatically detects camera
height and selects the most suitable model (trained using the images taken at the same height ) to detect
a fall. The results also indicate that even if the camera height is not calculated correctly, ETDA-Net still
provides a good detection rate.

The contributions of our study are as follows:
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• This study analyzes how camera height affects fall-detection accuracy, which has rarely been
studied before.

• This study proposes a self-adaptation fall-detection method that automatically calculates camera
height and selects the most suitable detection model.

• Depth-image-based person segmentation by using Kinect SDK has been widely used in previous
studies but the tracking and noise problem were rarely addressed. The proposed ETDA-Net
solves this problem.

• This study creates a data set consisting of 350,000 images, more than those used in related studies.
This data set includes various daily actives and falls. Each action is done in eight different
directions and recorded using a depth camera at five different heights. The human-segmentation
results are also included in this data set, not only for this research but also for comparative analysis.

The rest of this paper is organized as follows—Section 2 reviews related works.
Section 3 introduces our fall-detection data set. Section 4 presents the proposed fall detection system
and the experimental results are shown in Section 5. Finally, Section 6 concludes this paper.

2. Related Work

Fall-detection methods are roughly categorized into four groups—radio-wave based,
wearable/mobile-device based, pressure-sensor based and vision based.

2.1. Radio-Wave-Based Methods

Radio-wave-based methods are roughly categorized into two types: traditional and wireless.
The major advantages of these methods are non-intrusive sensing and privacy preservation.

Radar-based fall-detection methods have a strong penetrating ability and are robust against
environmental factors such as illumination and humidity. Reference [35] proposed a dual-band
radar-based fall-detection method. By optimizing the full ground plane and small element spacing,
high mutual coupling is reduced by at least 10 dB. The effective distance with this method is 4 m at
0 degrees. However, only limited postures can be detected with the radar and some non-fall events
are still detected as fall events [36]. To address this issue, Reference [37] recorded several types of
daily activities (standing, walking, sitting and bending) and segmented them from several types of
fall events (slipping, fainting and tripping). A hidden Markov model is used to analyze the frequency
corresponding to the fall rate and is highly accurate. As vision-based and sound-based methods
are obviously not preferred in the bathroom, Reference [38] proposed an interesting radar-based
fall-detection method that consists of two stages: Prescreen and classification. The first stage identifies
when a fall may occur and the second stage extracts the frequency signals from wavelet coefficients
at many scales as features to classify. Their experiment showed that this method performs robustly
in bathrooms. Due to the limitations of traditional machine-learning methods, Reference [39] proposed
a radar-based method using deep learning and achieved high fall-detection accuracy. However, many
radar-based methods are used in areas where the radar signal is not limited and the objects between
the radar (such as pets and furniture) are not taken into consideration [40], resulting in these methods
not being practical. Solving these problems may be interesting future work. The wireless-based
fall detection method WiFall was proposed [41,42], which uses commercial Wi-Fi devices. The main
idea with this method is to use the sharp power-profile-decline pattern to detect falls and its major
advantage is that it detects falls with a commercial Wi-Fi device without the need for any other sensors
or wearable devices. Although wireless-based methods are an exciting solution to fall detection, there
are still problems with them. They are not robust against environmental changes and different types of
or many people.
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2.2. Wearable/Mobile-Device-Based Methods

Wearable-device-based fall-detection methods are roughly categorized into two types:
Wearable-sensor based and wearable-camera based. The main advantage of these methods is that they
work both indoors and outdoors. Wearable-sensor-based methods have been widely studied as they
are low cost and non-invasive in terms of privacy. Traditional machine-learning-based fall-detection
methods involving wearable sensors usually use a non-lapping [43] or overlapping [44,45] sliding
window to segment the data then extract features to classify fall and non-fall events. However, these
methods may lose useful information. Reference [46] proposed a machine-learning-based method
that is triggered by a fall event. This method uses a buffer to restore samples as a pre-process then
detects multiple peaks as the trigger time. By comparing the samples in the buffer, fall/non-fall
events are classified. The computational cost of this method is just 80% that of a non-overlapping
sliding-window-based method and 78% that of an overlapping sliding-window-based method.
However, the accuracy is still not high enough for practical use. To address this issue, Reference [47]
applied a Kalman filter to a non-liner filter to reduce the error rate of fall-event detection and
Reference [48] collected actual data of elderly individuals and compared several methods to improve
the fall-detection rate. Reference [49] developed a fog-computing-based deep-learning method and
improved its performance by using a data-augmentation technique. Reference [50] developed an
application for smart watches to collect the actual data of volunteers to train a fall-detection model
and considered problems for practical use, for example, habits of elderly individuals and the last
time of battery. As there are few publicly available data sets for sensor-based fall detection, the
approach of Reference [51] creates an accelerometer and one gyroscope-based fall-detection data set,
which is a well-constructed data set. Nineteen types of daily activities and 15 types of fall activities are
included in this data set. Unlike other fall-detection data sets, the data of 14 actual elderly individuals
over 60 years old are provided. The wearable-camera-based fall-detection methods proposed by
References [52–54] involve fixing a camera to a waistband and detecting falls by analyzing the changes
in the images taken with the camera. This is an interesting solution that combines the advantages
of vision-based and wearable-sensor-based methods. However, it is weak in terms of privacy. As
wearable-sensor-based methods can be used almost ubiquitously and the sensor is low cost, commercial
wearable devices have been developed, such as Apple Watch 4 [55], Medical Guardian Fall Alert [56]
and Philips Lifeline Auto Alert [57].

