
Citation: Zhang, X.; Nian, L.; Liu, X.;

Li, X.; Adingo, S.; Liu, X.; Wang, Q.;

Yang, Y.; Zhang, M.; Hui, C.; et al.

Spatial–Temporal Correlations

between Soil pH and NPP of

Grassland Ecosystems in the Yellow

River Source Area, China. Int. J.

Environ. Res. Public Health 2022, 19,

8852. https://doi.org/10.3390/

ijerph19148852

Academic Editor: Xinbin Feng

Received: 27 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Spatial–Temporal Correlations between Soil pH and NPP of
Grassland Ecosystems in the Yellow River Source Area, China
Xiaoning Zhang 1,2 , Lili Nian 1,2, Xingyu Liu 1,2, Xiaodan Li 1,3, Samuel Adingo 1 , Xuelu Liu 1,2,*,
Quanxi Wang 4, Yingbo Yang 2, Miaomiao Zhang 3, Caihong Hui 2, Wenting Yu 2, Xinyu Zhang 2, Wenjun Ma 1,2

and Yaoquan Zhang 1,2

1 College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; zxn893707607@163.com (X.Z.);
nll18893814845@163.com (L.N.); lxy1061062022@163.com (X.L.); lixd@gsau.edu.cn (X.L.);
samueladingo557@gmail.com (S.A.); mwj2022781744@163.com (W.M.); zhangyqgs@163.com (Y.Z.)

2 College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
yangyb@gsau.edu.cn (Y.Y.); ch19893407596@163.com (C.H.); yuwengting2022@163.com (W.Y.);
zxy18793830677@163.com (X.Z.)

3 College of Management, Gansu Agricultural University, Lanzhou 730070, China; m2028578021@163.com
4 College of Humanities and Law, Northeastern University, Shenyang 110169, China; wquanxi20@163.com
* Correspondence: liuxl@gsau.edu.cn

Abstract: In recent years, ecological concerns such as vegetation destruction, permafrost deterioration,
and river drying have been paid much more attention to on the Yellow River Basin in China. Soil pH
is regarded to be the fundamental variable among soil properties for vegetation growth, while net
primary productivity (NPP) is also an essential indicator to reflect the healthy growth of vegetation.
Due to the limitation of on-site samples, the spatial–temporal variations in soil pH and NPP, as well
as their intrinsic mechanisms, remain unknown, especially in the Yellow River source area, China.
Therefore, it is imperative to investigate the coupling relationship between soil pH and NPP of
the area. The study coupled MODIS reflectance data (MOD09A1) with on-site soil pH to estimate
spatial–temporal variations in soil pH, explore the response of NPP to soil pH, and assess the extent
to which they contribute to grassland ecosystems, thus helping to fill knowledge gaps. Results
indicated that the surface spectral reflectance for seven bands could express the geographic pattern of
soil pH by applying a multiple linear regression equation; NPP exhibited an increasing trend while
soil pH was the contrary in summer from 2000 to 2021. In summer, NPP was negatively correlated
with soil pH and there was a lag effect in the response of NPP to soil pH, revealing a correlation
between temperate steppes > montane meadows > alpine meadows > swamps in different grassland
ecosystems. In addition, contribution indices for temperate steppes and montane meadows were
positive whereas they were negative for swamps and alpine meadows, which are apparent findings.
The contribution index of montane and alpine meadows was greater than that of temperate steppes
and swamps. The approach of the study can enable managers to easily identify and rehabilitate
alkaline soil and provides an important reference and practical value for ecological restoration and
sustainable development of grassland ecosystems in alpine regions.

Keywords: MODIS; time-lag effect; coupling relationship; contribution index; alpine area

1. Introduction

Vegetation plays an important role in the exchange of carbon, water, and energy
between the soil and the atmosphere through surface albedo, roughness, and evapotranspi-
ration [1]. Vegetation properties are influenced by a variety of environmental factors [2],
especially soil properties related to climate regulation and adaptation, biodiversity con-
servation, water filtration, and carbon sequestration [3–5]. There are intricate interactions
between vegetation and soil properties at different scales [6], which have become a hot
topic for ecological research in the context of global change [7,8].
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NPP can reflect ecosystem health and vegetation growth status [9,10]. It represents
the total amount of carbon sequestered per unit of time and space by the plant community
through photosynthesis [11]. Soil pH, which is closely related to the effectiveness of
nutrients in the soil, is one of the most important factors and fundamental components of
soil [12,13]. Thus, soil pH may have direct or indirect effects on NPP due to the interaction
between vegetation and soil, whereas the relationship between them and their potential
mechanisms is not well understood.

