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Group‑I genes are expressed almost ubiquitously, and Group‑II genes 
are expressed specifically/predominantly in testis (Table 1).20–22 It is 
postulated that Group‑I MSY genes function as broadly expressed 
regulators for gene expression and protein stability as maintaining 
the ancestral dosage of homologous X‑Y gene pairs, e.g.,  DDX3Y, 
EIF1AY, KDM5D, RPS4Y, TBL1Y, USP9Y, UTY, and ZFY.21 The 
ubiquitous and/or somatic expressions of MSY genes suggest that 
the balanced expression between MSY genes and their X homologs 
could be crucial to maintain the healthy condition in men. In humans, 
12 of 14 functional X‑Y paired genes  (86%) escape X‑inactivation 
in female,21 thereby maintaining the dosage balance of X‑Y paired 
genes. On the other hand, Group‑II genes, including HSFY, SRY, 
RNA‑binding motif protein, Y‑linked  (RBMY), and testis‑specific 
protein, Y‑encoded  (TSPY), may play diverse functions from their 
X homologs.

Transgenic mouse models using knockout strategies are useful 
tools to determine and infer the functions of respective genes in 
human health and diseases. However, only 9 of 17 ancestral genes 
in the human MSY are conserved in the mouse Y chromosome.21 
Recent work by Soh et al.23 demonstrated that only 2.2% of mouse 
MSY sequence shares ancestry with the primate MSYs. Further, 
the mouse Y‑chromosome long‑arm harbors the highly amplified 
units (85–221 times) containing genes, such as Sly, Ssty1, Ssty2, or Srsy 
that are absent on the primates Y‑chromosomes.23 Accordingly, mouse 
modeling of human MSY genes is difficult, and the impacts of MSY 
genes on human diseases are still largely unknown. Based on genetic 
mapping studies, three major loci have been assigned to the human 
MSY, that is, testis‑determining factor (TDF), gonadoblastoma locus 

INTRODUCTION
Numerous studies have identified various sex differences in the 
risks, incidence and progression of various human diseases, such as 
asthma,1,2 autoimmune diseases,3,4 schizophrenia,5,6 autism spectrum 
disorders,7,8 cardiovascular disease,9,10 and non-sex-specific cancers 
such as liver cancer, bladder cancer, and lung cancer.11–13 According to 
the report by Cook and colleagues, 32 out of 36 cancer types showed 
male preference of cancer mortality in United States for the years 
between 1977 and 2006.14 However, the mechanisms responsible for 
such sex‑differences are still largely unknown. The most significant 
genetic differences between men and women are genes on their 
sex chromosomes, that is, XY for men and XX for women. Men are 
prone to X‑linked diseases caused by mutations on genes on their 
X chromosome while ectopic expression of the genes on their Y 
chromosome could have male‑specific effects on normal development, 
physiology, and diseases. The human Y chromosome can be classified 
structurally into three regions:  (i) male‑specific region of the Y 
chromosome (MSY), (ii) pseudoautosomal regions (PAR1 and PAR2), 
and  (iii) heterochromatin region on Yq  (Figure  1).15 PARs contain 
20 protein‑coding genes (16 genes in PAR1 and 4 genes in PAR2) 
that are also present on the X chromosome.16 The MSY contains 23 
protein‑coding genes and numerous pseudogenes  (Table  1).15,17,18 
While genes in PARs are present in both X and Y chromosomes and 
undergo meiotic recombination similarly with autosomal genes, genes 
in MSY are excluded from meiotic recombination with a homologous 
chromosome partner. The MSY genes evolved during about 300 million 
years after beginning of X‑Y differentiation.19 The MSY genes can 
be classified into two groups according to their expression patterns. 
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on Y chromosome (GBY) and azoospermia factor (AZF) (Figure 1). 
The  SRY gene has been demonstrated to be the testis‑determining 
gene,24,25 while a group of genes, that is, RBMY and DAZ, have 
been identified within the AZF locus on the long‑arm.15,26,27 The 
gonadoblastoma (GBY) locus was initially mapped to a small region 
on the short arm of the Y chromosome proximal to the centromere, 
harboring a gene predisposing dysgenetic gonads of XY sex‑reversed 
patients to develop gonadoblastoma.28 Subsequent studies showed that 
TSPY is the putative gene for this locus.29,30 The sex determination and 
genes for the AZF locus have recently been reviewed in details.27,31,32 
The present review focuses on the MSY genes and their associations 
to human tumors, including gonadoblastoma.