2.3. Pressure-Sensor-Based Methods

Although wearable/mobile-device based methods perform well, they may be weak at night.
When an elderly individual goes to the toilet at night, she/he may forget to wear the smart
sensor/watch or take his/her smart phone. In such a case, the elderly individual cannot be
monitored [58] under weak light conditions at night [8]. Pressure-sensor-based methods provide a good
solution to this problem since an elderly individual does not need to wear any device. The method
proposed by Reference [59] tracks an individual by using NFI floor [60], then the features associated
with that individual are extracted. We extracted the number of observations, longest dimension and
sum of magnitudes as features and estimated the pose of the individual by using these features to
detect falls. The method in Reference [58] involves using pressure mate sensors (PMSs) and passive
infrared sensors (PISs) to detect falls. The actions of ten elderly individuals generated using a simulator
were used to create a data set. When an individual has fallen, the PMS and PIS are turned OFF
and the fall is detected. The method proposed in Reference [61] involves using fiber-optic sensors
to detect falls. Pressure is detected with these sensors and a histogram is created to analyze human
activity. If an individual is lying down longer than a threshold, a fall is detected. As pressure
sensor-based methods cannot differentiate between falls and lying down for long periods, the method
in Reference [62] uses the fusion between pressure sensors and accelerometers hidden under smart
tiles to detect falls and improve fall-detection accuracy. Pressure-sensor-based methods are low cost,
reliable and accurate but not easy to install and maintain. Solving these problems is for future work.
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2.4. Vision-Based Methods

Vision-based fall-detection methods have recently been studied since users do not need to
wear devices or charge batteries. When an elderly individual goes to the toilet at night, she/he
may forget to put on the wearable device or charge the battery. Therefore, although camera-based
methods are limited to a very restricted area, they are still useful for elderly individuals. Some studies
categorized vision-based methods into two types—RGB-camera based and depth-camera based [8,29].
Depth-camera-based methods usually perform better since the depth camera is not affected by
the changes in illumination; thus, works well in dark rooms, and does not invade privacy.
Hence, depth-camera-based methods are gaining attention. However, many RGB-camera-based
methods can be used to effectively process depth-based images. Therefore, we surveyed vision-based
methods by categorizing them into two types based on the analysis method: skeleton and shape.
Skeleton-tracking-based methods usually involve depth cameras to capture images, as it is easy to
track the 3D joints of people. The methods proposed in References [23,24] obtain the 3D coordinates of
joints and the ground-plane equation. Falls can be detected by analyzing their relationship. The method
proposed in Reference [29] uses a support vector machine (SVM) to classify the 3D coordinates of
joints during fall and non-fall events but only walking, sitting and falling are taken into consideration.
The method proposed in Reference [25] extracts the changing rate of the torso angle as a feature by
using 3D skeleton coordinates to classify falls from other fall-like activities. The method proposed in
Reference [63] extracts similar features to predict fall risk. The accuracy of these methods is very high
but the main drawback is that they heavily depend on the skeleton-detection results from Microsoft
Kinet SDK or OpenNI and are not reliable enough [8]. Reference [28] proposed a head-tracking method
but the camera is set at a very low position, which may be occluded by furniture. The methods
proposed in References [25,29,63] face the same problem. Shape analyzing is also a good method for
detecting falls. Bounding boxes and bounding-ellipse-based fall-detection methods were proposed
more than a decade ago [11] and are still effective in detecting falls and have been improved [7,64].
The main drawback of these methods is that bounding boxes are heavily affected by the camera
direction and shape analyses based on histogram analysis [15] have the same problem. Thus, multiple
cameras are necessary to achieve high accuracy. To address this issue, fusion of data obtained from
different cameras is an alternative and has been recently studied. The method in Reference [16]
involves setting up four cameras and using voting algorithms to detect falls in different directions.
To cover a larger range, multiple cameras have been used [12]. Three-dimensional shape analysis is
a good solution to this issue [27] but incurs a high computational cost [65].

2.5. Discussion

Based on the results of our survey, we found the following problems to address and we design
our algorithm and experiment.

Q1: Many studies fixed the camera at only one height. This limits the fall-detection method in
terms of practicality since users may not set the camera at the same height. Does the camera height
affect the fall-detection results? Is it possible to design a fall-detection method that is robust against
camera height?

Since no data set is available to analyze how camera height affects fall-detection accuracy, this
study creates a large data set consisting of 16 daily activities and 16 types of falls. Each activity
is carried out by eight people in eight directions and taken with a depth camera at five
different heights. About 350,000 images (frames) are included in this data set. This data set
also includes human-segmentation results, which will be convenient for comparative analysis.
Furthermore, these images are analyzed using a machine-learning method and deep-learning methods
to study the effect of camera height on fall-detection accuracy.

Q2: Many studies were heavily based on the human/skeleton tracking results from Kinect SDK
but they are not reliable enough. Is it possible to improve upon human tracking?
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This study captures a large number of depth images and recorded the human tracking results of
Kinect SDK (human segmentation). We then developed ETDA-Net to solve the problems found in
these images and classify theme into fall and non-fall images.

Q3: Since users may set the camera at different heights, is it possible to have the system
automatically detect camera height and select the most suitable model to initialize the fall-detection
method?

This study designs an algorithm to automatically detect the height of the camera and select the
most suitable model to detect falls.

3. Fall-Detection Data Set

A data set is important for vision-based fall-detection methods. However many have limitations
as mentioned above:

The data set created in Reference [31] includes seven groups of images. The main contribution
of this data set is that images taken in different rooms, for example, offices and coffee rooms, are
provided. However, only a single camera was used with this data set and the camera height were not
mentioned in this study. The data set created in Reference [32] includes depth images but there are only
21,499 images. That created in Reference [33] is a well-constructed data set and 12 people participated
in their experiment. However, the camera was set at only one height, which was too low to avoid
occlusion problems. The data set created in Reference [34] is also well-constructed and includes 30 fall
videos and 40 videos of daily activities. Synchronization and accelerometer data are also recorded.
However, the camera was set at a very low position, which may be occluded by furniture (although
another camera was set on the ceiling, it only recorded fall videos) in their experiment.

The images in our data set to study the effect of camera height on fall-detection accuracy are
captured using a Kinect V2 depth sensor linked to a notebook PC. The CPU of this notebook PC is
Intel core i5 5200 u and the memory is 4 GB. The frame rate is 20 fps. As mentioned above, this data set
provides depth images and consists of 16 daily activities (walking, running, kicking, bowing, bending,
walking with a stoop, clipping, rising hands, waving hands, looking at a watch, using a smartphone,
throwing, drinking water, collecting, walking with a stick, sitting on the chair/floor) and 16 types
of falls (facing ceiling, floor, left, right, with/without curled up legs, with left/right hand moving),
as shown in Table 1. Facing floor means the final state of the fall is the person ending up facing the
floor (facing ceiling, left, right have the similar respective meanings). Each activity is carried out by
eight people in eight directions and taken using a camera at five different heights (1.7, 1.9, 2.1, 2.3 and
2.5 m). Each activity is repeated 2–3 times at each direction. A total of 800 streams (640 non-fall streams
and 160 fall streams) with about 350,000 depth images (frames) are included in this data set. This data
set also includes human segmentation results, which will be convenient for comparative analysis,
as shown in Figure 1. This data set is publicly available [66] and the information of 8 participants is
shown in Table 2.