Grassland ecosystems are a critical component of terrestrial ecosystems [14] and a
vital terrestrial carbon pool [15], playing an indispensable role in maintaining climate
stability [16]. The Yellow River source area is an important water conservation region
in China, as well as a case of the complex lake alpine grassland underlying surface [17].
Therefore, exploring the coupling relationship between NPP and soil pH in the alpine
grassland of the Yellow River source area will provide a useful scientific reference for
regional vegetation restoration and ecosystem conservation.

At present, scholars have reported the influence of soil pH and vegetation [18–20],
but these studies are based on sampled soil data and vegetation data. However, this
approach has not been able to achieve monitoring at broad spatial scales and long-term
time scales, resulting in limited studies of vegetation–soil pH relationships at regional
scales. Studies have attempted to spatially predict soil pH with the advent of remote
sensing technology [21–23], which has mostly been employed in agricultural research, and
there are few studies related to grassland ecosystems. To fill a gap left by previous research,
this study provides a method to obtain large-scale changes with long time series using
remote sensing, which is beneficial to further research on the coupling relationship between
soil pH and NPP in grassland ecosystems.

Based on a review of the literature, the study attempted to quantify the interaction
between pH and NPP in the grassland ecosystem utilizing remote sensing. The specific
goals were as follows: (1) predict the spatial pattern of soil pH at 10 cm depth, (2) char-
acterize the spatial and temporal variation of pH and NPP, (3) investigate the coupling
relationship between pH and NPP, and (4) evaluate the role of pH and NPP in different
grassland ecosystem types.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Gannan Water Conservation Area, located in the
Yellow River source area, among the Tibetan Plateau, the Longnan Mountains, and the Loess
Plateau of China (Figure 1). The elevation of the Gannan Water Conservation Area ranges
from 2014 m to 4767 m above sea level (a.s.l.). A continental plateau climate predominates in
the area; the weather is cold and humid with a high altitude and thin air, where the annual
mean air temperature varies from 1 to 3 ºC, while the annual mean precipitation ranges from
400 to 800 mm [24]. Soil types include meadow soil, sub-meadow soil, bog soil, etc. [25].
The land cover types are dominated by grassland and forest, with grassland playing a
crucial role [24,26]. The 1:1 million grassland resource map of China was obtained from
grassland and ecology (http://ecograss.lzu.edu.cn/) (accessed on 23 August 2021) with
the calibration, which mainly used the vegetation–habitat classification system of grassland
(VHCS) to classify grassland types. Alpine meadows, montane meadows, temperate
steppes, and swamps are the four main types of grasslands found in the area (Figure 1c).

http://ecograss.lzu.edu.cn/
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Figure 1. Geographical map of the study area. (a) the location of the study area, (b) the distribu-
tion of sampling points, and (c) the four main types of grasslands. 
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peears/explore) (accessed on 4 March 2022). The MOD09A1 product provided a system-
atic correction for atmospheric factors including aerosols, gases, and Rayleigh scattering 
to estimate the surface spectral reflectance of seven bands (referred as B1∼B7) [27,28].  

The monthly data sets were constructed by adopting the maximum value composite 
method (MVC) for the original reflectance and NPP data from 2000 to 2021 to minimize 
the influence of atmospheric and cloud contamination [29]. The data from June to August 
were then averaged to synthesize the summer data. A 90 m DEM (SRTMGL3 DEM) was 
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formly numbered, located using GPS, and latitude and longitude coordinates were rec-
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value for that sample point. Soil pH was estimated by preparing a suspension with a 

Figure 1. Geographical map of the study area. (a) the location of the study area, (b) the distribution
of sampling points, and (c) the four main types of grasslands.