EXPRESSION OF Y‑LINKED GENES AND HUMAN CANCERS
Various studies have demonstrated that TSPY and RBMY are ectopically 
expressed in somatic cells under disease conditions, such as cancer, 
although they are normally expressed preferentially in testicular germ 
cells  (see below). To explore the changes of MSY genes in somatic 
cancers, we had performed a data‑mining study on hepatocellular 

carcinoma (HCC) using the RNA‑Seq gene expression data on 27 pairs 
of male tumor-nontumor paired samples at the Cancer Genome 
Atlas  (TCGA) project.33 Our results showed that, in addition to 
TSPY and RBMY, other MSY genes, that is, TGIF2LY and VCY, were 
consistently up‑regulated in ~30% cases of liver cancer, while DDX3Y, 
ZFY, and DAZ1 were frequently down‑regulated (~70%, Figure 2). 
Since the Y chromosome is unique to men, these observations 
suggest that the Y chromosome genes could potentially influence 
on the development, progression and outcomes of liver cancer in a 
male‑specific  manner(s).

Testis‑specific protein, Y‑encoded (TSPY)
The human TSPY gene was initially identified as a Y‑linked gene 
specifically expressed in the testis.34,35 It is tandemly repeated in 20.3‑kb 
highly homologous units, usually in the range of 21–35 copies, on the 
short arm of the Y chromosome.15,36–38 The human TSPY is expressed 
in gonocytes in the embryonic testis,39 spermatogonia, and prophase 
I spermatocytes at preleptotene to zygotene stages in adult testis.40 
Deletion mapping has localized the TSPY repeat units to the critical 

Figure 1: Schematic diagram of human Y chromosome indicating the protein‑coding genes within the male‑specific region of Y chromosome. AZFa‑c: the 
deleted regions identified in azoospermia patients; GBY: the gonadoblastoma locus on Y chromosome; PAR1 and PAR2: the pseudoautosomal regions.

Table  1: Protein coding MSY genes

Gene/gene familya Members of multi‑copy gene Functional domain in protein product17 Expression20

AMELY Testis specific

BPY2 BPY‑2, 2B, 2C Winged HTH‑like domain Testis specific

CDY CDY‑1, 1B, 2A, 2B CHROMO domain Testis specific

DAZ DAZ‑1, 2, 3, 4 RRM Predominantly in testisc

DDX3Y (DBY)b DEAD‑like helicase Ubiquitous

EIF1AY Eukaryotic translation initiation factor 1A Ubiquitous

HSFY HSFY‑1, 2 HSF Testis specific

KDM5D (SMCY)b PHD zinc finger, jumonji domain Ubiquitous

NLGN4Y Carboxylesterase Ubiquitous

PCDH11Y Cadherin repeats Ubiquitous

PRY PRY, PRY2 Testis, heart, lung, white blood cells

RBMY RBMY1‑A1, 1B, 1C, 1D, 1E, 1F/J RRM Testis specific

RPS4Y RPS4Y1, RPS4Y2 S4 RNA‑binding domain Ubiquitous

SRY HMG Predominantly in testisc

TBL1Y WD40 repeats (WD40) Ubiquitous

TGIF2LY Homeodomain (HOX) Testis specific

TMSB4Y (TB4Y)b Thymosin β‑actin‑binding motif Ubiquitous

TSPY >40 copies (copy number varies among cohort) SET/NAP domain Predominantly in testisc