Figure 1. Diagram of our data set.
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Table 1. Evaluation scenarios in data set.

Fall Events Non-fall Events

Facing left, with curled up legs walking
Facing left, without curled up legs running
Facing right, with curled up legs kicking

Facing right, without curled up legs bowing
Facing floor, with curled up legs bending

Facing floor, without curled up legs walking with stoop
Facing ceiling, with curled up legs clipping

Facing ceiling, without curled up legs raising hand
Facing left, with left hand moving waving hand

Facing left, with right hand moving looking at watch
Facing right, with left hand moving using smartphone

Facing right, with right hand moving throwing
Facing floor, with left hand moving drinking water

Facing floor, with right hand moving collecting
Facing ceiling, with left hand moving walking with stick

Facing ceiling, with right hand moving sitting on chair/floor

Table 2. Information of 8 participants.

Participant ID Gender Age Weight [kg] Height [cm]

A Male 24 89 172
B Female 24 52 161
C Male 22 93 173
D Male 29 72 178
E Female 23 48 158
F Male 25 60 167
G Male 24 63 171
H Female 24 65 160

4. Fall Detection System

4.1. Overview

The proposed method consists of three steps—system initialization, human segmentation and
fall detection. When a fall is detected, a timer starts. If the classification result is “fall” and this
situation lasts more than one minute, an alert is sent to the hospital, health center or family members.
Total silence of the participant is not required, as elderly individuals may move on the floor due to pain.
If there are two or more individuals in a room, this system does not make a classification (since Kinect
can track and segment six different individuals, this situation can be recognized). This section gives
a detailed introduction of these steps, which are also illustrated in Figure 2.

Figure 2. Procedure of Enhanced Tracking and Denoising Alex-Net (ETDA-Net).
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4.2. System Initialization

Nowadays, users may set the cameras at different heights. Therefore, it is important to have the
fall-detection method calculate the camera height and initialize it to improve fall-detection accuracy.
The basic idea of this method is regarding the camera as a point and the floor as a plane. Camera height
is determined by calculating the distance from the point to the plane. The first step is marking
three points on the floor and obtaining their 3D coordinates. This is possible by capturing the 3D
coordinates of the ankle joint three times because this joint is very close to the floor, as shown in Figure 2.
Points A(χ1, γ1, ζ1), B(χ2, γ2, ζ2), C(χ3, γ3, ζ3) give the 3D position of the ankle joint in different places.
Therefore, a normal vector ~NV is given by Formula (1) and this vector is perpendicular to the plane (2).
The coefficients of i, j and k in this vector, are the coefficients of the plane equation of the floor.
The coefficients of i, j and k are defined as a,b and c,as given in Formulas (3)–(5). The plane equation
of the floor is given by Formula (2) and parameters χ, γ and ζ are on a three coordinate axis. Point
N(χ0, γ0, ζ0) is the coordinate of camera N and the distance from the camera to the ground plane D is
given by Formula (7). As the camera is at the origin of the coordinates, system sets χ, γ and ζ to zero
to calculate the distance from the camera to the floor.

~NV =

 ~i ~j ~k
−χ1 + χ2 −γ1 + γ2 −ζ1 + ζ2

−χ1 + χ3 −γ1 + γ3 −ζ1 + ζ3

 (1)

 χ− χ1 γ− γ1 ζ − ζ1

χ2 − χ1 γ2 − γ1 ζ2 − ζ1

χ3 − χ1 γ3 − γ1 ζ3 − ζ1

 = 0 (2)

a =

[
γ2 − γ1 ζ2 − ζ1

γ3 − γ1 ζ3 − ζ1

]
(3)

b =

[
χ3 − χ1 ζ3 − ζ1

χ2 − χ1 ζ2 − ζ1

]
(4)

c =

[
χ2 − χ1 γ2 − γ1

χ3 − χ1 γ3 − γ1

]
(5)

d = χ1

[
γ3 − γ1 ζ3 − ζ1

γ2 − γ1 ζ2 − ζ1

]
+ γ1

[
χ2 − χ1 ζ2 − ζ1

χ3 − χ1 ζ3 − ζ1

]
+ ζ1

[
χ3 − χ1 γ3 − γ1

χ2 − χ1 γ2 − γ1

]
(6)

D =
|aχ0 + bγ0 + cζ0 + d|√

a2 + b2 + c2
(7)

4.3. Human Segmentation and Fall Detection

Generally speaking, the first step in fall-detection methods is human segmentation. Human
segmentation based on Kinect SDK [20] is considered good for segmenting the human body and many
studies heavily depended on the segmentation results (including skeleton tracking) of Kinect SDK.
A depth camera captures depth images sequentially and the features of these images are calculated
using Formula (8).

Gδ (P, i) = dP

(
i +

m
dP (i)

)
− dP

(
i +

n
dP (i)

)
(8)

Parameter Gδ (P, i) is the depth comparison features at pixel i in depth image P [67]. Parameter m
and n are offsets and vector δ, which is calculated by (m, n), describes 2D pixel offsets in the depth
image P and dP (i) is the depth value at pixel i in P. During the training process, offsets m and n are
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sampled at random within a box of fixed size. After feature extraction, randomized decision forests
are used to cluster these features [20]. Parameter l is the human-body-part label and by using the
final result of clustering Rb (l|P, i) [68], the body parts of individuals are detected; b is the tree label.
In other words, the binary images of individuals are created by setting the pixel values of the body
parts to 255. Refer to Reference [68] for more details.

However, this method is not reliable enough for a fall detection. As shown in Figure 3, there are
five rows in this figure. Each rows contains two groups of images. At each row, the four left images are
fall events and the four right images are non-fall events. The images above are depth images and the
images below are human-segmentation images. According to the experimental results, if the depth
camera is set at a low position (1.7, 1.9 or 2.1 m), it segments the person well—the background is
removed completely and only the individual is left in the image. However, when the camera is set at
2.3 or 2.5 m, two serious problems occur—wide range noise and tracking loss. Setting the camera at
a low position is obviously not preferred for practical use as it may be often occluded by furniture.

