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Abstract: Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass
and microstructure, leading to reduced bone strength and increased risk of fracture. It is often
associated with reduced quality of life and other medical complications. The disease is common in the
aging population, particularly among postmenopausal women and patients who receive long-term
steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy,
the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand
for new therapeutic agents and nutritional supplements for the management and promotion of bone
health is pressing. With the advent of global interest in complementary and alternative medicine and
natural products, Chinese medicine serves as a viable source to offer benefits for the improvement
and maintenance of bone health. This review summarizes the scientific information obtained from
recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to
possess osteoprotective and related properties in cell-based and/or animal models. Some of these
natural products (or their derivatives) may become promising leads for development into dietary
supplements or therapeutic drugs.
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1. Introduction

Osteopenia (low bone density) and osteoporosis (“porous bone”) are progressive metabolic
bone disorders occurring in aging populations, especially postmenopausal women and patients
who undergo long-term steroid therapy. While postmenopausal women are at greater risk,
osteopenia/osteoporosis can strike at any age of both genders. The disease is characterized by
thinning of bones, with reduction in bone mass and bone mineral density, as well as micro-architectural
deterioration of the bone tissue due to depletion of calcium and bone protein. The clinical manifestation
is loss of bone strength, thus making the bones fragile and vulnerable to fractures, which often happens
in the hip, spine, and wrist. The disease is often associated with reduced quality of life and other
medical complications such as disability and depression. Worldwide, osteoporosis is estimated to
affect 200 million women, approximately one-tenth of women aged 60 and one-fifth of women aged
70 [1]. Although the overall prevalence of fragility fractures is higher in women, osteoporosis is a
significant health issue in men [2]. The U.S. National Osteoporosis Foundation projected that by 2020,
fourteen million Americans over the age of 50 are expected to have osteoporosis and another 47 million
to have low bone mass, accounting for 55% of the population 50 years of age and older [3].
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In comprehensive bone health management plans, both pharmacologic therapy and
non-pharmacologic measures (such as balanced diet, adequate calcium and vitamin D intake, exercise
and fall prevention) are usually included [4–6]. Currently there are less than ten FDA-approved drugs
for osteoporosis prevention and treatment. They fall into two classes, the anti-resorptive and the
anabolic drugs. Anti-resorptive drugs include bisphosphonates (alendronate, ibandronate, risedronate,
and zoledronic acid), calcitonin, denosumab (an inhibitor of receptor activator of nuclear factor-κB
ligand [RANKL]), and raloxifene (a selective estrogen receptor modulator). These compounds slow
down the process of bone loss. On the other hand, anabolic drug such as the recombinant form of
parathyroid hormone (teriparatide) enhances new bone formation [7–9]. Nevertheless, the efficacy
of these drugs varies in patients and the long-term safety has posted some concerns; for example,
potentially serious adverse effects of bisphosphonate therapy have been reported [10–15]. Only a small
number of investigational drugs are currently in the pipeline of development [16,17], and new targets
such as c-Src kinase, cathepsin K, and chloride channel are being investigated [18–20].

Estrogen (with or without progesterone) has been used in hormone replacement therapy. It is
effective to increase bone density and reduce the risk of fracture. Nevertheless, the use of estrogens
has been restrained due to concerns of risk of cancer (such as breast, endometrial and ovarian cancers),
heart attack and stroke [21]. Dietary supplementation of calcium and vitamin D is often included
as part of the treatment plan, yet calcium and vitamin D alone or in combination are ineffective in
reducing fractures in the absence of pharmacologic agents [22,23].

Given the rapid growth of the aging population, increasing life expectancy, the prevalence of
bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic
agents and nutritional supplements for the management and promotion of bone health is pressing.
With the advent of general interest in alternative medicine and natural products, Chinese medicine
can serve as a viable source to offer benefits for the improvement and maintenance of bone health.
This review intends to highlight scientific information on naturally-occurring chemical compounds
derived from Chinese medicinal plants which have been documented to possess protective properties
against osteoporosis or osteonecrosis. Focus has been put on worldwide literature available in the
last ten years. Due to the vast volume of literature information readily obtainable for the soybean
phytoestrogens (such as daidzein, genistein and equol) [24–30], this class of compounds is not included
in the present review. In addition, this review covers only natural molecules derived from Chinese
medicinal plants; and it does not include herbal extracts and medicinal formulas from which the
active compounds are unidentified. Readers are referred to a number of recent review articles on the
topics of medicinal herbs and/or Chinese medicines for bone disorders and for maintenance of bone
health [31–42].

2. Indicators of Bone Health

Bone is a living and growing tissue that constantly forms and breaks down. The “remodeling”
process is a continuous renewal and replacement of bone tissues, in which there are two distinct
phases: bone formation and bone resorption (breakdown or removal). Two kinds of specialized cells
are involved in bone remodeling. During bone formation, the osteoblasts (bone-forming cells) fill up
the bone cavities with new tissues; and during resorption, the osteoclasts dissolve bone tissues. Under
normal and healthy condition, bone resorption and formation take place in a dynamic and balanced
manner so that the old tissues are constantly replaced by new tissues. However, under an imbalanced
situation in which the process of bone resorption is faster than that of bone formation, bone tissues
will be lost and osteoporosis results (clinically manifested by lowered bone mineral density).

Since bone is the major storage site for calcium in the body, calcium is critically important
to bone health, with calcium phosphate and mineralized collagen being the structural supporting
materials of the bone tissue. When the blood calcium level is low, a series of physiological responses
(such as induction of parathyroid hormone that triggers the release of bone calcium, increase of
intestinal calcium absorption and increase of renal calcium reabsorption) will help to maintain calcium
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homeostasis. Conventionally, the serum and urine calcium levels are used as indicators of mineral
balance in the body. In particular, excessive urinary calcium excretion is associated with bone loss
and osteoporosis.

For bone health assessment and evaluation of therapeutic responses, a number of indicators have
become available for clinical tests [43]. Many of these indicators are also applicable to experimental
studies using in vitro (cell-based) assays or in vivo (animal) models. Indicators of bone remodeling
include the measurements of bone mineral density, bone microarchitecture, and biochemical markers.