2.2. Data Acquisitions and Processing
2.2.1. Remote Sensing Data Acquisition and Processing

The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra surface re-
flectance products (MOD09A1) and MODIS NPP products (MOD17A2) were used in
this study with a spatial resolution of 500 m and intervals of 8 days, which can be down-
loaded from the United States Geological Survey (USGS) (https://lpdaacsvc.cr.usgs.gov/
appeears/explore) (accessed on 4 March 2022). The MOD09A1 product provided a system-
atic correction for atmospheric factors including aerosols, gases, and Rayleigh scattering to
estimate the surface spectral reflectance of seven bands (referred as B1∼B7) [27,28].

The monthly data sets were constructed by adopting the maximum value composite
method (MVC) for the original reflectance and NPP data from 2000 to 2021 to minimize
the influence of atmospheric and cloud contamination [29]. The data from June to August
were then averaged to synthesize the summer data. A 90 m DEM (SRTMGL3 DEM) was
also downloaded from the USGS. The boundaries of the administrative area and the Yellow
River basin were downloaded from the Resource and Environmental Science and Data
Center (https://www.resdc.cn/) (accessed on 23 April 2022).

2.2.2. Soil Samples Data Acquisition and Processing

The soil type, grassland ecosystem type, landscape characteristics, etc., were fully
considered in the sampling design. As the reflectance of soil properties and vegetation is
more significant during the peak growing season, our sampling period was end of July
to mid-August, and the distribution of sampling points is shown in Figure 1b. A total
of 130 soil samples were collected from the 0–10 cm soil layer. Each sampling point was
uniformly numbered, located using GPS, and latitude and longitude coordinates were
recorded. Based on the resolution of MODIS data, two sample quadrats were selected to
collect biomass and soil samples at a 500 m × 500 m sample point, and the average value of

https://lpdaacsvc.cr.usgs.gov/appeears/explore
https://lpdaacsvc.cr.usgs.gov/appeears/explore
https://www.resdc.cn/
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two sample quadrats spaced 100 m apart from each other was used as the observation value
for that sample point. Soil pH was estimated by preparing a suspension with a soil/water
ratio of 1:5 [30] using an air-dried and 1 mm sieved soil sample and deionized water.

2.3. Methods
2.3.1. Regression Analysis

The Extract by Mask tool in ArcGIS 10.5 was used to generate the B1∼B7 and NPP
raster images. Then, the Extract Values to Point tool was used to extract the point data of
B1∼B7 and NPP from the raster images that correspond with soil pH point data. Outliers
were removed from 130 samples and sorted by sampling points from highest to lowest,
with 2/3 of the samples selected as the calibration set and 1/3 of the samples selected as the
validation set at equal intervals for model building and accuracy verification, respectively.
The normal distribution histogram showed the data suitable for regression analysis. To
ensure the reliability of the model, the MODIS data used were kept close to the acquisition
time of the field data.

Correlation analysis of the values of the B1∼B7 at the sampling points and the cor-
responding pH indicated that there was an internal relationship between the pH and the
reflectance (Table 1). Curve estimation was carried out using B1∼B7 as the independent
variable and pH as the dependent variable of the calibration set [31]. The primary model
types for the soil pH are listed in Table 2, the performance of the models was compared and
selected based on the coefficient of determination (R2) and root mean square error (RMSE).
The coefficient of determination (R2) was used to evaluate the relationship between the
observed and predicted values, while the root mean square error (RMSE) measured the
degree of inaccuracy of prediction [32]. The formulas for R2 and RMSE are as follows [33]:

R2 = 1 −
∑n

i=1
(
Vpi − Voi

)2

∑n
i=1

( -
Voi − Voi

)2 (1)

RMSE =

√
1
n ∑n

i=1

(
Voi − Vpi

)2 (2)

Table 1. Correlation between Terra MODIS bands and soil pH at sampling sites.

Bands Band1(B1) Band1(B2) Band1(B3) Band1(B4) Band1(B5) Band1(B6) Band1(B7)

Correlation
coefficient 0.449 ** −0.356 ** 0.406 ** 0.241 ** −0.358 ** 0.096 0.389 **

** Significant correlation at the 0.01 level (double tail).

Table 2. Primary curve estimation of the soil pH.

Model Types Model Formulas R2 RMSE F Sig.