Figure 3. Human segmentation using Kinect SDK. Five lines are human segmentation results from
Kinect set at 1.7, 1.9, 2.1, 2.3 and 2.5 m.

To address this issue, ETDA-Net segments the human body and detects falls, as shown in Figure 4.
The ETDA-Net contains two parts—pre-processing (left) and a convolutional neural network (CNN)
(right). The pre-processing part reduces the noise in the images and improves tracking performance and
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the CNN part is the same as with AlexNet [69] and the hyper-parameters are optimized automatically
by NVIDIA DIGITS 6 [70]. This net uses the depth and human-segmentation images as input,
improving segmentation performance. The main idea with ETDA-Net is to compare the partial
derivative of depth images to that of segmentation images. If the pixels of segmentation images have
a sharp change but the corresponding pixels in the depth images do not, these pixels are considered
as tracking loss or noise. Therefore, this study proposes two time partial derivative (TDP) layers to
obtain the partial derivative of depth images and segmentation images. This study then uses a min
pooling layer to reduce the noise in the derivative depth images. This study uses a selector layer to
confirm if tracking loss occurs and a mix layer to add the tracking results to the segmentation images
if tracking loss is detected. Finally, a min pooling layer is employed to reduce the noised in the mixed
images and these images are sent to Alex Net for classification.

Figure 4. ETDA-Net.

A TDP layer calculates the partial derivative depth images and segmentation images, which are
given by Formula (9), where Ô(m,n) is the output value of the pixel at point (m, n), G(P(m,n,t)) is the

value of the pixel at point (m, n) at time t and
∂G(P(m,n,t)))

∂t denotes how the pixel changes along with
coordinates and time. As two depth images and two segmentation images are input into the net at the
same time, each pixel is four dimensions and the input size is 512 × 424.


Ô(0,0) Ô(0,1) ... Ô(0,n)
Ô(1,0) Ô(1,1) ... Ô(1,n)

... ... ... ...
Ô(m,0) Ô(m,1) ... Ô(m,n)

 =


∂G(P(0,0,t)))

∂t
∂G(P(0,1,t)))

∂t ...
∂G(P(0,n,t)))

∂t
∂G(P(1,0,t)))

∂t
∂G(P(1,1,t)))

∂t ...
∂G(P(1,n,t)))

∂t
... ... ... ...

∂G(P(m,0,t)))

∂t
∂G(P(m,1,t)))

∂t ...
∂G(P(m,n,t)))

∂t

 (9)

Since random noise occurs in the depth images at the range of the object, the min pooling
layer is designed to reduce such noise. This layer is described by Formula (10), where P̂(x, y) is
the value of the output pixel at point (x, y), τ(x), τ(y) is filter range and P̂(x, y) is a filter window
surrounding pixel(x, y). Parameters τ(x), τ(y) are optimized using the control-variates method and
are set to 5 × 5 in our study.

P̂(x, y) = minx∈τ(x),y∈τ(y)P̂(x, y) (10)

The selector layer determines how to mix the lost pixels (remove noise or correct tracking loss)
in the mixer layer given by Formula (11), where Ls is the number of lost pixels and Le is the number
of pixels left in the image. Parameter t is a control threshold which is optimized by Ls and Le of
training images. When M is set to 0, the mix layer only remains noise redaction image and when M is
set to 1, the mix layer mixes the partial derivative depth image to the segment image in order to correct
tracking loss, as shown in Formula(12), where G(P(m,n,t)) is the value of the pixel at point (m, n) at
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time t and
∂G(P(m,n,t)))

∂t denotes how the pixel changes along with coordinates and time and IM is the
output of the mixed layer. Since this process may cause noise in the image, another min pooling layer
is used to reduce such noise.

M =
1

1 + e−t(Ls/Le)
(11)

IM =


Ŝ(0,0) Ŝ(0,1) ... Ŝ(0,n)
Ŝ(1,0) Ŝ(1,1) ... Ŝ(1,n)

... ... ... ...
Ŝ(m,0) Ŝ(m,1) ... Ŝ(m,n)

+ M ∗


∂G(P(0,0,t)))

∂t
∂G(P(0,1,t)))

∂t ...
∂G(P(0,n,t)))

∂t
∂G(P(1,0,t)))

∂t
∂G(P(1,1,t)))

∂t ...
∂G(P(1,n,t)))

∂t
... ... ... ...

∂G(P(m,0,t)))

∂t
∂G(P(m,1,t)))

∂t ...
∂G(P(m,n,t)))

∂t

 (12)

After tracking correction and noise reduction, the images are classified as the left layer of this net,
which is the same with traditional deep-learning-based fall-detection methods [71].

5. Experimental Results

5.1. Experimental Results of System Initialization

The main process of system initialization is automatically calculating camera height.
The experimental results are listed in Table 3. The proposed method accurately detected camera height.
The height is a little lower than the actual height because this method uses the coordinates of ankle
joints instead of those of the actual floor. This work measure the ankle height of different subjects and
finds out the average height is 9.2 cm. Therefore, this work gives a correction parameter to measure
the height more rigorously.

Table 3. Experimental results from camera-height detection.

Camera Height [m] 1.70 1.90 2.10 2.30 2.50

Detected Height [m] 1.62 1.83 2.03 2.23 2.43

After Correction [m] 1.71 1.92 2.12 2.32 2.52

5.2. Experimental Results from Human Segmentation

The results of human segmentation are shown in Figure 5. The first row shows the depth images,
the second row shows the human segmentation results of Kinect SDK and the third row shows the
human segmentation results using ETDA-Net. ETDA-Net produced better results in both human
tracking and denoising.