Bone mass can be estimated by two approaches: (a) measurement of the amount of calcified tissue
in bone tissue, i.e., bone mineral density (BMD); and (b) measurement of bone quality such as trabecular
microarchitecture and fragility [44]. As the prime indicator of bone strength, BMD has become
the standard for diagnosis of osteoporosis as recommended by the World Health Organization [45].
While BMD is a quantitative assessment of bone health, it does not provide information on bone quality.
On the other hand, bone microarchitecture is related to the mechanical strength, and deterioration
of bone architecture results in bone loss, as shown by observations such as decreased number
of trabeculae, increased inter-trabecular distances, loose connectivity of the trabecular meshwork,
reduction of cortical bone thickness and increased porosity [46]. Apart from BMD measurement and
bone microstructure assessment, bone strength and fragility tests are often employed in animal models
to test for drug effects.

In recent years cellular components of the bone tissue have also been widely used as biomarkers to
measure and monitor bone turnover and bone loss [47–50], and new markers are being developed [51].
The markers reflect the metabolic activity of osteoblasts or osteoclasts and are measurable in blood
or urine in order to provide a quantitative estimate of the status of bone remodeling. Information
on bone remodeling status is an early indicator of pathological changes or the risk of some bone
diseases. These biomarkers are useful not only for clinical assessments as monitors of osteoporosis
and predictors of fracture, but also for the evaluation of therapeutic responses [49]. By measuring the
concentration/activity of biomarkers, it is possible to obtain information about therapeutic response
faster than by measuring bone mass. Significant changes in biochemical markers may be readily
observed after one to three months of effective therapy. The most useful biomarkers are either enzymes
secreted by osteoclasts or osteoblasts, or proteins or their fragments produced by osteoblasts during
bone formation or released by degradation of the collagen matrix of bone during resorption. In general,
these biomarkers fall into two categories, i.e., bone formation markers and bone resorption markers,
depending on which phase of bone remodeling they reflect (Table 1).

Table 1. Commonly used biomarkers of bone turnover.

Bone Formation Bone Resorption

Osteoblast enzyme Osteoclast enzyme
Total alkaline phosphatase [52] Tartrate-resistant acid phosphatase (TRAP) [54]
Bone-specific alkaline phosphatase [53] Cathepsin K [55]

Matrix protein Collagen degradation product
Osteocalcin [56,57] Hydroxyproline [57]

Pyridinoline [58]
Deoxypyridinoline [58]

Product of collagen synthesis Cross-linked telopeptide of type I collagen
Procollagen type I C-terminal extension peptide (P1CP) [59] N-telopeptide of type I collagen [59]
Procollagen type I N-terminal extension peptide (P1NP) [59] C-telopeptide of type I collagen [59]

C-telopeptide generated by matrix metalloprotieinases [59]

Others
Osteopontin (OPN) [60]
Receptor activator of nuclear factor Kappa B ligand (RANKL) [61]
Osteoprotegerin (OPG) [62]
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2.1. Bone Formation Markers

Markers of bone formation are osteoblastic enzymes or by-products of active osteoblasts expressed
during their developmental process. The most common biomarkers include alkaline phosphatase,
osteocalcin, and the carboxy- and amino-terminal propeptides of type 1 collagen.

Alkaline phosphatase is derived from various tissues including the liver and bone. In the bone,
the enzyme is present in osteoblast plasma membranes and plays an important role in osteoid formation
and mineralization [52]. Total alkaline phosphatase in serum is a widely used non-specific marker of
bone formation, but detection of the bone-specific isoenzyme (the bone-specific alkaline phosphatase)
is increasingly preferred due to its higher specificity [53].

Osteocalcin is the most abundant non-collagen protein in the bone matrix. It is produced by
mature osteoblasts during bone formation and acts in the bone matrix to regulate mineralization [56].
Osteocalcin is released into the circulation from the matrix during bone resorption and, therefore,
is considered a marker of bone turnover rather than a specific marker of bone formation, despite its
serum levels correlate well with the osteoblast activity and bone mineral density [57].

Procollagen I is a precursor of collagen. When the collagen is made and deposited to form
the bone matrix, both the C- and N-terminals of procollagen I are removed by specific proteases.
The procollagen 1 C terminal extension peptide (P1CP) and procollagen 1 N terminal extension peptide (P1NP)
are thus specific products of proliferating osteoblasts and fibroblasts and they can serve as markers
of bone formation. P1NP seems to have several advantages over P1CP such as lower individual
variability and higher stability. It became a marker of choice recommended by professional bodies such
as the International Osteoporosis Foundation (IOF), International Federation of Clinical Chemistry
and Laboratory Medicine (IFCC), and National Bone Health Alliance (NBHA) [59,63].

2.2. Bone Resorption Markers

The matrix of bone is largely constituted by type I collagen. During the degradation process,
breakdown products are released and pass into the blood stream and/or urine. Most biochemical
markers of bone resorption are based on collagen breakdown products such as deoxypyridinoline
or the collagen cross-links and telopeptides. Two other types of markers include osteoclast-specific
enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K, and osteocyte activity
markers such as receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG).

Tartrate-resistant alkaline phosphatase (TRAP) is characteristic of osteoclasts, and it is expressed
and secreted primarily by osteoclasts during active bone resorption. It is, however, also produced by
inflammatory macrophages and dendritic cells. The serum level is a useful biochemical marker to
assess osteoclast activity. More recently, the TRAP 5b isoform was shown to be osteoclast-specific and
serves as a better indicator of bone resorption and osteoclast number [54].

Cathepsin K is a cysteine protease enzyme present in actively resorbing osteoclasts. It is able to
cleave the telopeptide region of type 1 collagen. The serum level of cathepsin K reflects the number of
osteoclasts and serves as a specific biomarker of osteoclast activity [55].

Hydroxyproline is a component of bone collagen. During the process of bone degradation,
hydroxyproline is liberated from collagen and excreted in the urine where it can be detected as
free or bound forms. Hydroxyproline is considered a nonspecific marker of bone turnover, since it is
also a degradative product of collagens from tissues other than bone, and it can also come from diet [57].

The pyridinium compounds, pyridinoline and deoxypyridinoline, are formed during the extracellular
maturation of fibrillar collagens and are released upon the degradation of mature collagens.
The measurement of pyridinoline and deoxypyridinoline is not influenced by degradation of newly
synthesized collagens and is independent of dietary sources [58].