Multiple
linearregression model

pH = 9.414 + 35.128B1 + 20.339B2 + 17.290B3
− 63.205B4 − 26.504B5 + 13.248B6 − 4.895B7 0.542 0.473 18.219 0.000

Multiple linear stepwise
regression model pH = 7.815 + 44.391B1 − 43.768B4 0.522 0.542 38.257 0.000

Logarithmic curve model ln(pH) = 10.915 − 1.240ln(B1) 0.320 0.642 33.439 0.000
Quadratic curve model pH = 5.550 + 38.938B1 − 131.954B12 0.337 0.638 17.810 0.000

Cubic curve model pH = 6.507 − 1.839B1 + 385.891B12 − 1962.836B13 0.345 0.639 12.120 0.000

In Equations (1) and (2), R2 is the coefficient of determination, RMSE is the root mean
square error, i is the number of the sample point, n is the total number of sample points,
Voi is the observed value at sample point i, Vpi is the predicted value at sample point i.
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B1∼B7 data from the validation set were calculated using multiple linear regression
model to derive the predicted soil pH, which was then regressed against the observed soil
pH (Figure 2), demonstrating that prediction accuracy was achieved.
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2.3.2. Trend Analysis

In the analysis of the raster data from 2000 to 2021, the least squares method and the
F-test based on MATLAB software can be used to obtain the trend and significance test
for each grid by iterating image by image. A significant trend was observed when the
regression coefficients passed the significance test (F-test, p < 0.05) [34].

2.3.3. Cross-Correlation Analysis

In this work, the spatiotemporal coupling between pH and NPP in the summer of
2000–2021 was represented using the Pearson correlation coefficient, and the time-lag
correlation was applied to quantify the time-lag effect of pH on NPP [35,36]. Correlation
and significance analysis of raster data on the time scale was performed using the MATLAB
software package.

2.3.4. Contribution Index

Some researchers have used the contribution index in their research [37,38], which is
employed in this paper to measure the degree of contribution of each grassland ecosystem
type to pH and NPP. The formula for CI is shown in Equations (3) and (4).

CIpH =
(

pHi − pHAvg
)
× (Si/S) (3)

CINPP =
(

NPPi − NPPAvg
)
× (Si/S) (4)

In Equation (3), CIpH is the contribution index of grassland ecosystems to pH, pHi is
the average pH of the grassland type I, pHAvg is the average pH of the entire study area, Si
is the area of grassland type I, S is the area of the entire study area.

In Equation (4), CINPP is the contribution index of grassland ecosystems to NPP, NPPi
is the average NPP of the grassland type i, NPPAvg is the average NPP of the entire study
area, Si and S as above.
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3. Results
3.1. Spatial–Temporal Scale Changes in pH and NPP
3.1.1. Temporal Scale Changes in pH and NPP

In this work, we calculated and analyzed the temporal variations of pH and NPP at
monthly, seasonal, and interannual scales using pixels as the minimum unit of calculation.
As shown in Figure 3, NPP increases significantly in summer and from June to August (pink
dashed line), while pH decreases more rapidly (yellow dashed line). The NPP showed
periodic changes with significant fluctuations throughout the summer, with the maximum
in 2020 and 2017, and the minimum in 2003 and 2009, respectively. In the different months
of the summer, there were variations in the increase in NPP from June to August, with the
rate in June and August being higher than that in July; the pH decrease in June and August
was significantly higher than that in July, with similar fluctuating trends.
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3.1.2. Spatial Scale Changes in pH and NPP

Figure 4 shows the geographic patterns of mean pH and NPP in summer from
2000–2021. Throughout the study area, annual mean pH (Figure 4a) roughly exhibited
the distribution characteristics of a high value in the northeast and southwest, while the
differences in other regions were on the contrary. The pH trend (Figure 4b) showed an
increasing trend in a few northern parts, but a large portion of the territory showed a
decreasing trend. The annual mean NPP was higher in the northeast (Figure 4c), indicating
that the region has a large carbon sequestration capacity, while the opposite was true
in the southwest. Furthermore, the NPP is increasing across the entire northeast region
(Figure 4d).
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3.2. Spatial–Temporal Coupling between pH and NPP
3.2.1. Correlation of pH and NPP

