
https://doi.org/10.1177/11769351221087028

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Cancer Informatics
Volume 21: 1–17
© The Author(s) 2022
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11769351221087028

Introduction
Breast cancer presents a health problem worldwide, for the year 
2020 it has been determined to be the most commonly diag-
nosed cancer worldwide, being the disease that ranks first in 
terms of incidence. It was detected in 1 in 8 patients with 
tumors, with 2.3 million new cases and is considered the fifth 
leading cause of death from cancer in the world with 685  000 
deaths per year, representing 1 in 6 cancer deaths.1

Breast cancer is the leading cause of death from malignant 
neoplasms in Mexican women, constituting between 20% to 
25.7% of all cancer cases detected in women.2 In 2020 an 
increase in new cases was reported, as well as an increase in the 
number of deaths from this type of cancer; figures are related 
to the lifestyle and bad habits acquired by the Mexican 
population.1

The search for new novel adjuvant treatments, accessible to 
a larger part of the population, with mild side effects implies 
the development of studies that allow the evaluation 

of pharmaceutical effects, by understanding the molecular 
mechanisms underlying cancer. For this purpose, different cell 
signaling pathways have been described and analyzed, which 
are key points in the understanding of cancer, since signal 
transduction is involved in the control of the cell cycle, as well 
as proliferation, survival, apoptosis and, therefore, knowing all 
these regulatory systems allows us to propose treatments 
against cancer.3,4

Among the main signaling pathways related to breast can-
cer are the PI3K/Akt/mTOR pathway, the canonical Wnt 
pathway and Notch pathway. Among these pathways, the 
PI3K/Akt/mTOR is the one that is most frequently modified 
in breast cancer (more than 60% of tumors)5,6 mainly by muta-
tion of the PIK3CA gene.7

The PI3K/Akt/mTOR pathway plays a key role in cell cycle 
regulation and is directly related to cell survival, proliferation, 
growth and motility in cancer, as well as cell resistance to anti-
tumor therapies.8 The pathway is activated by binding of a 
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cytosine to the thyrokinin receptor kinase, leading to the acti-
vation of PI3K, which, once activated, converts phosphati-
dylinositol 3,4-bisphosphate to 3,4,5-triphosphate, which 
activates PDK1 kinase leading to Akt activation.9 Once Akt 
is in its active state, phosphorylation of Akt and mTOR com-
plex 1 takes place, causing a series of responses that through 
different pathways lead to cell proliferation and inhibition of 
apoptosis.10,11 On the other hand, PI3K can also be activated by 
cytosine receptor which, once bound to its ligand, activates Janu 
kinases, JAK that function as tyrosine kinases activating other 
pathways that also lead to the activation of PI3K and the activa-
tion of the transcription factor STAT that forms a homodimer, 
which is translocated to the nucleus and binds to genes that 
encode for proteins involved in cell proliferation.12,13

Gillespie’s stochastic simulation algorithm (SSA)14,15 has 
been widely used to simulate cell signaling pathways, since 
these pathways occur in a dynamic system and are chemical 
reactions. Over time different tools have been developed to 
simulate cell signaling having SSA as a basis, such as 
Dizzy,16 Toolbox,17 Copasi,18,19 STEPS,20 ERODE,21 
CoLoMoTo,22 MONALISA that implements SSA in a 
Petri net environment.23 In principle, this algorithm 
assumes that all reactions occur instantaneously in a homo-
geneous medium, although the reactions are affected by differ-
ent factors such as cell size, organelles (cell compartments), the 
distribution of molecules in each of the cell compartments, the 
affinity between reactants, among others, so different research 
groups have modified this SSA, for example introducing the 
state-dependent weighted stochastic simulation algorithm 
(swSSA) and the doubly weighted SSA (dwSSA), the weighted 
SSA (wSSA).24 The Extra Reaction algorithm for Networks in 
Dynamic Environments has been added to the SSA which 

allows exact stochastic simulation of any downward reacting 
network, according to the different choices of dynamic inputs 
that are simulated in advance.25 Other groups consider that the 
computational cost is very high employing SSA, given the 
complexity of the signaling pathways, so they have developed 
algorithms that provide speed in processing, without losing 
detail such as BISSSA (block search stochastic simulation 
algorithm).26 Cell signaling pathways have also been repre-
sented as production rule systems with molecular interactions 
governed by SSA and Markov chain behavior.27,28

Within the cell, in the cell cytoplasm, proteins involved in 
signaling pathways are produced and diffuse within a limited 
space. Some proteins they must interact with are membrane-
anchored,29 so models have been proposed in the third 
dimension52 or in different physiological conditions.15 Other 
models consider specific cellular events, identifying signaling 
pathways that take place during these events, such as cell 
migration.30

The regulatory mechanisms of cancer cells remain a mys-
tery, despite all the research carried out so far. This is because 
they are constantly changing, so predicting their behavior is not 
easy, the alterations and combinations are very broad, even in 
the same type of cancer and come from the same tissue. This 
results in a complex interaction between signaling pathways 
that under normal conditions would not be observed; these 
interactions provide information on the regulation that occurs 
stochastically.

The main signaling pathways that play a relevant role in the 
regulation of cell communication in cancer are 10.31 Table 1 
shows a list of the models proposed in the literature for these 
signaling pathways using Gillespie’s stochastic simulation 
algorithm. The goal of modeling these pathways is to predict 

Table 1.  Relationship of the models of 10 main signaling pathways, using Gillespie’s stochastic simulation algorithm.