Figure 5. Experimental results of human segmentation. First row is depth images, second row is
human segmentation using Kinect SDK and the third row is human segmentation using ETDA-Net.
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5.3. Parameters and Performance-Evaluation Metrics

The eight participants in the experiment are divided into four groups. Participants A and B are
in group 1, C and D in group 2, E and F in group 3 and G and H in group 4. During each test, three
groups are for training and the remaining group is for testing to make the test data different with the
training data. Then The data are trained using a desktop PC. The operation system is Ubuntu 16.04,
the CUP is Intel(R) Xeon(R) CPU E5-1650 v4 3.60GHz and the GPUs are triple NVIDIA GTX 1080Ti
with 33-GB memory. The framework is Torch and the hyper-parameters of the CNN are optimized
automatically by NVIDIA DIGITS 6 [70]. The window size of 64 × 128, block size of 16 × 16, block
stride of 8 × 8 and a cell size of 8 × 8 (only these sizes are supported at OpenCV) [72] are set as the
parameters of histogram of oriented gradient (HOG) features. A totally of 800 video streams with
240,000 images (frames) are used in the experiment (not all the frames are used since the fall streams
contained non-fall frames), while 180,000 images (frames) are used for training and 60,000 are used
for testing. At each height, 6000 fall states (frames) and 6000 non-fall states (frames) are included.
The shape of a participant does not change with distance but the size does. Therefore, the images of
the participants are normalized to 256 × 256 (for AlexNet, GoogLeNet and ETD-AlexNet) or 28 × 28
(for LeNet) before input to the neural network.

We used the following performance-evaluation metrics proposed in Reference [73] to analyze the
experimental results.

True positive (TP) is the number of fall events accurately detected.
True negative (TN) is the number of non-fall events accurately detected.
False positive (FP) is the number of non-fall events detected as fall events.
False negative (FN) is the number of fall events detected as non-fall events.
In the study in Reference [73], sensitivity (Se), specificity (Sp), accuracy (Ac) and error (Er) are

given by the following formulas to obtain the performance-evaluation metrics:

Se = TP/(TP + FN) (13)

Sp = TN/(TN + FP) (14)

Ac = (TP + TN)/(TP + TN + FP + FN) (15)

Er = (FP + FN)/(TP + TN + FP + FN) (16)

5.4. Effect of Camera Height and Comparison

Tables 4–6 compare the experimental results of sensitivity, specificity and accuracy, respectively.
The Training data column means the camera height at which training images are taken and the Test data
column means the camera height at which test images are taken. The performance of ETDA-Net is
compared with the machine-learning method HOG+SVM [74] and deep-learning methods LeNet [75],
AlexNet [71] and GoogLeNet [76]. The effect of camera height on fall-detection accuracy is clearly
illustrated in these tables. The fall-detection accuracy is high if the training images and test images
are taken with the camera at the same height. However, the more this differs, the lower the accuracy.
Therefore, camera height is an important parameter for fall-detection methods, which has been ignored
in many studies.

Several studies set the camera at a low position. If the user sets the camera at a higher position,
according to the experimental results, fall detection accuracy will drastically reduce, especially when
the camera is set at a height of over 2.3 m.
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Table 4. Experimental results from sensitivity comparison.

Training Data Test Data HOG+SVM LeNet AlexNet GoogLeNet ETDA-Net

1.7 m

1.7 m 100.0% 100.0% 100.0% 100.0% 100.0%

1.9 m 88.2% 80.6% 87.0% 93.8% 89.4%

2.1 m 92.0% 99.0% 99.0% 100.0% 99.6%

2.3 m 43.6% 23.0% 66.0% 93.2% 61.2%

2.5 m 47.2% 15.8% 69.0% 93.8% 76.6%

1.9 m

1.7 m 97.0% 95.0% 99.6% 100.0% 100.0%

1.9 m 99.8% 100.0% 100.0% 100.0% 100.0%

2.1 m 100.0% 100.0% 100.0% 100.0% 100.0%

2.3 m 74.4% 85.8% 91.4% 97.6% 96.4%

2.5 m 81.2% 81.2% 92.0% 96.4% 95.6%

2.1 m

1.7 m 88.0% 94.8% 77.4% 97.6% 92.6%

1.9m 97.2% 91.4% 85.6% 92.8% 90.8%

2.1 m 99.8% 100.0% 100.0% 100.0% 100.0%

2.3 m 80.0% 70.4% 68.8% 82.0% 72.8%

2.5 m 83.2% 30.0% 42.8% 57.6% 72.8%

2.3 m

1.7 m 47.4% 37.2% 93.6% 95.2% 99.2%

1.9 m 83.2% 90.8% 99.4% 98.8% 100.0%

2.1 m 89.2% 100.0% 100.0% 98.6% 100.0%

2.3m 99.8% 99.8% 100.0% 100.0% 100.0%

2.5 m 97.0% 69.8% 100.0% 96.6% 99.8%

2.5 m

1.7 m 35.8% 0.0% 51.6% 40.6% 65.2%

1.9 m 80.4% 46.4% 90.2% 55.6% 88.4%

2.1 m 91.4% 54.2% 67.8% 50.4% 96.4%

2.3 m 98.0% 98.6% 97.4% 79.6% 100.0%

2.5 m 100.0% 99.8% 98.8% 98.2% 100.0%

All

1.7 m - 93.7% 98.4% 98.9% 99.2%

1.9 m - 99.8% 99.9% 99.8% 100.0%

2.1 m - 96.2% 99.9% 99.7% 99.4%

2.3 m - 99.7% 99.8% 100.0% 99.8%

2.5 m - 99.6% 99.5% 99.7% 99.6%
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Table 5. Experimental results from specificity comparison