Assays are available based on specific antibodies raised against collagen peptides containing
cross-links. Thus, assays for Carboxy-terminal cross-linked telopeptide of type 1 collagen (CTX) and
amino-terminal cross-linked telopeptide of type 1 collagen (NTX) are employed as indicators of bone
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resorption. The CTX assay has been recommended by professional bodies such as IOF, IFCC,
and NBHA [59,63].

Osteopontin (OPN), also known as bone sialoprotein (BSP), is a phosphorylated glycoprotein
present in the non-collagenous matrix of bone. It plays the role of anchoring osteoclasts to the mineral
matrix. Serum OPN thus reflects the process of osteoclast activity and bone resorption [60].

Receptor activator of nuclear factor Kappa B ligand (RANKL), is a pro-osteoclastogenic cytokine
produced by the osteoblasts. Binding to the RANK on osteoclasts leads to the activation of downstream
signaling pathways such as MAPKs, NF-κB and NFATc1 [62,64,65]. As a result, the RANKL pathway
is associated with the stimulation of osteoclast differentiation. The RANKL level serves as a marker for
bone loss [61].

Osteoprotegerin (OPG) is secreted by the osteoblasts and it binds to RANKL to inhibit the
differentiation of the osteoclast precursor into mature osteoclast, thus suppressing osteoclastic
growth [62,64,65]. Measurement of the OPG/RANKL ratio has been established as an indicator
of osteoclastogenesis.

3. Natural Products with Osteoprotective and Related Activities

3.1. Carthami Flos (Flower of Carthamus tinctorius L.)

Carthami Flos, known as safflower or “Hong-Hua”, is used in Chinese medicine to promote blood
circulation, treat traumatic damages and ease muscle pains. In Korean traditional medicine, the seeds
of this plant are used to promote bone formation and prevent osteoporosis.

The defatted seeds of C. tinctorius have been shown to protect ovariectomized rats from trabecular
bone loss and the phenolic compounds-rich fraction stimulated the growth of osteoblast-like ROS
17/2.8 cells [66]. The safflower seed oil also displayed protective effect in ovariectomized rats by
increasing the serum levels of insulin-like growth factors I and II, insulin-like growth factor binding
protein-3, and alkaline phosphatase activity [67]. In 3-week-old rats, feeding with a methanol extract
of safflower led to increased serum markers such as osteocalcin, alkaline phosphatase activity, and
insulin-like factor I level, as well as the growth parameters such as length of femur and tibia [68].
Both the crude extract and the aqueous extracts promoted osteoblast differentiation in MC3T3-E1
cells [69]. The osteoprotective property of safflower was also associated with the inhibition of bone
resorption. The response has been related to inhibition of the Src family kinases [70] and inhibition of
osteoclast differentiation, as evidenced by the suppression of tartrate-resistant acid phosphatase
(TRAP)-positive multinucleated cells, gene expressions of the nuclear factor of activated T-cells
(NFATc1), receptor activator of nuclear factor-κB ligand (RANKL)-mediated intracellular reactive
oxygen species (ROS) generation, p38 mitogen-activated protein kinase and IκB-β kinase signaling
activities; RANKL-induced actin ring formation was also suppressed [71]. The active ingredients of
safflower seeds have been proposed to be the polyphenolic compounds such as tilianin (1, Figure 1),
acacetin (2, Figure 1), matairesinol (3, Figure 2), and their derivatives [72].

3.2. Cimicifugae Rhizoma (Rhizome of Actaea heracleifolia (Kom.) J. Compton [syn. Cimicifuga heracleifolia
Kom.], A. dahurica (Turcz. ex Fisch. and C.A. Mey.) Franch. [syn. C. dahurica (Turcz.) Maxim.],
or A. foetida L. [syn. C. foetida L.])

Cimicifugae Rhizoma, known as “Sheng-Ma” in Chinese medicine, is renowned for its
heat-repelling and detoxifying effects. Clinically it is used in combination with other herbs to treat
symptoms caused by excessive heat in the body, such as gum infection, mouth sores, sore throat,
fever, rash, and skin diseases. More recent applications of this plant drug include the treatment of
hemorrhoids, Parkinson’s syndrome, and menopausal symptoms.
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After feeding the ethyl acetate-soluble extracts of either A. heracleifolia or A. foetida to
ovariectomized rats for 42 days, the serum calcium levels were decreased whereas the bone mineral
density was increased in the lumbar spine [73]. Four triterpene compounds isolated from the
extracts, namely, cimicidol-3-O-β-xyloside (4, Figure 3), cimicidanol-3-O-β-xyloside (5, Figure 3),
acetylacteol-3-O-arabinoside (6, Figure 3), and 7,8-didehydro-24-O-acetyl-hydroshengmanol-3-O-β
-xyloside (7, Figure 3), were shown to decrease the circulating calcium levels in ovariectomized rats [73].
In a subsequent study, the former three triterpenes were demonstrated to suppress the formation
of osteoclast-like cells and their resorbing activity [74]. More recent results showed that an extract
of A. heracleifolia prevented the ovariectomy-induced elevation of serum alkaline phosphatase level;
it was able to preserve trabecular bone mass, bone volume, trabecular number, trabecular thickness,
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structure model index as well as bone mineral density of the proximal tibia metaphysis and distal
femur metaphysis in ovariectomized mice [75].Molecules 2016, 21, 270 8 of 51 
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Actaea racemosa is a related species native to North America. The roots and rhizomes, known
as black cohosh, in widely used for the management of symptoms associated with menopause.
It enhanced osteoblastic differentiation and increased the osteoprogeterin (OPG)/RANKL ratio in
human osteoblasts [76]. A standardized black cohosh preparation was found to prevent bone density
loss in the distal end of the femur and preserve the trabecular bone structure in the lumbar vertebra
and femur in ovariectomized rats [77]. A triterpene saponin fraction of the plant extract was claimed
to be responsible for the osteoprotective effect [78]. 25-O-Acetylcimigenol 3-O-β-xylopyranoside
(8, Figure 3) was able to block in vitro osteoclastogenesis induced by RANKL or tumor necrosis factor
(TNF)-α, and it attenuated TNF-α-induced bone loss in mice [79]. From black cohosh, deoxyactein
(9, Figure 3) has also been isolated and demonstrated to promote cell growth, alkaline phosphatase
activity, collagen content, and mineralization of MC3T3-E1 cells. In the presence of the reactive oxygen
species (ROS) generator antimycin A, deoxyactein was able to suppress the production of ROS and
osteoclast differentiation factors such as TNF-α, interleukin (IL)-6, and RANKL [80].