Pathway Tool Source

RTK/RAS/JAK/STAT Parallel Select algorithm SSA stochastic expectation-
maximization algorithm
SSA

Bouhaddou et al,32 Ganesan et al,33

Sehl et al,34 Sabbe et al,35 Liu et al36

Nrf2 LNT Calabrese et al37

TGF Differential equations Khatibi et al38

PI3K/AKT/mTOR SSA
Boolean network model/stochastic

Bouhaddou et al,32

Zielinski et al39

Wnt SSA
Differential equations Differential equations Multiscale

Haack et al,40 Kogan et al,41 Vargas et al,42 Agur 
et al43

Myc Dynamic network Gérard et al44

Notch SSA Kay et al45

Hippo Boolean model Differential equations Gou et al46

p53 Boolean model ruled-based model Gupta et al,47 Gong et al48

Cell cycle SSA Markov chain Elizalde et al49

Abbreviations: SSA (stochastic simulation algorithm) LNT (linear no-threshold).
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their behavior in order to prevent the continued development 
of cancer cells and to provide targeted and timely therapy by 
identifying interacting elements.

In recent years, modeling and simulation of cell signaling 
systems have had to satisfy a range of new requirements that 
characterize this type of biological system, such as multi-com-
partmentalization, localization, topology and synchronization. 
This has led to the development of new models and computa-
tional tools. Examples of simulators supporting some of these 
features are Bio-PEPA,50 MCell,51 COPASI,18 Virtual Cell,52 
CompuCell 3D,53 and Big-Data Cellulat,.54-57

Based on Gillespie’s algorithm,14 as an engine for the selec-
tion and execution of chemical reactions, and on the spaces 
of tuples,58,59 for the representation of chemical reactions and 
reactants, the Big-Data Cellulat computational simulation 
platform (http://bioinformatics.cua.uam.mx/site/) constitutes 
a bioinformatics virtual laboratory for the development of in 
silico experimentation in cell signaling systems, characterized 
by the robustness, accuracy and flexibility provided by both 
techniques. The in silico experimentation environment sup-
ported by the Big-Data Cellulat platform includes tools for the 
simulation, exploration, analysis, and prediction of this type of 
biological system; in addition to the production, pre-process-
ing, and recording of large volumes of data generated by the 
simulation, for subsequent analysis based on data mining and 
deep learning techniques.

In this work, we discuss and illustrate the important role 
played by computational simulation and the corresponding in 
silico experimentation in breast cancer research. In particular, 
we refer to the great support provided by the Big Data-Cellulat 
platform in (1) the simulation of the PI3K/Akt/mTOR signal-
ing pathway, characterized for its anti-apoptotic role in breast 
cancer, (2) the prediction of the antiproliferative effect of 
Opuntia joconostle (xoconostle) in breast cancer cell lines, based 
on the simulation of PI3K/Akt/mTOR, and (3) the in vitro 
evaluation of the mean lethal dose predicted by in silico experi-
ments. In this study, a hypothesis based on the phytochemical 
composition of Opuntia joconostle and the possible targets of 
the PI3K/Akt/mTOR signaling pathway was proposed for in 
silico prediction and subsequent in vitro evaluation. The mean 
lethal dose predicted by the in silico model allowed us to verify 
the lethal concentration 50 (LC50) in vitro, as well as to dem-
onstrate the veracity of the hypothesis.

Material and Methods
Big-Data Cellulat: The computational simulation 
tool

The Big-Data Cellulat computational tool is based on the con-
cept of tuple space for the representation and interaction of 
chemical reactions and reactants, and on a version of the 
Gillespie algorithm for the selection and execution of chemical 
reactions (http://bioinformatics.cua.uam.mx/site/). The joint 
use of these 2 approaches allows Big-Data Cellulat to exhibit a 

number of key features required in the simulation of cell signal-
ing systems and subsequent in silico experimentation. While, 
on the one hand, the tuple space-based representation provides 
the simulation with features such as multi-compartmentaliza-
tion, localization, and topology, on the other hand, the Gillespie 
algorithm-based selection and execution of chemical reactions 
(as formulated later in expressions (1) to (4)) provides the sim-
ulation with synchronization, timing, and selection based on 
both the speed/affinity of the chemical reaction and the avail-
ability of reactants.

Representation of the chemical reactions and reactants.  As previ-
ously mentioned, the representation and interaction of chemi-
cal reactions and reactants in Big-Data Cellulat are based on 
the model of tuple spaces.58-60 In a space of tuples, the interac-
tion and synchronization between agents—functions, proce-
dures, objects, programs, etc.—takes place through reading, 
modifying, writing and owning/destructing tuples in the shared 
tuple space. A characteristic of tuple spaces, as shared memory, 
is given by the decoupling that characterizes the communica-
tion and interaction between agents. That is, the agents com-
municate through the shared tuple space and not directly with 
each other. A tuple is an ordered collection of pieces of infor-
mation or knowledge, which represents some relevant aspect 
for the coordination between agents. Based on these considera-
tions, the structure of the model of cell signaling based on tuple 
spaces is illustrated in Figure 1; in a complementary way, 
Table 2 describes the translation of the structures and elements 
involved in cell signaling to tuple space abstractions.

Selection and execution of the chemical reactions.  As previously 
mentioned, the selection and execution of chemical reactions is 
coordinated by an action selection mechanism based on 
Gillespie’s algorithm,14 where a chemical system is viewed as a 
distinct well-mixed solution. Every molecule is explicitly repre-
sented, and every reaction in which they can participate is 
explicitly simulated using Gillespie’s stochastic simulation tech-
nique (SSA). The simulation then chooses the next reaction to 
occur based on a random number and its propensity function, 
which is determined based on the reaction rate and the number 
of reactants, once the system has been started, that is, molecules, 
reactions, and reaction rates have been defined. The time inter-
val for updating the simulation time is likewise calculated step 
by step using a random integer and the total of all reactions’ 
propensity functions. The simulation is made up of iterations of 
these phases. The main steps taken by the action selection 
mechanism for signal transduction are listed below in detail.