Training Data Test Data HOG+SVM LeNet AlexNet GoogLeNet ETDA-Net

1.7 m

1.7 m 100.0% 100.0% 100.0% 100.0% 100.0%

1.9 m 99.0% 99.4% 100.0% 100.0% 100.0%

2.1 m 99.6% 99.4% 99.8% 99.4% 100.0%

2.3 m 95.4% 94.8% 98.2% 97.2% 99.0%

2.5 m 76.0% 83.2% 92.4% 84.8% 92.0%

1.9 m

1.7 m 99.6% 100.0% 100.0% 99.8% 100.0%

1.9 m 100.0% 99.8% 100.0% 100.0% 100.0%

2.1 m 99.8% 98.6% 100.0% 100.0% 100.0%

2.3m 96.8% 97.6% 99.2% 98.8% 99.6%

2.5 m 83.6% 94.4% 97.2% 95.2% 98.6%

2.1 m

1.7 m 99.4% 100.0% 100.0% 100.0% 100.0%

1.9 m 97.2% 100.0% 100.0% 100.0% 100.0%

2.1 m 100.0% 100.0% 100.0% 100.0% 100.0%

2.3 m 94.4% 99.4% 99.8% 100.0% 100.0%

2.5 m 76.2% 98.6% 99.4% 99.4% 99.8%

2.3 m

1.7 m 100.0% 100.0% 100.0% 100.0% 100.0%

1.9 m 96.4% 97.0% 97.4% 99.0% 99.4%

2.1 m 96.4% 98.0% 99.0% 99.8% 100.0%

2.3 m 99.4% 99.6% 100.0% 99.8% 99.8%

2.5 m 99.4% 99.6% 99.4% 99.6% 99.4%

2.5 m

1.7 m 100.0% 98.6% 97.2% 99.0% 100.0%

1.9 m 94.0% 89.2% 82.0% 99.2% 97.0%

2.1 m 89.2% 88.8% 82.0% 98.4% 99.4%

2.3 m 94.4% 94.0% 96.2% 99.8% 100.0%

2.5 m 99.6% 99.6% 99.8% 99.8% 99.8%

All

1.7 m - 98.9% 99.8% 99.7% 100.0%

1.9 m - 99.7% 99.8% 99.8% 100.0%

2.1 m - 98.9% 99.1% 99.7% 100.0%

2.3 m - 97.3% 98.3% 98.4% 99.1%

2.5 m - 94.5% 94.5% 96.9% 96.3%

According to these tables, the accuracy of HOG+SVM decreased by 38.4%, 17.5%, 20.2%, 25.9%
and 31.9% at 1.7, 1.9, 2.1, 2.3 and 2.5 m, respectively, that of LeNet decreased by 50.5%, 12.1%,
35.7%, 31.1% and 50.4%, that of AlexNet decreased by 19.3%, 5.4%, 28.9%, 3.2% and 24.9%, that
of GoogLeNet decreased by 10.7%, 4.2%, 21.5%, 2.3% and 29.2% and that of ETDA-Net decreased
by 15.7%, 2.9%, 13.7%, 0.3% and 17.3% (the farthest distance is treated as a reference). ETDA-Net
exhibited the most robust performance at 1.9, 2.1, 2.3 and 2.5 m. It only takes about 1.3 h to train
ETDA-Net, while the training time of GoogLeNet is more than 8 h (trained by all the available data
for each group). This lowered the computational cost of ETDA-Net compared to GoogLeNet, whose
performance is similar to that of ETDA-Net. When the model is trained by all the available data,
the robust performance is the best but is still less than 100%. Therefore, if the camera height is
accurately calculated, ETDA-Net trained by the same height provides good fall-detection results.
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Table 6. Experimental results from accuracy comparison.

Training Data Test Data HOG+SVM LeNet AlexNet GoogLeNet ETDA-Net

1.7 m

1.7 m 100.0% 100.0% 100.0% 100.0% 100.0%

1.9 m 93.6% 90.0% 93.5% 96.9% 94.7%

2.1 m 95.8% 99.2% 99.4% 99.7% 99.8%

2.3 m 69.5% 58.9% 82.1% 95.2% 80.1%

2.5 m 61.6% 49.5% 80.7% 89.3% 84.3%

1.9 m

1.7 m 98.3% 97.5% 99.8% 99.9% 100.0%

1.9 m 99.9% 99.9% 100.0% 100.0% 100.0%

2.1 m 99.9% 99.3% 100.0% 100.0% 100.0%

2.3 m 85.6% 91.7% 95.3% 98.2% 98.0%

2.5 m 82.4% 87.8% 94.6% 95.8% 97.1%

2.1 m

1.7 m 93.7% 97.4% 88.7% 98.8% 96.3%

1.9 m 97.2% 95.7% 92.8% 96.4% 95.4%

2.1 m 99.9% 100.0% 100.0% 100.0% 100.0%

2.3 m 87.2% 84.9% 84.3% 91.0% 86.4%

2.5 m 79.7% 64.3% 71.1% 78.5% 86.3%

2.3 m

1.7 m 73.7% 68.6% 96.8% 97.6% 99.6%

1.9 m 89.8% 93.9% 98.4% 98.9% 99.7%

2.1 m 92.8% 99.0% 99.5% 99.2% 100.0%

2.3 m 99.6% 99.7% 100.0% 99.9% 99.9%

2.5 m 98.2% 84.7% 99.7% 98.1% 99.6%

2.5 m

1.7 m 67.9% 49.3% 74.4% 69.8% 82.6%

1.9 m 87.2% 67.8% 86.1% 77.4% 92.7%

2.1 m 90.3% 71.5% 74.9% 74.4% 97.9%

2.3 m 96.2% 96.3% 96.8% 89.7% 100.0%

2.5 m 99.8% 99.7% 99.3% 99.0% 99.9%

All

1.7 m - 96.3% 99.1% 99.3% 99.6%

1.9 m - 99.7% 99.8% 99.8% 100.0%

2.1 m - 97.6% 99.5% 99.7% 99.7%

2.3 m - 98.5% 99.0% 99.2% 99.5%

2.5 m - 95.5% 97.0% 98.3% 97.9%

5.5. Discussion and Future Work

Training on all or some images: As shown in Tables 4–6, when the model is trained on all the
available data, ETDA-Net exhibits the best robust performance. When the model is trained on only one
height, the accuracy is higher (only when the camera height is accurately calculated) but performance
becomes less robust. Considering the effect of furniture/pets, the camera height may not be accurately
calculated; therefore, training the model with images at different heights may be a robust and credible
solution at the current state. Developing an algorithm to calculate the camera height more efficiently
and reliably will be for future work. This study confirms that training the model on images taken at
different heights or calculating the camera height and selecting the model is necessary.

Sensitivity or specificity: Although ETDA-Net provides good results, it is still not unquestionably
better than GoogLeNet: ETDA-Net has higher specificity, so it raises less false alarms;
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However, sometimes it has lower sensitivity (e.g., for the training data acquired at 1.7 m), so it
ignores more actual falls. In other words, the sensitivity of a fall-detection method is more important
because each non-detected fall may lead to death, while a false alarm may only lead to an unnecessary
visit of a health-care personnel. Therefore, improving the sensitivity of ETDA-Net will be interesting
future work.