3.3. Cistanches Herba [Stem of Cistanche deserticola Y.C. Ma or C. tubulosa (Forssk.) Beck]

Cistanches Herba, known in Chinese medicine as “Rou-Cong-Rong”, is a kidney- and
Yang-tonifying drug that can invigorate the body essence and blood. Common uses and indications
include general physical weakness, fatigue, low back pain and joint weakness.

In an early study, a monoterpene, 8-hydroxy-2,6-dimethyl-2-octenoic acid (10, Figure 4),
was identified as an anti-osteoporotic compound from a related plant species, C. salsa [81].
More recently, the plant drug has been revisited for its anti-osteoporotic potential. Thus, an aqueous
Cistanches extract dose-dependently enhanced bone mineral density and bone mineral content, as well
as improved bone biomechanical indices such as maximum load, displacement at maximum load,
stress at maximum load, load at auto-break, displacement at auto-break, and stress at auto-break,
in ovariectomized rats [82]. The extract was also reported to protect against ovariectomy-induced bone
degeneration, by regulating bone metabolic genes such as Smad1, Smad5, TGF-β1, and TIEG1 [83].
An extract of C. deserticola was reported to exhibit promotional activity on osteoblast differentiation as
evidenced by increased alkaline phosphatase activity and mRNA expressions of bone morphogenetic
protein (BMP)-2 and osteopontin (OPN) [84].

Echinacoside (11, Figure 2), a phenylpropanoid glycoside also present in Echinacea spp., has been
isolated from C. tubulosa and found to cause significant increases in MC3T3-E1 cell proliferation,
alkaline phosphatase activity, collagen 1 secretion, osteocalcin levels, and mineralization [85].
The authors concluded that osteoprotegerin (OPG) and RANKL may be involved in the
anti-osteoporotic process of echinacoside [85]. In a follow-up in vivo study, the research team
demonstrated the counteracting effects of echinacoside against ovariectomy-induced damages,
leading to improvements of bone mineral density, bone biomechanical properties, microarchitecture,
histomorphology, and uterus immunohistochemistry [86,87].

3.4. Cordyceps [Cordyceps sinensis (Berk.) Sacc.]

Cordyceps sinensis, “Dong-Chong-Xia-Cao” in Chinese medicine, is a parasitic fungus which
infects caterpillar larvae and eventually replaces the host tissue. Traditionally, the crude drug of
cordyceps is comprised of the body of caterpillar larvae being filled up inside by fungal filaments.
In current dietary supplement markets, fermentation products of Cordyceps fungal filaments are also
available. In addition to C. sinensis, few other related species, such as C. militaris (L.) Fr., have been
used as alternative natural sources. Cordyceps is highly regarded as a kidney- and lung-tonifying
agent, particular useful for improving general physical weakness, easing respiratory discomforts,
and relieving low back pain.
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In an early study, the water extract of C. sinensis was found to inhibit the RANKL-induced
osteoclast differentiation and suppress the mRNA expressions of osteoclast-related genes such as
calcitonin receptor, cathepsin K, matrix metalloprotease 9, and nuclear factor of activated T cells
c1 (NFATc1) [88]. When ovariectomized rats were treated with cordyceps together with strontium,
beneficial effects were obvious, such as improved bone mechanical strength and bone mineral content,
and decreased urinary calcium excretion [89]. A follow-up study indicated that the combination
treatment led to a decrease in alkaline phosphatase activity, TRAP activity, cross-linked telopeptides
of collagen type I level, and interferon-γ level [90]. Using a rat model of disuse-induced bone loss
and deterioration of trabecular microarchitecture, researchers have shown that an extract of C. sinensis
exerted positive effects on improving the mechanical strength, bone mineral density and bone mineral
content [91]. The extract also decreased bone turnover markers and increased osteocalcin levels.
Micro-computed tomography (micro-CT) analysis revealed a preventive action on the reduction of
the bone volume fraction connectivity density, and trabeculae number and thickness in the hind-limb
suspended animals [91].

A peptide called cordymin isolated from C. sinensis was demonstrated to play a protective role in
diabetic osteopenia in alloxan-induced diabetic rats [92]. On the other hand, an isoflavone mixture
obtained from C. sinensis was reported to exert beneficial effects on osteoporosis in ovariectomized rats,
the effect being attributed to the decrease of alkaline phosphatase activity, TRAP activity, C-terminal
crosslinked telopetides of collagen type 1 (CTX), and interferon-γ levels [93].

Cordycepin (12, Figure 4) is a nucleoside analog (3’-deoxyadenosine) found in C. militaris.
It has been shown to inhibit RANKL-induced osteoclast differentiation, and down-regulate the
mRNA expressions of osteoclastogenesis-related genes such as tartrate-resistant alkaline phosphatase
(TRAP), cathepsin K, matrix metalloproteinase (MMP)-9 and NFATc1 [94]. In a mouse model of
lipopolysaccharide-mediated bone loss, cordycepin suppressed the inflammatory bone loss based on
micro-CT analysis of the femurs [94]. It also acted as an anti-inflammatory agent by down-regulating
proinflammatory cytokines such as IL-1β and TNF-α in a magnesium silicate-induced inflammatory
osteoporotic model [95]. In an attempt to understand the mechanisms involved in inflammatory
cytokine-induced osteogenesis, cordycepin was found to protect against TNF-α-induced inhibition
of osteogenic differentiation of the human adipose-derived mesenchymal stem cells; it restored the
mRNA levels of Runt-related transcription factor 2 (Runx2) and osterix (Osx) [96], both of which
are transcription factors associated with osteoblast differentiation. A recent study demonstrated
that an 8-week cordycepin treatment in ovariectomized rats resulted in decreased levels of alkaline
phosphatase activity, TRAP, and CTX, with a concomitant increase of osteocalcin level. Histological
examination showed that cordycepin treatment was able to prevent bone loss caused by estrogen
deficiency [97].

3.5. Dipsaci Radix (Root of Dipsacus asper Wall. ex C.B. Clarke [syn. D. asperoides C.Y. Cheng and T.M. Ai]
or D. japonicas Miq.)

Dipsaci Radix is a tonic drug for the liver and kidney; it also promotes blood circulation and
alleviates pain. The Chinese drug name “Xu-Duan” implies its therapeutic effects on promoting tendon
and bone regeneration. It is therefore often used for bone and related disorders, such as muscle injuries,
bone fracture, lower back pain and knee weakness.