1.	 Determine the rate for each suitable chemical reaction 
using the expression (1):

	 Rate RateConstant
Mol

reqMolj
i

k
i

i
=













=
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http://bioinformatics.cua.uam.mx/site/
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where:

•• RateConstant is the rate constant of the reaction
•• Moli is the number of available molecules of reactant i, 

1 ⩽ i ⩽ k
•• reqMoli is the number of required molecules of reactant i, 

1 ⩽ i ⩽ k.

The rate at which the reaction will be chosen is equal to the 
product of the binomial coefficients of the available moles of 
each reactant involved in the reaction and the number of moles 
required by the reaction (RateConstant). If any of the reactants 

required for a chemical reaction are not present, the rate of the 
reaction will be 0.

2.	� Add the rates of all qualifying reactions together; the 
result is RTot.

3.	 Sort all qualifying reactions in descending order by rate.
4.	 Choice a number ψ between 0 and 1 at random.
5.	 The i-th reaction is selected from a sorted list of eligible 

reactions if:

	 ψ ≤ =∑ i

n
iRate

RTot
1 	 (2)

Figure 1.  Use of tuple space for the representation of cellular compartments, reactants and chemical reactions involved in cell signaling. Note that the 

selection and execution of chemical reactions is coordinated by an action selection mechanism based on Gillespie’s algorithm.

Table 2.  Representation of the structures and components involved in cell signaling as abstractions of the tuple space model.

Structures and components involved in cell signaling Tuple space model abstractions

Intracellular compartments (ie, extracellular space, cell membrane, cytosol, nucleus, 
mitochondria, etc.), cells and tissues.

Tuple space

Interactions of the activation/inhibition type or compound formation between signaling 
elements, such as ligand-receptor, receptor- protein, protein-protein, protein-transcription 
factor, etc.

Sets of chemical reactions as formulated 
below in expression (4) to (10)

Signaling elements and their molar concentration values (ie, ligands, second messengers, 
proteins, substrates, etc.)

Tuples
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where:

•• ψ is a random number, 0 ⩽ ψ ⩽ 1
•• RTot is the sum of the rates (Ratei) of all reactions

It’s worth noting that the summation value for the last reaction 
in the sorted list is 1, implying that if there are qualifying reac-
tions, one of them will always be executed.

6.	 Choice a number between 0 and 1 at random. Stop the 
reactions for the amount of time specified by expression (3)

	 Stop
ln
RTottime =
− ( )τ 	 (3)

where: τ is a random number, 0 ⩽ τ ⩽ 1.

The functionality of Big-Data Cellulat.  Big-Data Cellulat, as a 
virtual bioinformatics laboratory, provides the user (biologist, 
biochemist, researcher in the biomedical area, life sciences, etc.) 
with the necessary support for:

•• Simulation and comprehensive visualization of the com-
plicated structure and dynamics of cell signaling path-
ways and networks.

•• Visualization (through graphs, concentration/time 
curves and tables) of the state of activity of the global 
signaling network, of the interactions that occur between 
the different signaling elements and the variations of 
their states (concentration, activity, etc.) over time.

•• Prediction of the cellular level effects (eg, proliferation, 
cell death, apoptosis, etc.) of changes and perturbations 
in the system in real time, which include variation in the 
molar concentration of signaling elements, mutations to 
proteins, inclusion of other signaling elements in the 
global network, total elimination of signaling elements 
(virtual knock-out).

•• Design of in silico experiments involving the inclusion 
and interaction of new chemical reactions and reactants.

•• The production, pre-processing and recording of large 
volumes of data (big data/data farming) for subsequent 
use in data mining, deep learning, etc.

Modeling and simulation methodology

The approach followed for the modeling and simulation of the 
PI3K/Akt/mTOR signaling pathway and subsequent in silico 
experimentation, based on the Big-Data Cellulat platform, 
comprises the phases illustrated in Figure 2. The activities 
involved in each of these phases are described below.

Modeling phase

1) � Creation of the conceptual model. Modeling of the 
network that represents the cell signaling system, 
identifying all the signaling elements (nodes), as well 
as the interactions (arcs) and types of interactions 
(activation, inhibition, complex formation, etc.). The 
result of this first modeling step is a graph composed 
of nodes (signaling elements) and arcs (interactions 
between signaling elements) that represents the 
structure and behavior of the signaling network under 
study.

2) � Definition of cellular structures (commonly, cellular 
compartments), chemical reactions, kinetic parameters, 
reactants, and initial micromolar concentrations, that 
describe and complement the conceptual model initi-
ated in step 1).

Cellular compartments are the intracellular structures where 
reactions take place. Examples of these are cell membrane, 
juxtamembrane region, cytosol, nucleus, and mitochondria.

For the formulation of the chemical reactions consider 
expressions (4) to (10).

Figure 2.  Phases of the modeling and simulation methodological approach.
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Collaborative activation a A b B c C C: *  +   +   →  c   (4)

	 Alternative activation a A b B B: *  +   →  b 	 (5)

	 Alternative inhibition a A b B: *  +   →  b B 	 (6)

Complex formation a A b B BC ABC: * *  +   +   →  c m   (7)

	 Decompositionreaction m AB A b B: [ ]  →   +a 	 (8)

	
Standard equation for enzimatic
reactions E S: + ↔ → +ES E P 	 (9)

	
Interaction fromand toother cellular
compartments B b: ,→    b  →B 	 (10)

where:

•• [x] is the required number of molecules of reactant X.
•• X is the reactant identification.
•• The superscript * denotes activation of the signaling 

element.