To measure the response of NPP to changes in soil pH, the correlation coefficient
between them was calculated spatially based on pixels from 2000 to 2021 (Figure 5). During
summer and from June to August, there were negative correlations in most regions, with
some regions showing no correlation. The average correlation coefficient for the whole
study area was −0.407 (p < 0.05) during summer, indicating a moderate negative correlation
(Table 3). Additionally, in terms of correlation by month, the strongest correlation was
found in June with a correlation coefficient of −0.408 (p < 0.05), followed by August with a
correlation coefficient of −0.331 (p < 0.05), and July with the lowest correlation of −0.317
(p < 0.05).

Table 3. Correlation of pH and NPP in summer during 2000–2021.

Period PH NPP Correlation Coefficient

Summer June-August June-August −0.407

Current Months
June June −0.408
July July −0.317

August August −0.331
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3.2.2. Time-Lag Correlation at the Monthly Scale

On the monthly scale, there was a negative time-lag correlation between pH and NPP
(Figure 6). From the point of view of positive time-lag correlation (Figure 6a–c and Table 4),
all of which also showed a negative correlation. The correlation coefficient between pH in
June and NPP in July was −0.462 (p < 0.05), followed by pH in June and NPP in August,
which had a correlation coefficient of −0.242 (p < 0.05). The correlation coefficient between
pH in July and August in July was weakest at −0.118 (p < 0.05). It can also be seen that pH
in June and July had a greater effect on NPP in August, with a stronger effect in July.

The negative correlation coefficients with a time lag (Figure 6d–f and Table 4) show
that there is a negative correlation between the current monthly NPP and the soil pH in the
following month. The correlation coefficients between pH in July and NPP in June or pH in
August and NPP in June were −0.317 and −0.203, respectively, and were weakly negative
correlations, indicating that NPP in June was responsive to pH in July and August, i.e.,
the increase in NPP in June would lower pH in July and August. However, pH in August
was a moderately negative correlation with NPP in July, which is probably because the
study area belongs to the alpine region and reaches the most vigorous vegetation in July
and August.

Table 4. Time-lag correlation of pH and NPP in summer during 2000–2021.

Period PH NPP Correlation Coefficient

Positive time lags
June July −0.462
June August −0.242
July August −0.118

Negative time lags
July June −0.317

August June −0.203
August July −0.479
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Figure 6. Spatial distribution of the time-lag correlation between pH and NPP in summer during
2000–2021: (a) time-lag correlation between pH in June and NPP in July, (b) time-lag correlation
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3.3. Effects of Grassland Ecosystems on pH and NPP
3.3.1. Temporal Variation of pH and NPP in Grassland Ecosystems

Trends in pH and NPP in the four grassland ecosystems have varied over the past
22 years (Figure 7). NPP increased in temperate steppes, montane meadows, and alpine
meadows, while it slightly decreased in swamps (pink dashed line). The NPP of temperate
steppes had the highest growth rate with a noticeable fluctuation regularity, while montane
meadows and alpine meadows were a lower growth rate than temperate steppes. Further-
more, as shown in Figure 7, the trend of pH decreased in four grassland ecosystem types
with swamps, montane meadows, and alpine meadows just about right, while temperate
steppes were declining at a slower rate than the other types (yellow dotted line).
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3.3.2. Correlation of pH and NPP in Grassland Ecosystems

To study the effects of pH on NPP in different grassland ecosystem types, the average
correlation coefficients of different grassland ecosystems were extracted based on the afore-
mentioned research results (Figure 5). According to the results (Figure 8), the correlation
coefficients between pH and NPP for the four grassland ecosystems exhibited negative
correlations at seasonal scales. From the perspective of the significance (p < 0.05), the corre-
lation of each grassland type was significant. In contrast to the moderate correlation for
temperate steppes and montane meadows, followed by the weak correlation between pH
and NPP of alpine meadows, and swamps with an extremely weak correlation in summer.
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3.3.3. Contribution Index of Grassland Ecosystems to pH and NPP