An animal study has demonstrated that feeding Dipsaci Radix to normal mice resulted in an
increase in bone/tissue volume ratio as well as an increase in trabecular bone number, implying an
elevation of bone density and altered bone histomorphology [98]. In another study, when an extract
was fed to ovariectomized rats starting at four weeks after removal of the ovary and lasted for 16 weeks,
loss of bone mass was prevented, which was supported by decreased levels of bone turnover markers
such as serum alkaline phosphatase, osteocalcin, and urinary deoxypyridinoline. Treatment with
the plant extract also enhanced bone biomechanical strength and slowed down the deterioration of
trabecular microarchitecture [99]. More recently, Dipsaci Radix was reported to prevent the loss of
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bone mass in a hind-limb unloading rat model; it exhibited beneficial effects on mechanical strength,
bone mineral density, bone mineral contents, bone turnover markers, and the changes in urinary
calcium and phosphorus excretion [100].

The osteoprotective activity of Dipsaci Radix has been associated with its saponin constituents.
Thus, the total saponin fraction of the extract induced cell maturation and differentiation in MC3T3-E1
and primary osteoblastic cells through an enhancement of BMP-2 formation [101]. Further mechanistic
studies revealed that the cell differentiation activity was associated with an increase in the expressions
of phosphorylated-Smad1/5/8, p-Erk1/2, p-p38 and Runx2. Blocking the BMP-2 expression by
noggin significantly reduced the levels of osteoblastic differentiation [102]. A saponin constituent,
asperosaponin VI (13, Figure 3), was demonstrated to be an active ingredient [103]. In another report,
a dichloromethane fraction of Dipsaci Radix was shown to enhance the osteoblastic differentiation
of alveolar bone marrow-derived mesenchymal stem cells; and a triterpene glycoside, hederagenin
3-O-(2-O-acetyl)-α-L-arabinopyranoside (14, Figure 3), was found to be active in increasing the alkaline
phosphatase activity and protein expressions of sialoprotein and osteocalcin in the differentiated
cells [104]. In addition, in a zebrafish model for screening anti-osteoporotic activity, the column
fractions of Dipsacus Radix [105], as well as asperosaponins V (15, Figure 3) and VI [106], displayed
protective effects.

3.6. Drynariae Rhizoma [Rhizome of Drynaria fortunei (Kunze ex Mett.) J. Sm. (syn. D. roosii Nakaike)]

Drynaria Rhizoma, literally meaning “healing broken bone” in Chinese language, is a renowned
liver- and kidney-tonifying herb for use in bone fracture, traumatic damages, low back pain,
and muscle weakness.

In vitro studies have demonstrated an extract of D. fortunei being able to suppress osteoclast
activities such as down regulation of osteopontin and osteonectin mRNA expressions [107,108].
The bone protective effect seemed to be associated with interrupting the trafficking of pro-cathepsin
K in osteoclasts [109]. More recently, the total flavonoids from Drynariae Rhizoma were reported to
suppress the expression of cathepsin K [110,111]. In animal studies, the herbal drug increased bone
density in normal mice [112] and improved cancellated bone ultra-microstructure as well as proline
hydroxylation level in ovariectomized rats [113]. Improved biomechanical and histomorphometric
conditions in ovariectomized rats were also reported [114].

In an attempt to identify the active principles from D. fortunei, eleven flavonoids were obtained
by bioactivity-guided isolation procedures and all were found to display proliferative activity in
UMR-106 cells [115]. These active compounds were, namely, 3-O-β-D-glucopyranosyl-7-O-α-L

-arabinofuranosyl-kaempferol (16, Figure 1), (2S)-5,7,3’,5’-tetrahydroxylflavanone-7-O-neohesperidoside
(17, Figure 5), (2R)-naringin (18, Figure 5), (S)-naringenin 7-O-β-D-glucoside (19, Figure 5),
(2S)-5,7,3’,5’-tetrahydroxylflavonone 7-O-β-D-glucopyranoside (20, Figure 5), 3-O-α-L-rhamnosyl-7
-O-β-“D-glucopyranosyl-kaempferol (21, Figure 1), luteolin 7-O-β-D-neohesperidoside (22, Figure 1),
5,7-dihydroxychromone 7-O-β-D-glucopyranoside (23, Figure 4), maltol glucoside (24, Figure 4),
dihydroxychromone 7-O-β-D-neohesperidoside (25, Figure 4), and (´)-epicatechin (26, Figure 5) [115].
In another study, five flavonoid derivatives, i.e., naringenin (27, Figure 5), kurarinone (28, Figure 5),
kushennol F (29, Figure 5), xanthogalenol (30, Figure 2), and sophoraflavanone G (31, Figure 5),
demonstrated promoting activity in the differentiation and mineralization of UMR-106 cells,
likely to achieve through the activation of the estrogen receptor signaling pathway [116]. On the
other hand, naringin, (2S)-5,7,3’,5’-tetrahydroxylflavonone 7-O-neohesperidoside (17, Figure 5),
and 5,7-dihydroxy-chromone 7-O-β-D-neohesperidoside (25, Figure 4) were shown to stimulate
UMR-106 cell proliferation and alkaline phosphatase activity; they enhanced the ratio of osteoprotegrin
and RANKL mRNA expression [117]. Naringin [118] and total flavonoids [119] were also able
to promote the proliferation and osteogenic differentiation of human bone mesenchymal stem
cells. Using the MC3T3-E1 cells, both Drynariae Rhizoma extracts and naringin promoted cell
proliferation and differentiation [120]. They reduced bone resorption in a rat model of alveolar
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bone resorption as well [120]. Increased trabecular-rich bone mineral density at distal femur and
lumbar spine in ovariectomized mice was reported for the total flavonoids; the activity was associated
with the stimulation of estrogen receptors α and β [121] and ostocalcin-involved endochondral
ossification [114]. The total flavonoid fraction has also been shown to induce osteoblastic differentiation
from bone marrow mesenchymal stem cells, with increased mRNA expressions of the Wnt/β-catenin
signaling pathway related factors such as β-catenin, lymphoid enhancer-binding factor (LEF)-1 and
cycline D [122]. In another study, D. fortunei extract was found to promote osteoblast maturation
through regulating bone differentiation-related gene expressions such as those of osteoprogenitor
proliferation-related insulin-like growth factor (IGF)-1, BMP-2 and BMP-6 [123].
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All in all, naringin (18, Figure 5) (which is also rich in citrus fruits) appeared to be the major
osteo-active ingredient of Drynaria furtunei [124]. Thus, it was shown to promote in vitro osteoblastic
proliferation and differentiation in stem cells and osteoblast cell lines [117,118,125–133], and the
activity might involve an increase in BMP-2 expression via the phosphoinositide 3-kinase (PI3K),
Akt, c-Fos/c-Jun and AP-1-dependent signaling pathway [126], the BMP-4 and Wnt-β-catenin
pathway [131], and/or an upregulation of microRNA-20a and down-regulation of the peroxisome
proliferator-activated receptor γ (PPARγ) [133]. In a study of the potential application of naringin
for regenerative treatment of inflammation-induced bone injury, co-administration of TNF-α and
naringin to bone marrow mesenchymal stem cells resulted in a protection of the TNF-α-induced
damages such as cell death, suppressed alkaline phosphatase activity and expressions of Runx2 and
Osx [134]. The protective activity was related to inhibition of the NF-κB pathway [134] On the other
hand, the anti-osteoclastogenic property of naringin was demonstrated in both mouse and rabbit
osteoblasts [135]. It inhibited osteoclast formation and bone resorption in RAW 264.7 cells [136],
possibly as a result of an inhibition of RANKL-induced NF-κB and phosphorylation of ERK [137].
Apoptosis of RAW 264.7 cells has also been observed [138].