Each of the reactions that takes place in the PI3K/Akt/
mTOR signaling pathway was formulated for modeling and 
simulation taking into account the following parameters:

•• KM: the substrate concentration for which the reaction 
speed is half that of the maximum speed. This parameter 
also gives us an idea of the affinity that the enzyme has 
for its substrate.

•• V0: the initial speed which depends on the KM.
•• VMAX: indicates the speed that we would obtain when all 

the enzyme is bound to the substrates.

The Michaelis-Menten equation given by expression (11) 
was used here to calculate V0, which is considered as the 
RateConstant parameter in expression (1).

	 V
V S
K S
MAX

M
0 =

 
+  

	 (11)

The kinetic parameters of the different reactions were 
selected according to the values reported and cited in Tables 3 
and 4. These values were used in the simulation phase, and they 
can be adjusted during the validation and calibration phase so 
that the simulation exhibits a behavior similar to the physio-
logical one.

3) � Validation/verification of the conceptual model. Review 
of the consistency of the model created.

Simulation creation phase (based on the Big-Data Cellulat 
platform)

4) � Creation of the computational model (simulation). 
Registration of the cellular structures (cellular com-
partments) involved in the cell signaling system. This 

Table 3.  Definition of reactions, reactants, and kinetic parameters for the PI3K/Akt/mTOR signaling pathway.

Reaction Reactants Initial conc. 
(µmol)

Km (µmo) Vmax (µmol/µl/s) V0

Cyt + RK → CytRK Cyt
RK

0.1
0.25

34.2 7.6 2.22 × 10−5.61

CytRK + JAK → CytRKJAK* JAK
Cyt
RK

0.012
0.0001
0.25

34.2 7.6 2.22 × 10−5.61

CytRKJAK* + STAT → CytRKJAK* + 
STAT*

STAT
Cyt
RK

0.4
0.0001
0.25

74.1 49 6.61 × 10−5.62

STAT* → PROLIFERATION STAT* 0.4 74.1 49 0.263087.62

RAS* + PI3K → PI3K* PI3K
RAS

0.9
0.8

53.4 49 0.091588.63

PI3K* + PIP3 + PDK1 → PDK1* PDK1
PIP3
PI3K

1
0.27
0.1

36 22.3 0.602702.64

Akt* + p21* → p21 p21
Akt

0.27
0.2

7.8 8.4 0.281040.3

p21 → ACTIVATION OF CELL CYCLE p21 0.27 7.8 8.4 0.281040.65

Note that the reactions that model the effect of xoconostle extract are not yet considered.
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step refers to the creation of the simulation structures 
that will contain the reactions and reactants. That is, 
the cellular compartments such as membrane, cytosol, 
nucleus, etc. In computational simulation, each cell 
compartment is conceived as a space of tuples.

5) � For each cell structure, record the chemical reactions 
that take place in it, together with their kinetic parame-
ters. The reactions modeled in step 2), using expressions 
(4) to (10), are now registered as elements of the com-
putational simulation using the same nomenclature in 
which they were formulated, as shown in the following 
examples:

CytRK  JAK  CytRKJAK  V  2 22x1
PI3K   PIP3  PDK1 

5+ → =
+ + →

−* .
*

0 0
  PDK1  V  6 27 2* .0 0 0 0=

6) � For each cell structure, record the reactants belonging 
to it, together with their initial molar concentration 
value. All the reactants involved in the reactions 
modeled in step 2) must be recorded together with 
their micromolar concentration as elements of the 
computational simulation, as shown in the following 
examples:

JAK Initial conc  mol   12
PI3K Initial conc  mol   

. .
.
µ

µ
( ) =

( ) =

0 0

00.9

Simulation execution phase (based on the Big-Data Cellulat 
platform)

7) � Triggering the simulation run. Running the simulation 
means the iteration of steps 1 to 6 previously described 
in section 2.1.2.

8) � Observation of the behavior of the simulated biological 
system, using the available graphical components (con-
centration/time curves, activity maps, dynamic table of 
concentration values over time, etc.).

Calibration and validation phase of the simulation (based on the 
Big-Data Cellulat platform)

9) � Calibration. Adjust the parameters of the model of the 
simulated biological system, from the execution of a 
series of simulated scenarios, until an acceptable adjust-
ment is achieved between the final cellular states pro-
duced by the simulation and those observed in the in 
vitro experiments and/or reported in the specialized 
literature.

10) � Validation. Perform the analysis of differences between 
simulated and observed values, using statistical indices 
such as Mean Bias Error (MBE), Mean Absolute 
Error (MAE), Mean Square Error (MSE), and Root 
Mean Square Error (RMSE). See expressions (12) to 
(15) below.

Table 4.  Examples of reactions and reactants defined during the formulation of the PI3K/Akt/mTOR signaling pathway model, including the 
xoconostle extract hypothesis.