By comparing the contribution indices of each grassland ecosystem type in summer
(Figure 9), it could be seen that the contribution indices of pH and NPP were various in
all grassland ecosystem types. As shown in (Figure 9), the contribution index of montane
meadows and alpine meadows was higher than that of temperate steppes and swamps,
as their proportions were 32.70 and 65.53, respectively. In addition, the obvious result
was that the contribution indices of NPP for temperate steppes and montane meadows
were positive whereas the swamps and alpine meadows were the opposite. In addition,
the contribution indices of the pH for montane meadows and alpine meadows played an
important role, in which mountain meadows was a negative effect on pH while that of
alpine meadows was positive, implying that alpine meadows could lower pH and montane
meadows were on the contrary. In terms of absolute value, the great influence of alpine
meadows had the greatest impact on pH. Since the contribution index of pH for temperate
steppes and swamps was extremely weak, it is not stated here.
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4. Discussion
4.1. Modeling of pH and Its Spatial–Temporal Change

Rising temperatures caused by global warming have degraded the permafrost in the
Yellow River source area, having a profound impact on the vegetation and soil condi-
tions [39–41]. Because soil pH has a significant impact on plant growth [42], soil microbial
changes [43], as well as soil nutrients [44], it has emerged as an important soil variable [23].
More importantly, recent studies have found that soil pH is an important indicator in
grassland ecosystem studies [45]. Given the complexity of the ecological environment
and the numerous challenges that researchers face when conducting field sampling, the
method allowed spatial information to be derived from remote sensing analysis with a
large amount of spatially continuous data [46,47].

In previous studies, salinity was estimated using remote sensing techniques [46,48],
and these approaches were adopted in estimating pH in this study. The multiple linear
regression equation is the superior model presented and it is feasible to estimate soil pH
using it over the B1∼B7 (R2 = 0.542 and RMSE = 0.473) (Table 2). In other words, the model
of soil pH was accurate based on the B1∼B7. The results were promising and showed that
soil pH can be reasonably, and easily determined using the B1∼B7 images obtained from
Terra surface reflectance products (MOD09A1).

The results of the multiple linear regression analysis between B1∼B7 and soil pH
revealed a decreasing trend in pH during the growing season from 2000 to 2014 (Figure 3a).
One possible reason was that the national project of returning grazing land to grassland
had improved the vegetation cover in the study area since 2000 [49]. Additionally, the
apparent decreasing trend in June and August reflected the strongest relationship between
pH and NPP (Figure 3b,d), which was expected to lower the pH, implying that B1∼B7
was a better predictor of pH at the beginning and end of the growing season were better
predictors of pH. The findings were similar to the research findings of [22] who reported
that estimating soil pH at the beginning of the growing season was more effective in spring
wheat fields. Furthermore, as indicated in our spatial visualization research (Figure 4a,b)
the mean pH was high in the northeastern and southwestern parts of the study region
between 2000 and 2021, while it increased the trend in a few northern parts, which may be
related to geographic factors (Figure 1b), so further research was needed.
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4.2. Impact of pH on NPP

With the development of 3S technology, the analysis of the driving forces of NPP in
different regions and scales has become more extensive [50]. Temperature, precipitation [51],
net radiation [52], and human activities [53,54] have all been shown to influence NPP. In
particular, grazing as one of the human activities is a major factor for changes in NPP in
grassland ecosystems [55]. Owing to the fact that the vegetation in the study area belongs
to alpine grassland ecosystems, the temperature is the main limiting factor for vegetation
growth [56,57]. Increasing temperature has alleviated temperature stress on vegetation and
created favorable conditions for vegetation growth, which may have contributed to the
significant increase in NPP over the past 20 years (Figures 3a and 4d).

In addition, the existing literature using both modeling and experiments has revealed
that the effect of soil pH on NPP is quite significant [58], implying that soil properties are
also major influencing factors on NPP. Our study of the correlation between soil pH and
NPP addressed the problem on a regional scale with the help of remote sensing and filled a
gap left by previous studies, which revealed a significant negative correlation between pH
and NPP in summer from 2000 to 2021 (Figures 5 and 6). Other findings included that the
correlation between pH and NPP was more pronounced in June and August than in July
(Figure 5, Table 3), due to the unique climatic characteristics of the study area, including
the influence of high elevation and low temperature. In particular, June is the beginning of
the growing season for grasslands and August is the end, while July belongs to the high
growth season and may influence pH predictions (as described in Section 4.1), which may
explain the result of the lower correlation between pH and NPP in July.