Animal studies further indicated the osteoprotective property of naringin. In mice and rats,
it reversed the ovariectomy-induced osteoporosis as demonstrated by increased bone mineral density,
bone volume, trabecular thickness, polar stress-train index, as well as the biomechanical strength
(ultimate load and energy for breaking) [128,129,138]. Similarly, in a rat model of retinoic acid-induced
osteoporosis, treatment with naringin resulted in higher femur bone mineral density, improved bone
weight coefficient, bone size, and bone ash [127,139]. The effect of naringin has also been evaluated
in orchidectomized male rats and it increased the levels of antioxidant status, plasma IGF-1, bone
mineral density and calcium contents in the femur and lumbar; at the same time, the fecal and urinary
excretion of calcium, as well as the plasma TRAP activity, were suppressed [140]. In senescent male
rats, dietary supplementation with naringin resulted in an improved bone mineral density at the distal
metaphyseal area as well as lowered deoxypyridinoline level, but bone formation did not appear to
be affected (no effect on osteocalcin was observed, with modest modulation of tibial BMP-2 mRNA
expression) [141]. Using a titanium-induced diabetic mouse model of calvarial osteolysis, treatment
with naringin promoted new bone formation as demonstrated by elevated calvaria thickness, bone
volume, midline suture area, and osteocalcin level [142]. In a study of the osteogenesis potential of the
human periodontal ligament stem cells, a transplant of the naringin-treated cells in mice showed the
presence of early osteoblast development and trabecular bone tissue, in which expressions of bone
γ-carboxyglutamate protein (BGP) and osteopontin were detected [132].

The potential use of naringin in bone healing and repair has also been explored. Grafts
containing naringin and collagen matrix for the treatment of experimental bone defects in rabbits
suggested that the compound could promote new bone formation [143]. An implant of porous
gelatin composite containing naringin was found to enhance osteogenic proliferation and nodule
formation in the rabbit calvarial bone [144]. In a controlled-release nanoscaffold model incorporated
with naringin, it supported osteoblast adhesion, proliferation, differentiation, and mineralization of
MC3T3-E1 cells; and the same nanoscaffold suppressed osteoclast formation in a mouse calvarial
critical size defect organ culture model [145]. In a study to determine the effect of naringin on wear
debris-associated osteolysis in RAW 264.7 cells, naringin treated with polymethylmethacrylate particles
could suppress osteoclastogenesis induced by the particles [146]. When the polymethylmethacrylate
particles were implanted on the calvariae of mice followed by treatment with naringin, results
demonstrated a suppression of osteolysis [135]. Using the mouse air pouch model, local injection
of naringin ameliorated the particle-induced inflammatory tissue response and subsequent bone
resorption [146,147]. Oral treatment with naringin in a tibia pin-implantation mouse model also
demonstrated suppression of periprosthetic bone resorption [147].

Apart from the above flavonoids, phenolic compounds [including phloroglucinol, protocatechuic
acid ethyl ester, 2-amino-3,4-dimethyl benzoic acid, 3-(3,5-dimethyl-pyrazol-1-yl)-benzoic acid,
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chlorogenic acid, syringic acid, trans-ferulic acid, (´)-epigallocatechin, epigallocatechin gallate,
quercetin dehydrate, luteolin and emodin] have been identified from a fraction of Drynariae Rhizoma
that exhibited anti-osteoporotic activity [148].

3.7. Ecliptae Herba (Above-Ground Parts of Eclipta prostrata L.)

Ecliptae Herba, “Mo-Han-Lian” in Chinese medicine, has tonifying effects on liver and kidney and
is used as a tonic agent to treat problems arising during aging, such as fatigue and knee weakness. It is
often prescribed, in combination with other herbs, for the treatment of menopausal syndrome [149].

A bioactivity-guided isolation has led to the identification of diosmetin (32, Figure 1),
3’-hydroxybiochanin A (33, Figure 6), and 3’-O-methylorobol (34, Figure 6) as active principles to
increase the alkaline phosphatase activity in primary culture of mouse osteoblasts [150]. The volatile
fraction and ethanolic extract of the herbal drug displayed stimulatory activity on osteoblast
proliferation and alkaline phosphatase activity [151]. In ovariectomized rats, treatment with an
aqueous extract of E. prostrata led to down-regulation of RANKL expression and decreased serum
interleukin-6 levels, together with an elevation of serum calcitonin. No effects on osteoprotegerin and
parathyroid hormone were observed in the study [152].
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Echinocystic acid (35, Figure 3) is an anti-inflammatory [153,154] and anti-hepatitis C virus
ingredient [155] of E. prostrata. The osteoprotective property of the compound was recently shown
in ovariectomized rats, in which echinocystic acid improved trabecular architecture, as evidenced
by higher levels of bone volume/tissue volume ratio, trabecular number and trabecular thickness,
as well as lower levels of trabecular separation and structure model index. The biochemical marker
profile was also improved by elevations of osteocalcin, alkaline phosphatase, deoxypyridinoline, and
urinary calcium and phosphorus levels. At the same time, the serum levels of IL-1β and TNF-α
decreased [156].