Reaction Reactants Initial conc. 
(µmol)

Km

(µmol)
Vmax

(µmol/µl/s)
V0

XOCOExt + Cyt + RK → 
XOCOExtCytRK

XOCOExt
Cyt
RK

0.028
0.1
0.25

34.2 7.6 2.22 × 10−5

XOCOExtCytRK + JAK → 
XOCOExtCytRKJAK*

XOCOExt
Cyt
RK
JAK

0.028
0.0001
0.25
0.11

34.2 7.6 2.22 × 10−5

XOCOExtCytRKJAK* + STAT* 
→ STAT

XOCOExt
Cyt
RK
JAK
STAT

0.028
0.0001
0.25
0.11
0.4

34.2
74.1

7.6
49

2.22 × 10−5

0.263087248

STAT → INHIBITION 
PROLIFERATION

STAT 0.4 74.1 49 0.263087248

XOCOExtCytRKJAK* + SHP1* 
→ XOCOExtCytRK + JAK

XOCOExt
Cyt
RK
JAK
SHP1

0.028
0.0001
0.25
0.11
0.045

34.2 7.6 2.22 × 10−5

XOCOExt + GF + RTK → 
XOCOExtGFRTK

XOCOExt
GF
RTK

0.028
0.0001
0.25

34.2 7.6 2.22 × 10−5
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In silico experimentation phase (involves modeling and subsequent 
simulation in the Big-Data Cellulat platform)

11) � Design the in silico experiments (hypotheses) that 
need to be corroborated on the basis of the executed 
simulation, describing, as the case may be, the new 
reactions and reactants to incorporate, concentration 
values and kinetic parameters to modify, key elements 
to observe, etc.

12) � Record in the current simulation, as appropriate, the 
new reactions, reactants, concentration values and 
kinetic parameters, which model the in silico 
experiment.

13) � Run the resulting new simulation and, if necessary, 
calibrate it.

14) � Analysis and interpretation of the results of the in 
silico experiment.

Validation methodology

The validation of the simulation model was based on the anal-
ysis of differences between simulated values (YEstimated) and 
measured values (YMeasured), using statistical indices such as 
the Mean Bias Error (MBE), the Mean Absolute Error 
(MAE), the Mean Square Error (MSE), and the Root Mean 
Square Error (RMSE), given by expressions (12) to (15), 
respectively.

Mean Bias Error (MBE) is mainly used to calculate the 
average error in the simulation model, and it is given by 
expression (12).

	 MBE
N

Y Y
i

N

i
Estimated

i
Measured= −( )

=
∑1
1

	 (12)

Mean Absolute Error (MAE) is a measure of the difference 
between the measured values and the estimated values, and is 
given by expression (13).

	 MAE
N

Y Y
i

N

i
Measured

i
Estimated= −

=
∑1
1

	 (13)

Mean Squared Error (MSE) measures the average squared dif-
ference between the measured values and the estimated values, 
and it is given by expression (14).

	 MSE
N

Y Y
i

N

i
Measured

i
Estimated= −( )

=
∑1
1

2
	 (14)

Root Mean Square Error (RMSE) is the square root of the 
MSE, and is given by expression (15).

	 RMSE
N

Y Y
i

N

i
Measured

i
Estimated= −( )

=
∑1
1

2
	 (15)

where in equations (12)-(15):

•• Yi
Measured , 1 ⩽ i ⩽ N, denotes the measured values.

•• Yi
Estimated , 1 ⩽ i ⩽ N, denotes the estimated values.

In silico prediction

The in silico stage consisted of 2 main activities:

1. � The modeling, simulation, verification and validation of 
the PI3K/AKT/mTOR signaling pathway in breast 
cancer cells was performed following the methodology 
described above. At this step, the cellular structures 
where the reactions take place, the reagents and the final 
cellular states involved in the signaling pathway were 
identified and characterized, which were subsequently 
verified and validated with parameters already known in 
the cancer cell.

2. � The hypothesis approach was carried out to predict 
what happens when the extract is added to the cancer-
ous cells, observing its behavior and establishing the 
probable action target points. The established hypothe-
sis was the following: “the administration of xoconostle 
extract modulates the union of cytosines to its receptor, 
inhibiting the activation of transcription factors, STAT 
in particular, and giving as a result an inhibition in angi-
ogenesis and cellular proliferation.”

In vitro evaluation

Preparation and standardization of the extract.  The crude aque-
ous extract was prepared from epicarp by maceration in a 
laminar flow hood. Once the epicarp was dried and powdered, 
1.5 g was dissolved in 15 ml of distilled water. The mixture of 
powder and solvent was magnetically stirred at 45 ºC for 
10 minutes. Subsequently, the solution was removed from the 
heat and placed in a sterile tube appropriate to the volume of 
the mixture, which was vortexed for 10 minutes and then cen-
trifuged at 4500 rpm in 2 10-minute cycles to recover the 
supernatant. The final product obtained was sterilized by fil-
tration and stored in a sterile amber bottle, keeping it refriger-
ated for immediate use.

XTT cell proliferation assay.  Cell proliferation was determined 
using the Roche XTT kit (Roche PN 11465015001) by seed-
ing 5 × 104 cells in 96-well plates, adding increasing concen-
trations of xoconostle extract and determining the absorbance 
at 550 nm, using as a positive control doxorubicin hydrochlo-
ride, concentration 0.15 µg/µl for each cell type. The XTT 
method is a colorimetric assay to determine cell viability by 
quantifying the formazan generated by live cells from XTT 
(sodium 3′- [1- (phenylaminocarbonyl) -3,4-tetrazolium] 
-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate). The 
amount of formazan is directly proportional to the number of 
metabolically active cells in the culture.
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1. � Cell proliferation. Cells of different cell lines were 
cultured in T-75 boxes with appropriate culture 
medium supplemented with 10% fetal bovine serum 
and 1% antifungal antibiotic, MCF-7 (MEM, Sigma 
Aldrich) and MDA-MB-231 (DMEM, Sigma 
Aldrich), incubated at 37 °C in a humid atmosphere 
with 5% CO2.