Camera orientation: Since the monitoring angle (depth) of Kinect is only 70 degrees (horizontal)
and 60 degrees (vertical), a large room cannot be monitored [30], so the camera orientation is
difficult to analysis; Therefore, it is set manually in our study. If the sensor is set at a high place
(no less than 2.0 m) and the angle between the wall and main optical axis is more than 23.75 degrees,
a larger range can be monitored [30]. On the other hand, when the camera is placed parallel to
the subject or up to 35 degrees higher, the accuracy is higher with the method in Reference [26].
However, as the monitoring angle of Kinect is not wide enough, the analysis of camera orientation
makes little sense in our study. Therefore, the development of a wide-angle depth camera and analysis
of the orientation of this camera will be for future work.

6. Conclusions

This study focuses on the effect of camera height on fall-detection methods, which has not been
extensively studied. Since there is no open data set for analyzing camera height, this study creates
a large data set that includes about 350,000 depth images. For this data set, 16 types of daily activities
and 16 types of falls are carried out by eight people in eight directions and captured with a depth
camera at five different heights. This study also introduces an algorithm for automatically calculating
camera height, making it possible for the system to adapt to the environment. This study also proposes
a two-channel input neural-network-based called ETDA-Net to improve the human segmentation
performance of Kinect SDK and classify fall and non-fall events. The experimental results indicate
that ETDA-Net outperforms traditional machine-learning and deep-learning methods and is robust
against different heights. For future work, we plan to study the impact of the different behaviors of
individuals on fall-detection accuracy and develop a system for automatically analyzing such behavior
and selecting the most suitable model to use to detect falls. We will also develop an algorithm to
calculate the camera height more efficiently and reliably and improve sensitivity.
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39. Jokanović, B.; Amin, M. Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp.
Electron. Syst. 2017, 54, 180–189. [CrossRef]

40. Garripoli, C.; Mercuri, M.; Karsmakers, P.; Soh, P.J.; Crupi, G.; Vandenbosch, G.A.; Pace, C.; Leroux, P.;
Schreurs, D. Embedded DSP-based telehealth radar system for remote in-door fall detection. IEEE J. Biomed.
Health Inform. 2014, 19, 92–101. [CrossRef] [PubMed]

41. Wang, Y.; Wu, K.; Ni, L.M. Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput.
2016, 16, 581–594. [CrossRef]

42. Wang, H.; Zhang, D.; Wang, Y.; Ma, J.; Wang, Y.; Li, S. RT-Fall: A real-time and contactless fall detection
system with commodity WiFi devices. IEEE Trans. Mob. Comput. 2016, 16, 511–526. [CrossRef]

43. Erdogan, S.Z.; Bilgin, T.T. A data mining approach for fall detection by using k-nearest neighbour algorithm
on wireless sensor network data. IET Commun. 2012, 6, 3281–3287. [CrossRef]

44. Diep, N.N.; Pham, C.; Phuong, T.M. A classifier based approach to real-time fall detection using low-cost
wearable sensors. In Proceedings of the Fifth Symposium on Information and Communication Technology,
Hanoi, Vietnam, 4–5 December 2014; pp. 14–20.

45. Ojetola, O. Detection of Human Falls Using Wearable Sensors. Ph.D. Thesis, Coventry University, Coventry,
UK, 2013.

46. Putra, I.; Brusey, J.; Gaura, E.; Vesilo, R. An event-triggered machine learning approach for
accelerometer-based fall detection. Sensors 2017, 18, 20. [CrossRef]

47. Sucerquia, A.; López, J.; Vargas-Bonilla, J. Real-life/real-time elderly fall detection with a triaxial
accelerometer. Sensors 2018, 18, 1101. [CrossRef]

48. Khojasteh, S.; Villar, J.; Chira, C.; González, V.; De La Cal, E. Improving fall detection using an on-wrist
wearable accelerometer. Sensors 2018, 18, 1350. [CrossRef]

49. Santos, G.L.; Endo, P.T.; Monteiro, K.H.d.C.; Rocha, E.d.S.; Silva, I.; Lynn, T. Accelerometer-Based Human
Fall Detection Using Convolutional Neural Networks. Sensors 2019, 19, 1644. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/app7100993
http://dx.doi.org/10.3390/s16101724
http://www.ncbi.nlm.nih.gov/pubmed/27763540
http://dx.doi.org/10.1109/JBHI.2014.2304357
http://www.ncbi.nlm.nih.gov/pubmed/25375688
http://dx.doi.org/10.3390/s150923004
http://dx.doi.org/10.3390/app7040316
http://le2i.cnrs.fr/Fall-detection-Dataset?lang=fr
http://dx.doi.org/10.21227/H2QP48
http://dx.doi.org/10.1016/j.cmpb.2014.09.005
http://dx.doi.org/10.1109/LAWP.2013.2238501
http://dx.doi.org/10.1109/MSP.2015.2502784
http://dx.doi.org/10.1109/JSEN.2017.2760911
http://dx.doi.org/10.1109/TBME.2014.2367038
http://www.ncbi.nlm.nih.gov/pubmed/25376033
http://dx.doi.org/10.1109/TAES.2017.2740098
http://dx.doi.org/10.1109/JBHI.2014.2361252
http://www.ncbi.nlm.nih.gov/pubmed/25291803
http://dx.doi.org/10.1109/TMC.2016.2557792
http://dx.doi.org/10.1109/TMC.2016.2557795
http://dx.doi.org/10.1049/iet-com.2011.0228
http://dx.doi.org/10.3390/s18010020
http://dx.doi.org/10.3390/s18041101
http://dx.doi.org/10.3390/s18051350
http://dx.doi.org/10.3390/s19071644
http://www.ncbi.nlm.nih.gov/pubmed/30959877


Sensors 2019, 19, 3768 19 of 20

50. Mauldin, T.; Canby, M.; Metsis, V.; Ngu, A.; Rivera, C. SmartFall: A smartwatch-based fall detection system
using deep learning. Sensors 2018, 18, 3363. [CrossRef] [PubMed]

51. Sucerquia, A.; López, J.; Vargas-Bonilla, J. SisFall: A fall and movement dataset. Sensors 2017, 17, 198.
[CrossRef] [PubMed]

52. Ozcan, K.; Mahabalagiri, A.K.; Casares, M.; Velipasalar, S. Automatic fall detection and activity classification
by a wearable embedded smart camera. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 125–136. [CrossRef]

53. Ozcan, K.; Velipasalar, S. Wearable camera-and accelerometer-based fall detection on portable devices.
IEEE Embed. Syst. Lett. 2015, 8, 6–9. [CrossRef]

54. Ozcan, K.; Velipasalar, S.; Varshney, P.K. Autonomous fall detection with wearable cameras by using relative
entropy distance measure. IEEE Trans. Hum. Mach. Syst. 2016, 47, 31–39. [CrossRef]

55. Apple Watch. Available online: https://support.apple.com/en-us/HT208944 (accessed on 21 July 2019).
56. MGF. Available online: https://www.medicalguardian.com/ (accessed on 21 July 2019).
57. Philips Lifeline. Available online: https://www.lifeline.philips.com/medical-alert-systems/homesafe-

autoalert.html (accessed on 21 July 2019).
58. Ariani, A.; Redmond, S.J.; Chang, D.; Lovell, N.H. Software simulation of unobtrusive falls detection

at night-time using passive infrared and pressure mat sensors. In Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina,
31 August–4 September 2010; pp. 2115–2118.