Another compound, wedelolactone (36, Figure 4), was obtained from the ethyl acetate extract
of E. prostrata and shown to inhibit osteoclast proliferation and differentiation. Thus, the compound
inhibited RANKL-induced TRAP activity and reduced the number of multinucleated osteoclast-like
cells when tested in the RAW 264.7 cell line [157].

3.8. Epimedii Folium [Leaf of Epimedium brevicornum Maxim., E. sagittatum (Siebold and Zucc.) Maxim.,
E. pubescens Maxim. or E. koreanum Nakai]

Epimedii Folium, “Yin-Yang-Huo” in Chinese medicine, is a liver- and kidney-tonic often used
for the treatment of general physical weakness, discomfort and weakness in joints (e.g., back and
knees) and arthritic pain. The Epimedium herbs are also allegedly aphrodisiacs. A number of medicinal
formulas for treating bone disorders contain Epimedii Folium as major ingredient, and some of them
have demonstrated in vitro and in vivo activities in experimental studies [158].

A variety of chemical ingredients have been found in Epimedii Folium, including flavonoids,
lignans, ionones and terpenoids; by far the number of flavonoids exceeds other chemical types.
Interestingly, many of the Epimedium flavonoids are phytoestrogens and they contain a prenyl
(pentenyl) group at the C-8 position; some are glycosylated at other positions as well [159].
In ovariectomized rats, the flavonoid fraction of the plant drug has shown inhibitory activity against
bone resorption and stimulating activity in bone formation [160]. The total flavonoid fraction also
exerted anabolic effect in ovariectomized rats by promoting osteogenic activity (as indicated by
increased serum levels of osteocalcin and bone mineral density, bone volume/tissue volume ratio,
trabecular number, as well as improved bone histomorphometric parameters) and suppressing
adipogenic differentiation of bone marrow stromal cells [161]. The total flavonoids of Epimedium
have also been found to decrease mRNA expression levels of fat generation factors such as
peroxisome proliferator activated receptor gamma 2 (PPARγ-2) and CCAAT enhancer-binding
protein-α (C/EBPα), while promoting osteoblast differentiation in bone marrow stromal cells obtained
from ovariectomized rats [162]. In a 24-month randomized double-blinded placebo-controlled clinical
trial in postmenopausal women, Epimedium-derived flavonoids improved bone mineral density in the
femoral neck and lumbar spine together with a decrease in urinary levels of deoxypytidinoline [163].

Among the chemical constituents of Epimedium, icariin (37, Figure 1), a prenylated flavonol
diglycoside, is most studied for its potential applications in promoting bone health and other
pharmacological effects [158,164,165]. In ovariectomized rats, icariin displayed anti-osteoporotic
activity as demonstrated by increased bone density [166], improved bone biomechanical strength
and histopathological parameters [167,168], as well as an increase in the mRNA expression ratio
of osteoprogeterin (OPG)/RANKL in tibia [169]. The involvement of bone mesenchymal stem
cell differentiation and increase in the secretion of early osteoblast differentiation factors such
as osteocalcin, collagen 1, and Runt-related transcription factor 2 (Runx2) were demonstrated in
animal models [170]. While icariin could protect ovariectomized animals from bone loss, it lowered
adipogenesis in bone marrow as well [171]. Icariin also protected against in vivo glucocorticoid
(dexamethasone)-induced osteoporosis and in vitro glucocorticoid-induced osteocyte apoptosis [172].
After feeding dexamethasone-treated mice with icariin, serum calcium was increased together
with a decrease in urine calcium. Icariin reversed trabecular deteriorations and stimulated bone
remodeling, as evidenced by increased osteoprogeterin (OPG) and FGF-23 and decreased CTX and
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TRAP-5b levels. In the same experiment, suppression of the mRNA expressions of MMP-9 and
CAII in tibia was also observed [173]. In a study to demonstrate the role of osteoprogeterin on
the activity of icariin, the anabolic and anti-resorptive effects of icariin on trabecular bone were
found to diminish in an OPG-knockout mouse model [174]. In contrary, however, a more recent
study using OPG-knockout mice demonstrated that icariin was able to stimulate new bone formation
and prevent OPG-deficient-induced bone loss [175]. Activation of the target genes of β-catenin
signaling (such as AXIN2, DKK1, TCF1, and LEF1) was observed, leading to the proposal that the
Wnt/β-catenin-BMP signaling was involved [175]. In a study to examine the effects of icariin on signal
messengers, the osteogenic activity was related to the PI3K-AKT-eNOS-NO-cGMP-PKG signaling
pathway [176]. A recent study demonstrated that, when the bone marrow stromal cells obtained
from ovariectomized rats were transplanted into nude mice, treatment with icariin could restore the
osteogenic differentiation and mineralization of the ovariectomy-derived stem cells [177].

In vitro studies also support the osteoprotective potential of Epimedii Folium. Flavonoid
ingredients of Epimedium such as icariin, epimedin B (38, Figure 1) and epimedin C (39, Figure 1)
were found to possess proliferative property in osteoblast cell lines such as the osteoblast-like
UMR-106 cells [178], rat bone mesenchymal stem cells, and human bone mesenchymal stem
cells [179,180]. The in vitro stimulatory effect on osteogenic proliferation and differentiation was
shown to be associated with the up-regulation of BMP-2 [180–185], BMP-4 [186], Runx2 [183,186–188],
collagen 1α2 [183,188], osterix (Osx) [183,187,188] inhibitor of DNA-binding 1 (Id-1) [186],
Smad4 [181,185], Cbfa1/Runx2 [181,185], OPG [181,185], and nitrogen oxide production [181],
as well as down-regulation of RANKL [181,187]. Icariin did not activate estrogen response element
(ERE)-luciferase activity in UMR-106 cells, but it increased estrogen receptor α phosphorylation
at Ser118 [169,189]. The anabolic effect was attributed to the activation of estrogen receptor
involving ERK and JNK pathway [190]. In a study using interleukin-1β-stimulated SW1353
chondrosarcoma cells, icariin decreased the levels of receptor activator of nuclear factor-κB (RANK)
and RANKL, together with an up-regulation of phosphorylated-Erk1/2 and down-regulation of
phosphorylated p38. Its regulation on OPG-RANKL-RANK was therefore proposed to be mediated
through the mitogen-activated protein kinase (MAPK) pathway [191,192]. Using a rat model of
corticosterone-induced osteoporosis, feeding with icariin resulted in an alteration of mRNA expressions
of 11 genes (compared to the normal levels) in the bone marrow stromal cells; five of these genes
were involved in osteoblast differentiation, cell cycle regulation and the Notch signal pathway [193].
Under hypoxic conditions, icariin was able to attenuate oxidative stress and apoptosis in rat calvarial
osteoblasts, while preserving the osteogenic potential (as revealed by increased levels of Runx2, oxterix
and BMP-2 gene expression and alkaline phosphatase activity) [194]. In a search for potential treatment
of steroid-associated osteonecrosis of femoral head, icariin was found to induce P-glycoprotein
expression, decreased oxidative stress, and promoted osteogenesis in bone marrow stem cells obtained
from patients with steroid-associated osteonecrosis of femoral head [195].