USP9Y (DFFRY)b Ubiquitin‑like domain, ubiquitin C‑terminal hydrolase Ubiquitous

UTY Jumonji domain, treble‑clef zinc finger Ubiquitous

VCY VCY, VCY1B Predominantly in testisc

XKRY XKRY, XKRY2 Testis specific22

ZFY Zinc fingers (ZnF_C2H2) Ubiquitous
aGene name and gene ID are listed in Table S1; bA popular alias alternatively used; cOther tissue(s) also expresses, but testis expresses at the highest level. MSY: male‑specific 
region of the Y chromosome; HTH: helix‑turn‑helix; CHROMO: chromatin organization modifier; RRM: RNA recognition motif; HSF: heat‑shock factor; HMG: high‑mobility group; 
NAP:  nucleosome assembly protein; SET: SE translocation
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region harboring the GBY locus on the short arm.29,30 It is postulated 
to serve normal functions in male germ cell differentiation, mitosis, 
and meiosis,41,42 but could promote gonadoblastoma development 
in patients with disorders of sex developments  (DSDs) harboring 
Y chromosome materials including TSPY. Indeed, TSPY expression 
has been observed in gonadoblastoma, and various types of germ 
cell tumors  (GCTs), including carcinoma in  situ/intratubular germ 
cell neoplasia unclassified  (CIS/ITGCNU)  (the precursor for all 
testicular GCTs [TGCTs]), seminoma, and extragonadal intracranial 
GCT.43–46 In addition to GCTs, TSPY is frequently expressed in some 
somatic cancers including liver cancer,47,48 melanoma,49 and prostate 
cancer,50,51 suggesting that TSPY can be considered as a cancer‑testis 
antigen  (CT‑antigen). CT‑antigens are group of proteins that are 
predominantly/specifically in testis under normal conditions, but are 
ectopically expressed in somatic cancers.52 Although the biological 
functions of CT‑antigens are currently uncertain, they have been 
proposed as diagnostic markers and therapeutic targets in cancers.48,52–54

Molecular functions of TSPY
TSPY is a member of SE translocation/nucleosome assembly protein 
1 (SET/NAP1) superfamily harboring a highly homologous SET/
NAP‑domain, initially identified in the SET oncoprotein (also called 
template‑activating factor I or TAF‑I) and the NAP1.42,55 X‑ray 
crystallography showed that the SET protein forms a homodimer 
with a headphone like structure, and the SET/NAP domain occupies 
the earmuff region, which could be important for protein‑protein 
binding with interactive partners. The N‑terminal alpha‑helix region 
contains the binding site for the homodimerization.56–58 Members of 
the SET/NAP1 protein family could function as chaperones of histones. 
In particular, NAP1 plays crucial roles in shuttling and assembling 
core histones as a histone chaperone.57,59 SET forms inhibitor of 
histone acetyltransferase (INHAT) complex with its isoform TAF‑Iα 
and pp32.60 INHAT complex associates with chromatin to inhibit 
the histone acetylation mediated by acetyltransferases, thereby 

suppressing the expression of targeted genes.60 SET also interacts with 
transactivators and enhances their respective target gene expression.54,61 
These observations suggest that SET/NAP1 proteins serve a wide 
range of functions in many biological processes. Recently, we reported 
that TSPY binds the type B cyclins and enhances the kinase activity 
of the cyclin‑B/CDK1 complex.62 Correlating with this function, 
overexpression of TSPY leads to shortening of the G2/M phase and 
acceleration of cell proliferation in TSPY‑transfected HeLa and 3T3 cells 
in vitro and tumorigenicity in athymic mice in vivo.63 In contrast, its 
single‑copy X‑linked homolog TSPX (also termed as TSPY‑like 2 
[TSPYL2], differentially expressed nuclear TGF‑β1 target [DENTT] 
or cell division autoantigen 1 [CDA1]) inhibits the kinase activity of 
cyclin‑B/CDK1 complex.62 TSPX protein harbors a 250 amino acids 
aspartic acid/glutamic acid (D/E)‑rich domain at its C‑terminus, which 
is absent in TSPY. The inhibitory function of TSPX has been mapped 
on the C‑terminal D/E‑rich domain.62 Since the SET/NAP‑domains 
of both proteins are well conserved, TSPY and TSPX could play 
contrasting roles on their common target molecules. Abrogated 
TSPX expression in lung cancer is associated with accelerated cancer 
progression.64 In vitro studies also demonstrated that overexpression 
of TSPX retards cell proliferation.65 Further, down‑regulation of TSPX 
by nitric‑oxide correlates with the glioma stem cell proliferation.66 
These observations suggest that while TSPY and TSPX originated 
from the same ancestor gene, they have respectively evolved into two 
independent genes on the sex chromosomes, and play contrasting roles 
in human oncogenesis, that is, TSPY as a proto‑oncogene and TSPX 
as a tumor suppressor gene.67,68