Similar to our results, soil pH had distinct effects on community stability in different
grassland types [59] and the NPP of each grassland type varies substantially [60]. As
illustrated in Figure 7, the decreasing pH in temperate steppes, montane meadows, and
alpine meadows was accompanied by an increase in NPP over time, whereas swamps,
on the contrary, decreased during 2000–2021. This indirectly implied that pH, as a soil
property, was only one factor influencing changes in NPP. An increase in soil tempera-
ture [61], which can reduce soil moisture, increase evapotranspiration, and affect plant
growth in swamps [62], was cited as the main reason for the change in grassland produc-
tivity, whereas temperate steppes, montane grasslands, and alpine grasslands were less
susceptible to water stress. This could explain the simultaneous decline in pH and NPP in
swamps. Moreover, the negative correlation was validated by the results of the correlation
between pH and NPP (Figure 8) and the contribution indices (Figure 9) in various grassland
ecosystems. The contribution index of montane and alpine meadows was higher than that
of temperate steppes and swamps since the area of each grassland type played a leading
role in calculating the contribution index (Figure 9).

4.3. Limitations and Prospects

Although remote sensing analysis has become a standard method for monitoring
vegetation and soils, the results were still ambiguous due to the complicated spatial–
temporal variability of vegetation and soil biochemical processes [63], as well as the effects
of resolution of remote sensing data [46]. This study used MODIS products with a moderate
spatial resolution of 500 m to quantitatively assess the effects of soil pH on NPP at the
time-series scale. The results will provide a scientific basis for the management, restoration,
and sustainable development of grassland ecosystems in the Yellow River source area,
China. However, as valuable as these methods are, they are still limited by the weak spatial
resolution and the limited number of field survey samples.

Our results relate to broader spatial scales, and further studies should employ hyper-
spectral data for soil properties at smaller regional scales. Meanwhile, in future research,
Gaussian process regression, random forest, artificial neural network [64], or kernel ridge
regression [23] may be a better attempt to accurately estimate soil properties; data fusion
methods should also be adopted to overcome these limitations [65], which would be a
better guide for the study of the plant–soil relationship.
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In addition, both NPP and pH vary seasonally [66–69] yet only summer was investi-
gated, and there are various soil properties while just the pH response to NPP is studied in
this paper. As a result, seasonal and monthly variations should be involved in future stud-
ies to explain more deeply the intrinsic mechanisms and drivers of coupled relationships
in grassland ecosystems. Additionally, last but not least, the results of the study are only
representative of our study area and further validation is required to verify that the results
for the wider region are consistent with the current results.

5. Conclusions

The novelty of this study stemmed from the scarcity of previous research on the
effects of soil properties on vegetation using remote sensing. In this work, the gap was
bridged by studying the regional variability and spatial correlation of soil pH and NPP. The
following results were obtained: (1) From 2000 to 2021, the annual mean pH decreased with
increasing NPP in both time and space. (2) Soil pH and NPP showed a moderate negative
correlation during the growing season, and their interaction revealed spatial heterogeneity.
(3) The correlation between pH and NPP was strongest in the temperate steppe, followed by
montane meadows and alpine meadows, with swamps being the weakest in summer. The
correlation of each grassland type was significant (p < 0.05). (4) The contribution indices of
pH and NPP for each grassland ecosystem type were distinct, with the larger contribution
indices of montane meadows and alpine meadows implying a more significant contribution
for the entire study area. In addition, the evident outcome was that whilst the contribution
indices for alpine meadows and swamps were negative, those for temperate steppes and
montane meadows were positive.

The results demonstrated the advantages of remote sensing applications in soil and
vegetation research, allowing rapid analysis of their spatial distribution and changes over
time. In summary, the results of the technique can be expressed well in topsoil studies,
and further research should be conducted to investigate the relationship between soil and
vegetation in deeper soils. Furthermore, we should focus on grassland ecosystem types that
are sensitive to soil properties and restore areas of poor vegetation cover where possible in
future practical work. The cost-effective strategy allows land managers to save time and
effort to restore vegetation health and should be widely used in future research.
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