59. Rimminen, H.; Lindström, J.; Linnavuo, M.; Sepponen, R. Detection of falls among the elderly by a floor
sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1475–1476. [CrossRef]

60. Rimminen, H.; Lindström, J.; Sepponen, R. Positioning accuracy and multi-target separation with a human
tracking system using near field imaging. Int. J. Smart Sens. Intell. Syst. 2009, 2, 156–175.

61. Feng, G.; Mai, J.; Ban, Z.; Guo, X.; Wang, G. Floor pressure imaging for fall detection with fiber-optic sensors.
IEEE Pervasive Comput. 2016, 15, 40–47. [CrossRef]

62. Daher, M.; Diab, A.; El Najjar, M.E.B.; Khalil, M.A.; Charpillet, F. Elder tracking and fall detection system
using smart tiles. IEEE Sens. J. 2016, 17, 469–479. [CrossRef]

63. Nizam, Y.; Mohd, M.; Jamil, M. Development of a user-adaptable human fall detection based on fall risk
levels using depth sensor. Sensors 2018, 18, 2260. [CrossRef] [PubMed]

64. De Miguel, K.; Brunete, A.; Hernando, M.; Gambao, E. Home camera-based fall detection system for
the elderly. Sensors 2017, 17, 2864. [CrossRef] [PubMed]

65. Chen, Y.T.; Lin, Y.C.; Fang, W.H. A hybrid human fall detection scheme. In Proceedings of the IEEE
International Conference on Image Processing, Hong Kong, China, 26–29 Septembet 2010; pp. 3485–3488.

66. Proposed Data Set: Depth Camera Height Based Fall Detection Data Set. 2019. Available online: http:
//www.ihpc.se.ritsumei.ac.jp/Fall-Detection-Dataset.html (accessed on 26 August 2019).

67. Lepetit, V.; Lagger, P.; Fua, P. Randomized trees for real-time keypoint recognition. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; Volume 2, pp. 775–781.

68. Shotton, J.; Sharp, T.; Kipman, A.; Fitzgibbon, A.; Finocchio, M.; Blake, A.; Cook, M.; Moore, R. Real-time
human pose recognition in parts from single depth images. Commun. ACM 2013, 56, 116–124. [CrossRef]

69. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, 2–6 December 2012; pp. 1097–1105.

70. NVIDIA DIGITS. Available online: https://developer.nvidia.com/digits (accessed on 21 July 2019).
71. Núñez-Marcos, A.; Azkune, G.; Arganda-Carreras, I. Vision-based fall detection with convolutional

neural networks. Wirel. Commun. Mob. Comput. 2017, 2017. [CrossRef]
72. OpenCV. Available online: https://opencv.org/ (accessed on 21 July 2019).
73. Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.; Laighin, G.; Rialle, V.; Lundy, J. Fall detection-principles and

methods. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Lyon, France, 22–26 August 2007; pp. 1663–1666.

74. Kong, X.; Meng, Z.; Nojiri, N.; Iwahori, Y.; Meng, L.; Tomiyama, H. A HOG-SVM Based Fall Detection IoT
System for Elderly Persons Using Deep Sensor. Procedia Comput. Sci. 2019, 147, 276–282. [CrossRef]

http://dx.doi.org/10.3390/s18103363
http://www.ncbi.nlm.nih.gov/pubmed/30304768
http://dx.doi.org/10.3390/s17010198
http://www.ncbi.nlm.nih.gov/pubmed/28117691
http://dx.doi.org/10.1109/JETCAS.2013.2256832
http://dx.doi.org/10.1109/LES.2015.2487241
http://dx.doi.org/10.1109/THMS.2016.2620904
https://support.apple.com/en-us/HT208944
https://www.medicalguardian.com/
https://www.lifeline.philips.com/medical-alert-systems/homesafe-autoalert.html
https://www.lifeline.philips.com/medical-alert-systems/homesafe-autoalert.html
http://dx.doi.org/10.1109/TITB.2010.2051956
http://dx.doi.org/10.1109/MPRV.2016.27
http://dx.doi.org/10.1109/JSEN.2016.2625099
http://dx.doi.org/10.3390/s18072260
http://www.ncbi.nlm.nih.gov/pubmed/30011823
http://dx.doi.org/10.3390/s17122864
http://www.ncbi.nlm.nih.gov/pubmed/29232846
http://www.ihpc.se.ritsumei.ac.jp/Fall-Detection-Dataset.html
http://www.ihpc.se.ritsumei.ac.jp/Fall-Detection-Dataset.html
http://dx.doi.org/10.1145/2398356.2398381
https://developer.nvidia.com/digits
http://dx.doi.org/10.1155/2017/9474806
https://opencv.org/
http://dx.doi.org/10.1016/j.procs.2019.01.264


Sensors 2019, 19, 3768 20 of 20

75. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.
IEEE 1998, 86, 2278–2324. [CrossRef]

76. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/5.726791
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Radio-Wave-Based Methods
	Wearable/Mobile-Device-Based Methods
	Pressure-Sensor-Based Methods
	Vision-Based Methods
	Discussion

	Fall-Detection Data Set
	Fall Detection System
	Overview
	System Initialization
	Human Segmentation and Fall Detection

	Experimental Results
	Experimental Results of System Initialization
	Experimental Results from Human Segmentation
	Parameters and Performance-Evaluation Metrics
	Effect of Camera Height and Comparison
	Discussion and Future Work

	Conclusions
	References