Yeast‑two hybrid screening using the SET/NAP‑domain of TSPY 
as bait has identified several novel TSPY binding proteins. The first 
one is the translation elongation factor 1A, eEF1A. The SET/NAP 
domain of TSPY binds to the domain‑III of eEF1A, and enhances 
protein synthesis.69 TSPY also binds to the 40S ribosomal component 
RPS26 (unpublished data), suggesting that TSPY could be associated 
with the protein synthesis machinery in the cells. Recent studies suggest 

Figure 2: Gene expression profile of MYS protein‑coding genes in male liver cancer cases. The case number showing either up‑regulation or down‑regulation 
in cancer specimens is indicated for each gene, according to the RNA‑Seq gene expression data derived from the database of the Cancer Genome Atlas 
project. Twenty‑seven pairs of tumor and corresponding nontumor tissue were analyzed. Each black or gray square indicates an up or down respectively the 
expression of the corresponding Y chromosome genes in the tumor to nontumor pairs.
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that protein synthesis is crucial in the regulation of cell proliferation and 
cancer progression.70–73 TSPY may normally support protein synthesis 
essential for the maintenance of germ cell proliferation, but when 
ectopically expressed, it could promote cancer growth under diseased 
conditions. Interestingly, we also showed that TSPY protein binds 
to the exon‑1 of its structural gene and enhances its own expression 
in prostate cancer cells,74 suggesting that TSPY could intensify its 
functions by amplifying its own gene expression through a positive 
feedback loop. Hence, TSPY could play the role of a transcription 
regulator, by binding to the DNA/nuclear proteins on the chromatin 
of target genes. Since TSPY is located in the male‑only Y chromosome, 
its functions in the protein synthetic machinery, cell cycle progression, 
histone chaperone/chromatin modification gene, and regulation could 
shed new insights on sex disparities associated with the development, 
progression and treatments responses among numerous somatic 
cancers, e.g., liver cancer and melanoma, with ectopic TSPY expression.

Expression of TSPY in germ cell tumors
Human GCTs can be classified into five types based on various 
parameters including age at clinical presentation, anatomical 
sites and histology; e.g.,  type‑I, teratoma/yolk sac tumor; type‑II, 
seminomatous/nonseminomatous GCTs; type‑III, spermatocytic 
seminoma; type‑IV, dermoid cyst; type‑V, hydatidiform mole.75 
TSPY expression is primarily detected in type‑II TGCs and type‑III 
spermatocytic seminoma.44 Type‑II TCGs are further subdivided 
into nonseminomatous GCTs and seminomatous GCTs, including 
seminoma, dysgerminoma, germinoma, and gonadoblastoma.75,76 The 
type‑II testicular germ cell tumors (TGCTs) are the most common 

malignancies among young men aged 15 to 34 years in United States, 
and its incidence is approximately 1.38–6.31 per   100  000  (years of 
1973 to 2001).77 The incidence of TGCTs is globally increased during 
the past 70 years, especially among men of European ancestry, and the 
etiologies of such preference are uncertain.78,79

TGCTs, both seminoma and nonseminoma, are derived from CIS/
ITGCNU.75,76,80,81 CIS/ITGCNU cells display a close phenotype to fetal 
germ cells, suggesting their origin is due to a developmental delay or 
failure of differentiation of early germ cells (Figure 3).75,82–84 TSPY is 
expressed in gonocytes85 and most CIS/ITGCNU cells with some minor 
exceptions  (Figure 3).43,44 Upon further oncogenic progression, the 
seminoma cells maintain TSPY expression while, nonseminoma cells 
do not or rarely express TSPY (Figure 3).43,44,86 It has been speculated 
that the development of nonseminoma TGCT requires reprogramming 
to embryonic carcinoma state.75 Indeed, the global gene expression 
analysis using microarray hybridization strategy indicated that 
embryonic carcinoma cells showed significant similarities with human 
embryonic stem cells, while seminoma closely resemble transformed 
primordial germ cells.87 Accordingly, TSPY expression likely correlates 
with the germ cell lineage even in maturation‑disturbed germ cells, 
but not with the reprogrammed cells like embryonic carcinoma with 
acquired pluripotency.