2. � Cell counting. When the cells reached 85% confluence, 
they were trypsinized with 1% Trypsin Solution to 
detach them from the box. They were observed under 
the microscope to ensure complete separation of the 
cells. To inhibit the action of trypsin, 8 ml of the corre-
sponding culture medium was added and the cells were 
gently resuspended. The cell suspension was poured 
into a sterile 15 ml tube and centrifuged at 1500 rpm for 
10 minutes. Once the sediment with the cells was 
obtained, the supernatant was removed and the cells 
were resuspended in 500 µl of supplemented medium. 
In a sterile 1.5 ml microcentrifuge tube, 45 µl of 1× 
PBS, 45 µl of 0.4% trypan blue solution and 10 µl of the 
cell suspension were added. We placed 10 µl of the 
obtained suspension for count in a Neubauer chamber. 
Once the result is obtained, the number of cells per ml 
of suspension is determined.

3. � Proliferation assay. In a 96-well plate, 5000 cells per 
well were filtered and supplemented culture medium 
was added to a final volume of 200 µl per well and incu-
bated for 24 hours. After incubation, cell characteristics 
were observed and the culture medium was removed, 
increasing volumes of xoconostle extract were added, in 
all cases leading to a final volume of 200 µl with sup-
plemented medium. Incubation was carried out for 
24 hours. After incubation time, 50 µl of XTT and 
100 µl of supplemented medium were added, the cul-
ture was incubated for 4 hours and read on a microplate 
reader at 550 nm.

Flow cytometry.  The analysis of the cell cycle phases was per-
formed using the aqueous extract on MDA-MB- 231 and 
MCF-7 cell lines and taking as a control the untreated lines. 
The measurement was carried out using a FACScantoII flow 
cytometer, at a reading of 1000 events per second, using pro-
pidium iodide, excited at 493 and at an emission of 605 nm 
with a forward scatter detector FSC of 606 and a side scatter 
detector SSC of 493.

UV-Vis spectrophotometry.  The spectrophotometric characteri-
zation of the aqueous extract of Opuntia joconostle was carried 
out using a NANODROP 1000. The absorbance of the extract 
is the result of the incident radiation partially absorbed by each 
of its components. This fact causes a transition between the 
energy levels of the substance, which depends on the amount of 
compound within the extract.

Results and discussion
The modeling of the PI3K/AKT/MTOR

Figure 3 shows the results of the initial phase of modeling, veri-
fication and validation of the PI3K/Akt/mTOR signaling 
pathway and the final cellular states involved. Subsequently, a 
second model of this signaling pathway was performed, includ-
ing the reactions involving the xoconostle extract in the final 
cellular states. Tables 3 and 4 illustrate a small fragment of the 
reactions, reagents and kinetic parameters of the PI3K/Akt/
mTOR signaling pathway and the reactions involving xocon-
ostle extract, respectively, since the overall model involves more 
than 60 reactions and 70 reagents.

The simulation of the PI3K/AKT/mTOR

The in silico experimentation consisted in running the PI3K/
Akt/mTOR simulation in the 2 scenarios previously consid-
ered in the model formulation: (a) the known PI3K/Akt/
mTOR signaling pathway in cancer cells and (b) the same 
signaling pathway extended with the reactions and reagents 
that model the hypothesized role of xoconostle extract in 
inhibiting cell proliferation. As a part of the aforementioned 
methodology, the simulation creation phase is illustrated in 
Figures 4 and 5, where the translation of the previously formu-
lated PI3K/Akt/mTOR model into simulation elements in the 
Cellulat bioinformatics platform can be seen. Figure 4 shows 
the creation of the reactions while Figure 5 illustrates the 
establishment of the reagents.

Through this first set of in silico experiments, in which the 
reactions that model the effect of the xoconostle extract on the 
final cellular states were not considered, it was possible to cor-
roborate the following hypotheses about the expected behavior 
of this pathway in cancer cells (see Figure 6):

1. � The binding of extracellular signaling molecules such as 
cytokines to their receptor results in the activation of 
JAK kinase, subsequently catalyzing series of tyrosine 
phosphorylation reactions that activate the transcrip-
tion factor STAT for subsequent dimerization, whose 
activation is related to proliferation and angiogenesis.

2. � The activation of PI3K and Akt leads to the sequen-
tial activation of the effector proteins mTOR, C-Raf, 
XIAP and MDMD which, after series of phospho-
rylations, lead to the inactivation of cyclin D, cyclin 
inhibitors such as p21 and p27, as well as transcrip-
tion factors. The result is proliferation, angiogenesis, 
cell growth, cell cycle activation, and inhibition of 
apoptosis.

This first set of experiments confirmed that the binding of 
extracellular signaling molecules, such as cytosines, to the cyto-
sine receptor results in the activation of JAK kinases, which are 
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bound to the receptor, to subsequently catalyze a series of 
tyrosine phosphorylation reactions that activate the transcrip-
tion factor STAT. STAT activation led to phosphorylation of 

the tyrosine residue and subsequent dimerization with another 
active STAT to form a homodimer, which is essential to facili-
tate passage from the cytoplasm to the nucleus and thus to 

Figure 3.  Model of the PI3k/Akt/mTOR signaling pathway. It shows the result of the modeling phase with the interactions and inhibitions of the 

components activated from cytosines, leading to proliferation and inhibition of apoptosis in a breast cancer cell.

Figure 4.  Creation of the simulation of the PI3K/Akt/mTOR signaling pathway in the Big-Data Cellulat platform. Recording of chemical reactions.
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activate the gene transcription, resulting in proliferation and 
angiogenesis.

On the other hand, PI3K and Akt activation led to sequen-
tial activation of key effector proteins and cell proliferation. As 
a consequence of the activation of these effector proteins, the 
following cellular processes were triggered: 1) activation of 
XIAP and inactivation of Bcl-2 and Bcl-XL1 proteins, led to 
inhibition of apoptosis, 2) inhibition of cyclin D produced by 
Akt and inhibition of GSK-3 led to cell proliferation, 3) inhi-
bition of p21 and p27 by Akt leading to cell cycle activation, 4) 
inhibition of FKHR/FOXO by Akt led to inhibition of apop-
tosis, and 5) activation of mTOR Raptor inhibiting 4E-BP1 
and the latter in turn inhibiting e1f4E promoted cell growth. 
Simulation for the PI3K/Akt/mTOR pathway in the cancer 
cell corroborates that cytokine binding to the cytosine receptor 
triggers increased cell proliferation, angiogenesis and inhibi-
tion of apoptosis by different cascades involving STAT, Akt 
and BAX/Bcl-2 family members.66-68

Simulation validation

As mentioned earlier, the validation/verification of the PI3K/
Akt/mTOR simulation was based on the analysis of differ-
ences between simulated values and measured values, using the 
statistical indices mean bias error (MBE), mean absolute error 
(MAE), mean squared error (MSE), and root mean square 
error (RMSE), previously introduced and given by expressions 
(4) to (7), respectively. The estimated and observed values refer 
to 8 key signaling elements located at the end of the different 
top-down signaling cascades that make up the PI3K/Akt/
mTOR signaling pathway, whose activation/inhibition is 

decisive in the triggering of some of the cellular processes that 
characterize this type of cancer cells (eg, proliferation, cell cycle 
activation and apoptosis inhibition). As can be seen in Figure 3, 
the target signaling elements are STAT, e1F4E, Cyclin D, p21, 
p27, FKHR/FOXO, XIAP, and Bcl-2.

Once the first simulation run was completed, the 4 types of 
errors were calculated. Observing that not all the expected final 
cellular states (see Figure 3) were reached, both the concentra-
tion values of signaling elements and the kinetic parameters of 
chemical reactions were modified, taking into account heuris-
tics and the knowledge of the domain experts. Subsequently, 
the simulation was run again and the 4 types of errors were 
calculated again, which decreased significantly in relation to 
the first set of errors. However, the simulation was still not able 
to produce all the expected final cell states, so the process of 
guided modification of reactant concentration values and reac-
tion kinetic parameters continued.

Finally, this simulation calibration process was stopped 
when the following 2 conditions were reached: 1) a non-signif-
icant variation was recorded between the set of errors calcu-
lated for one run and for the subsequent simulation run, and 2) 
the simulation was able to reproduce all the expected cell states. 
The initial, partial and final errors obtained for the calibrated 
simulation model are listed in Table 5.

Prediction of the antiproliferative effect of 
xoconostle extract on the PI3K/Akt/mTOR 
signaling pathway

The second stage of the in silico experiment was aimed to 
predict the antiproliferative effect of xoconostle extract by 

Figure 5.  Creation of the simulation of the PI3K/Akt/mTOR signaling pathway in the Big-Data Cellulat platform. Recording and visualization of the 

reactants. signaling pathway simulation over time.
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modulating the PI3K/Akt/mTOR signaling pathway. Taking 
xoconostle extract concentrations as a starting point, increasing 
concentrations in multiples of 10 were tested. The results 
obtained in the in silico simulation before and after the applica-
tion of Opuntia joconostle extract provided an overview of all the 
interactions between the different elements involved in the 
PI3K/Akt/mTOR signaling pathways, as well as a proposal of 
the likely therapeutic targets at a given LC50 for the extract, to 
be applied in the in vitro experimentation.

At this stage, where the simulation of the action of the 
extract on the cancer cell was carried out, the hypothesis previ-
ously stated was proved, in which it is established that the 
action of the xoconostle extract in the inhibition of cell pro-
liferation is due to the binding of the components of the 
extract to the cytosine receptor, causing an antagonist effect, 

preventing the union of cytosines to it; the mechanism pre-
vents the activation of the transcription factor STAT and, con-
sequently, it a decrease of the proliferation and angiogenesis 
process is observed, promoting cell apoptosis.

In the hypothesis explored (Figure 7), it was corroborated 
that once the xoconostle extract is added, it binds to the cyto-
sine receptor and causes the phosphorylation of JAK, causing 
its activation in the first instance, but inhibiting the subsequent 
phosphorylation cascades. In this case specifically, we simulate 
the option of inhibiting STAT homodimerization and thus 
preventing its passage to the nucleus, resulting in an antiprolif-
erative effect. This confirms, that the inactivation of STAT 
within this signaling pathway is a therapeutic option, being an 
ideal target point, since cancer cells are highly dependent on 
STAT activity.62,69

Figure 6.  Simulation of the PI3K/Akt/mTOR signaling pathway over time: (a) simulation of the PI3K/Akt/mTOR pathway showing the different participants 

in each of the reactions that a cell undergoes to develop a cancerous process and (b) simulation in which the main actions necessary for the cell to start 

its cancerous process are observed, for example: the increase of apoptosis inhibition (in yellow) and the beginning of the presence of proliferation (red) 

and angiogenesis (pink).
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From the in silico prediction to the in vitro 
evaluation
After the in silico prediction phase, complementary in vitro 
experiments were carried out to corroborate the antiprolifera-
tive action of the O. joconostle extract, using the concentrations 

of the extract proposed by the in silico experiments. The results 
obtained corroborated that the application of the aqueous 
extract at 24 hours on breast cancer cells led to an antiprolifera-
tive effect on these cells, at lethal concentrations of 0.028 µg/µl 
for MCF-7 cells and 0.021 µg/µl for MDA-MB-231 cells 

Table 5.  Initial, partial, and final errors obtained during the validation process of the PI3K/Akt/mTOR simulation.