Gonadoblastoma is a subclass of type‑II TCGs preferentially 
developed in the dysgenetic gonads of XY females or individuals 
with DSD.75,76,88 The Y chromosome of gonadoblastoma patients 
frequently lacks sex determination region but retains common region 
of the short arm, termed GBY locus.28–30 The tandemly repeated 
units of TSPY gene are mapped within GBY critical region on the 

Figure 3: Schematic representation of expressions of testis‑specific protein, Y‑encoded (TSPY) and OCT3/4 in normal testis and type‑II germ cell tumors. 
Germ cell expresses OCT3/4 until it reaches the maturation status.  (Process‑a) In normal testis, germ cell mature as spermatogonia, and lost OCT3/4 
expression while it expresses TSPY.  (Process‑b) Failure of germ cell maturation causes development of carcinoma in  situ  (CIS) in the testis. The CIS 
cells are mostly OCT3/4‑positive and TSPY‑positive. It further develops into invasive seminoma (OCT3/4‑positive and TSPY‑positive) or nonseminoma via 
reprogramming to embryonal carcinoma status (OCT3/4‑positive but TSPY‑negative). (Process‑c) In dysgenic gonad, maturation disturbed germ cells develop 
gonadoblastoma (OCT3/4‑positive and TSPY‑positive), and further progress into invasive dysgerminoma (OCT3/4‑positive but TSPY‑negative).
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Y chromosome, hence TSPY is considered as a candidate gene for GBY, 
promoting gonadoblastoma development in the dysgenetic gonads 
of DSD patients.28–30 Gonadoblastoma morphologically resembles 
the CIS/ITGCNU in the TGCTs in the testis; gonadoblastoma cells 
are mixed with granulosa‑like cells while TGCT cells are mixed with 
Sertoli cells in the seminiferous tubules enclosed by myoid cells.89 
Most OCT4‑positive gonadoblastoma cells strongly express TSPY as 
well as the germ cell/placental alkaline phosphatase (PLAP) and the 
proto‑oncogene receptor c‑Kit, similar to the testicular CIS.43,45,86,88 
Noticeably, TSPY is rarely expressed in the dysgerminoma after 
progression from gonadoblastoma.86,88 Dysgerminoma is considered 
as a counterpart of seminoma based on morphology and expressed 
biomarkers.90–92 Loss of TSPY expression in dysgerminoma may 
indicate the dividing characteristics between dysgerminoma and 
seminoma.

Overall, TSPY is expressed differentially in a subset of GCTs 
positive for both OCT4 and PLAP biomarkers. Since TSPY is most 
frequently expressed in the CIS and gonadoblastoma, at early stages 
of germ cell tumorigenesis, it is postulated to play an important role 
in early stages of oncogenesis in the immature germ cell lineage. 
Accordingly, the risk of GCT development/progression is higher in 
TSPY positive than TSPY negative cases.93 TSPY could accelerate 
such progression of GCTs through its functions in cell cycle, protein 
synthesis, and histone/chromatin modification and gene regulation, 
as discussed above.

Expression of TSPY in somatic cancers
In addition to type‑II and III GCTs, ectopic expression of TSPY has 
been frequently detected in various types of somatic cancers, including 
HCC,47,48 melanoma,49 and prostate cancer.50,51 Yin et al.48 reported that 
TSPY expression was detected in 50% cases of early stage HCC and 16% 
cases in undifferentiated stage (later stage of HCC). Our recent studies 
also demonstrated that TSPY was detected in 19.2% cases in tissue 
microarray and 46.9% cases in RNA samples isolated from fresh HCC 
specimens.47 Further immunohistochemical analysis showed that TSPY 
is expressed in the glypican 3‑positive cells, a biomarker of the HCC.47,94 
In the studies of prostate cancer, TSPY was immunohistochemically 
detected in the regions positive for alpha‑methylacyl‑CoA racemase, 
a biomarker of prostatic intraepithelial neoplasia and prostate cancer 
cells.50,95 TSPY expression was more frequently detected in clinical 
prostate cancer specimens (78%) than latent prostate cancer (47%) and 
noncancer prostate tissues (50%).50 These observations clearly indicate 
that TSPY is ectopically activated in somatic cancer cells.

While the correlation between TSPY expression and clinical 
outcome is still unclear, TSPY has been suggested as a prognostic 
biomarker and therapeutic target for immunotherapy.48 Further 
analysis incorporating clinical outcomes and TSPY expression would 
be important to elucidate the significance of TSPY expression on cancer 
progression and immunotherapy.

Rodent Tspy and human TSPY transgenic mouse models
Although TSPY is an evolutionarily conserved gene on the 
Y chromosomes of mammals including apes and bovines,96,97 
the mouse Tspy gene is apparently nonfunctional as it contains 
multiple in‑frame stop codons within the open reading frame.98 Rat 
Y chromosome harbors a single functional copy of Tspy gene,99 but its 
expression pattern is different from human TSPY, that is, the rat Tspy 
is expressed only in elongating spermatids while the human TSPY is 
primarily expressed in spermatogonia and spermatocytes,100 suggesting 
that the biological functions of the rat Tspy could be different from 
those of human TSPY. Accordingly, the gene knockout in rodents might 

not be a suitable strategy to explore the biological functions of human 
TSPY. To overcome this difficulty, Schubert et al.101 had generated a 
transgenic mouse line harboring 50 copies of human TSPY gene on 
Y chromosome of the mouse, designated as TgTSPY9. The 8.2‑kb 
transgene contains 2.95‑kb the promoter region, 2.8‑kb structural 
gene and 2.45‑kb 3’ flanking sequence of the human TSPY gene. It 
is predominantly expressed in spermatogonia and spermatocytes at 
early stages of spermatogenesis, similar to the pattern of TSPY in 
human testis.101 Expression of human TSPY transgene in testicular 
germ cells of TgTSPY9 mice does not show any significant effects in 
fertility or other physiology,101 consistent with the observation that 
the copy number of human TSPY gene varies among fertile men.38 
By introducing the Y‑located TSPY transgene of TgTSPY9 to the 
LADY mouse model of prostate cancer, we have demonstrated that 
the Y‑located TSPY could be aberrantly activated during oncogenesis 
in the LADY model of prostate cancer.102 However, while TSPY is 
expressed in FoxA1‑positive epithelial cells and prostate cancer cells 
in human clinical prostate cancer specimens, TgTSPY9 transgene was 
expressed in FoxA1‑negative hypercellular stroma areas in the prostate 
of LADY mice.102 Such differential expression patterns suggest the 
potential limitations of current mouse models of prostate cancer in 
mimicking the ectopic expression of TSPY under disease conditions, 
such as during prostate cancer development.

Azoospermia factor (AZF) genes and cancer
RNA‑binding motif protein, Y‑linked (RBMY) isoforms are encoded 
by repetitive genes within the AZF region, frequently deleted in 
azoospermia patients (Figure 1). RBMY binds to the RNA stem‑loops 
capped by a C[A/U] CAA pentaloop103 and may participate in the 
alternative splicing of various testis‑specific gene transcripts.104 
Indeed, deletion of RBMY resulted in the failure of meiosis.105 
Abnormal expression of RBMY was observed in 36% cases of male 
liver HCC but not in normal liver tissues.106,107 Over‑expression of 
RBMY caused tumorigenicity in mouse fibroblast 3T3  cells,106 and 
knock‑down of RBMY in a liver cancer cell line HepG2 resulted in 
the reduction of transformation and anti‑apoptotic efficiencies.107 
Further, the liver‑specific RBMY transgenic mice showed accelerated 
hepatic neoplastic changes in the diethylnitrosamine‑induced 
hepatocarcinogenesis animal model.107 While the mechanism is still 
unclear, these observations suggest that the ectopic expression of 
RBMY genes could contribute to HCC development. On the contrary, 
multiple copies of BPY2, DAZ, and CDY1 genes are also mapped onto 
the microdeletion of AZFc region, and deletions of these AZF genes 
are associated with increased risks of seminoma.108,109 Consistently 
with these reports, our analysis of TCGA data showed that DAZ1 and 
BPY2 are frequently down‑regulated in HCC (Figure 2). Although 
these observations are preliminary in nature, further studies on AZF 
genes could provide new insights into the roles of Y chromosome in 
cancer development and their usefulness as diagnostic biomarkers.