Target signaling 
element

Expected concentration 
value (mµ)

Concentration value reached (mµ)

First run Kth run Final run

STAT* 0.4 0.0 0.1 0.2

e1F4E 0.078 0.0 0.033 0.076

Cyclin D 0.04 0.01 0.025 0.04

p21 0.27 0.1 0.17 0.24

p27 0.27 0.1 0.16 0.24

FKHR/FOXO 0.4 0.0 0.21 0.32

XIAP* 0.6 0.1 0.2 0.4

Bcl-2* 0.2 0.1 0.1 0.2

Statistical indices

MBE – −0.231 −0.1575 −0.06775

MAE – 0.231 0.1575 0.06775

MSE – 0.645684 0.335225 0.0110255

RMSE – 0.803544 0.578998 0.1050023

Figure 7.  Behavior of the simulation of the PI3K/Akt/MTOR signaling pathway, considering the reactions that model the effect of the O. joconostle extract. 

At the in silico level, the hypothesis that the binding of the compounds to the cytokine receptor prevents STAT activation (blue curve) is corroborated. As a 

result, a decrease in cell proliferation (red curve) and an increase in the inhibition of angiogenesis (green curve) can be observed.
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(Figure 8), making it clear that the antiproliferative activity of 
the extract depends on the dose used, similar to observations 
with other species of the genus Opuntia in different cell lines.70

Once the LC50 were detected, a flow cytometry was per-
formed to know in which stage of the cycle the extract pro-
duced the arrest in the cell cycle progression. We obtained that 
the extract induces the arrest of cells in the G2/M phase, thus 
inhibiting cell proliferation and inducing apoptosis (see 
Figure 9). Moreover, the extract showed a similar action to that 
observed in the same breast cancer lines treated with the main 
flavonoids present in plant species, which arrest the cell cycle in 
the G2/M phase through mechanisms of action involving the 
participation of the PI3K/Akt/mTOR pathway.71,72

The UV-Vis spectrophotometric analysis of the aqueous 
extract of Opunta joconostle, allowed us to identify in a general 

way the functional groups present in the extract, thus visualiz-
ing the presence of phenolic compounds and flavonoids, groups 
located within the absorbance range of 220 to 375 nm.73,74

The absorbance obtained in the UV-vis spectrum coincided 
with that reported by Abou-Elella and Mohamed-Ali77, in 
2014, where they relate the number of phenolic compounds of 
species of the Opuntia genus, with an antitumor effect on can-
cer cells. Phenolic compounds, or their mixture, synergistically 
confer antiproliferative activity on breast cancer cells. To con-
tinue this work, the extract will be analyzed by HPLC and 
NMR to identify the compounds present in the extract and 
those responsible for the antiproliferative activity.

Conclusions
The multidisciplinary work in the research of new drugs against 
cancer together with the use of computational simulation and 
in silico prediction models, such as the scenario provided by the 
Big- Data Cellulat bioinformatics platform, allows to reduce 
costs and time in the laboratory experimentation phases in 
vitro and in vivo, to determine the effect of new treatments 
against breast cancer.75

Through the use of the Big Data Cellulat platform, the 
researcher has a more detailed understanding of each of the 
reactions involved in the PI3K/Akt/mTOR pathway in a can-
cer cell and can put forward various hypotheses that propose 
the action of a substance as a treatment on it. For the PI3K/
Akt/mTOR signaling pathway, cell proliferation, angiogenesis 
and inhibition of apoptosis are given mainly by the activation 
of JAK, STAT by the binding of extracellular signaling mole-
cules such as cytokines to their receptor and also by the activa-
tion of PI3K and Akt leading to the activation of effector 
proteins such as mTOR, C-Raf, XIAP, and MDMD, which 
inactivate p21 and p27, and different transcription factors. The 
hypothesis formulated theoretically was accurate in the predic-
tion thus supporting that the administration of O. joconostle 
extract modulates the binding of cytosines to its receptor, thus 
preventing the activation of JAK and the dimerization of the 
transcription factor STAT, resulting in the inhibition of angio-
genesis and a decrease in cell proliferation.

The ability to implement in silico models prior to in vitro 
experimentation in the laboratory, allows to predict the effect 
of the substances under study, whether drugs or natural prod-
ucts, such as the extract of O. joconostle, by analyzing the possi-
ble effects of the extract showing a range of concentrations 
from which the extract of O. joconostle can present the effect in 
vitro.

Finally, it is predicted in silico and tested in vitro that O. 
joconostle extract has an antiproliferative effect on breast cancer 
cell lines at 0.028 µg/µl in MCF-7 (luminal A) cells and 
0.021 µg/µl in MDA-MB-231 (triple negative) cells, these 
doses are higher than those reported with doxorubicin76 treat-
ment which is a drug currently employed at the clinical level.77 
The extract is also considered to play a very important role in 

Figure 8.  (a) Effect of conventional aqueous extract of O. joconostle on 

MCF-7, cell proliferation. The response of luminal breast cancer cell line 

A is shown for different concentrations of the extract with a proliferation of 

only 11.7% at a concentration of 0.028 µg/µl and (b) effect of the 

conventional aqueous extract of O. joconostle on MDA-MB-231, 

response in the triple negative cancer cell line with the extract at a 

concentration of 0.021 µg/µl presents a proliferation of 17.4%, less than 

50%.
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cell cycle regulation by causing cell arrest, in both cell lines, in 
the G2/M phase, thus preventing the cells from achieving cell 
division, resulting in decreased proliferation.

From the conclusions and results obtained in this work, it is 
considered that in the future some of the components of O. 
joconostle extract could have a key role in the treatment of breast 
cancer, acting on the regulation of the PI3K/Akt/mTOR sign-
aling pathway.
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