CONCLUSIONS AND FUTURE ASPECTS
In the past decades, associations between MSY genes and diseases 
have been identified. However, because of differences between 
human and rodents Y chromosomes21,110 and difficulties in 
generating knockout mice of Y chromosome genes,111 there are 
still limitations on investigating the roles of human MSY genes 
in vivo. As it has been suggested, most MSY genes may function 
as broadly expressed regulators for gene expression, protein 
stability and maintenance of the dosage of homologous XY gene 
pairs.21 Supporting this hypothesis, it was demonstrated that UTX 
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and UTY could play comprehensive, but independent of their 
demethylase activities, during embryonic development.112 On the 
other hand, while TSPY displays proto‑oncogenic properties,62,63,69 its 
X‑linked homolog TSPX is a tumor suppressor and down‑regulated 
in cancer.62,65,66 This is the first example for an MSY gene and its 
X‑homologue possess distinct and opposing functions. Hence, it 
is important to establish respective in  vivo models to elucidate 
the roles of human MSY genes in development and progression of 
diseases, including cancers.

Recently, an epidemiologic study reported that loss of 
Y  chromosome  (LOY) in peripheral blood cells significantly 
associated with shorter cancer survival and higher risk of cancer 
incidence in men.113 LOY in peripheral blood is frequently observed 
in elder men.114 According to a clinical study with  >40  years of 
follow‑up, Forsberg et  al. found that LOY in peripheral blood 
associated with increased risk of both all‑caused mortality and 
cancer mortality, particularly in nonhematological cancers.113 
Further, transcriptome analysis of human peripheral blood samples 
detected the expression of some Y chromosome genes, e.g., EIF1AY, 
DDX3Y, KDM5D, CYorf15B, CYorf15A, and UTY.115 Although the 
mechanism linking LOY in human peripheral blood and cancer 
mortality remains to be elucidated, these observations strongly 
suggest that Y chromosome genes are involved in a wide variety 
biological processes that have not been fully explored. MSY genes 
play crucial roles in both hormonal regulation and the balance in 
gene expression and protein stability, as described above. Ectopic 
expression of one or a few of these Y chromosome genes, such as 
TSPY and RBMY, could exacerbate oncogenesis in the absence 
of proper counter‑balance from the other MSY genes  (Figure 4). 
Further studies of Y chromosome genes from the global aspects, 
including both coding and noncoding RNA genes, will shed new 
lights on their roles in health and diseases in men.
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Table S1: Gene name and Entrez gene ID of genes listed in Table  1

Gene/Gene family Members of multi‑copy gene Gene name Entrez gene ID

AMELY amelogenin, Y‑linked 266

BPY2 BPY‑2, 2B, 2C basic charge, Y‑linked, 2 9083, 442867, 442868

CDY CDY‑ 1, 1B, 2A, 2B chromodomain protein, Y‑linked 9085, 9426

DAZ DAZ‑1, 2, 3, 4 deleted in azoospermia 1617, 57055, 57054, 57135

DDX3Y (DBY)* DEAD (Asp‑Glu‑Ala‑Asp) box helicase 3, Y‑linked 8653

EIF1AY eukaryotic translation initiation factor 1A, Y‑linked 9086

HSFY HSFY‑1, 2 heat shock transcription factor, Y linked 86614

KDM5D (SMCY)* lysine (K)‑specific demethylase 5D 8284

NLGN4Y neuroligin 4, Y‑linked 22829

PCDH11Y protocadherin 11 Y‑linked 83259

PRY PRY, PRY2 PTPN13‑like, Y‑linked 9081

RBMY1 RBMY1‑A1, 1B, 1C, 1D, 1E, 1F/J RNA binding motif protein, Y‑linked, family 1 5940, 378948, 5942, 378949, 378950, 159163

RPS4Y RPS4Y1, RPS4Y2 ribosomal protein S4, Y‑linked 6192, 140032

SRY sex determining region Y 6736

TBL1Y transducin (beta)‑like 1, Y‑linked 90665

TGIF2LY TGFB‑induced factor homeobox 2‑like, Y‑linked 90655

TMSB4Y (TB4Y)* thymosin beta 4, Y‑linked 9087

TSPY >40 copies (varies among cohort) testis specific protein, Y‑linked 7258, 64591, 728137, 728395, 728403

USP9Y (DFFRY)* ubiquitin specific peptidase 9, Y‑linked 8287

UTY ubiquitously transcribed tetratricopeptide repeat 
containing, Y‑linked

7404

VCY VCY, VCY1B variable charge, Y‑linked 9084

XKRY XKRY, XKRY2 XK, Kell blood group complex subunit‑related, Y‑linked 9082

ZFY zinc finger protein, Y‑linked 7544

*: alternate gene name in parenthesis