The osteogenic activity of icariin has made it a promising agent for bone tissue engineering [196].
Thus, in a mouse calvarial defect model, transplants containing a mixture of icariin and calcium
phosphate cement led to significant new bone and blood vessel formation, suggesting potential use
for bone inductive tissue engineering [182,196]. The icariin-loaded porous β-tricalcium phosphate
ceramic disks were shown to be favorable to supporting the proliferation and differentiation of
Ros17/28 cells [197]. An icariin/tricalcium phosphate porous scaffold enhanced new bone and
vascular formation after 12 weeks of treatment in a rabbit model of femoral head osteonecrosis [198].
Delivery porous PHBV scaffolds containing icariin were found to enhance the proliferation of
human osteoblast-like MG-63 and the pre-osteoblast MC3T3-E1 cells [199]. Icariin displayed in vitro
inhibitory activity on inflammatory osteoclastogenesis in RAW264.7 cells induced by titanium particles,
suggesting that it might be useful for the prevention and treatment of wear particle-induced osteolysis
occurred after joint replacement [200]. Such protective effect was further demonstrated in a mouse
calvarial model of titanium particle-induced osteolysis [201]. In addition, its potential application in
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cartilage tissue engineering was suggested by the observation that icariin promoted chondrogenic
differentiation of bone marrow stem cells but had no effect on hypertrophic differentiation [202].
In another study, icariin was added into cell-hydrogel constructs derived from neonatal rabbit
chondrocytes and collagen type 1, and such an icariin-containing construct accelerated the formation
of chondroid tissue, improved the restoration efficiency of supercritical-sized osteochondral defects
in rabbit, and enhanced the integration of new cartilage with subchondral bone [203]. When a drug
delivery system composed of icariin, vancomycin and injectable calcium phosphate cement was
implanted in rabbits suffering from Staphylococcus- contaminated bone defects, the bone defects
were completely repaired after 12 weeks, showing the potential for treating contaminated bone injury
or infectious bone diseases [204]. In a study of the effect of combined mechanical strain and icariin
treatment on osteogenic proliferation and differentiation in MC3T3-E1 cells, the combination was found
to be able to activate the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway to
improve the cellular proliferation and differentiation better than icariin treatment alone [205].

Icariin inhibited bone resorption both in vitro and in vivo [206,207]. The anti-osteoclastic property
was demonstrated by inhibition of osteoclast formation induced by RANKL and macrophage
colony-stimulating factor (M-CSF) in mouse bone marrow culture [208]; it also suppressed osteoclast
differentiation in both osteoblast-preosteoclast co-culture and osteoclast progenitor cell culture,
and reduced motility and bone resorption activity in isolated osteoclasts [209]. Icariin suppressed
the osteoclast differentiation marker TRAP, IL-6, tumor necrosis factor (TNF)-α, RANKL, as well as
the synthesis of cyclooxygenase-2 and prostaglandin E2. The anti- osteoclastic activity seemed to be
related to the suppression of the p38 and c-Jun N terminal kinase (JNK) pathway [210].

Besides icariin, a number of flavonol constituents of Epimedium are also osteo-active. Thus,
epimedins A (40, Figure 1), B (38, Figure 1), C (39, Figure 1) and icariin were demonstrated to interact
with MC3T3-E1 cells in a biomembrane extraction model [211], and epimedin B and epimedin C
promoted the proliferation of UMR-106 cells [178]. In a zebrafish model of anti-osteoporosis, epimedin
A and baohuoside-1 (icarisinde II) (41, Figure 1) were found to be active [212]. Baohuoside-1 also
suppressed the formation and activity of osteoclasts by inhibiting proliferation and differentiation,
inducing apoptosis and cell cycle arrest, and suppressing bone resorption [213]. In osteoblast-like
UMR-106 cells, baohuoside-1 stimulated cell proliferation rate, alkaline phosphatase activity, and
OPG/RANKL mRNA expressions [189]. Maohuoside A (42, Figure 1) isolated from E. koreanum
was found to promote osteogenesis of rat and mouse mesenchymal stem cells via the BMP and
MAPK signaling pathways [214,215]. Sagittatoside A (43, Figure 1) selectively activated ERE-luciferase
activity via estrogen receptor α and it induced ER-α phosphorylation at serine-118 residue [189]. Both
compounds seemed to exert their actions by ligand-independent activation of ER-α. Ikarisoside A
(44, Figure 1) was shown to inhibit osteoclastogenic differentiation in RAW 264.7 cells via JNK and
NF-κB signaling pathways [216].

Icariin is metabolized into a number of metabolites, including icaritin (45, Figure 1), icariside I
(46, Figure 1), icariside II (baohuoside-1) (41, Figure 1), desmethylicaritin (47, Figure 1), as well as
anhydroicaritin (48, Figure 1) and its glycosides [217,218]. Both icariside II and icaritin enhanced the
differentiation and proliferation of osteoblasts and facilitated matrix calcification; they also inhibited
osteoclastic differentiation and reduced the motility and bone resorption activity of osteoclasts [209].
Icariside II was reported to display higher potency than icariin in promoting osteoblast proliferation
and differentiation [219]. The osteogenic activity of icariside II could be blocked by estrogen receptor
inhibitor ICI-182780, indicating the involvement of estrogen signaling pathway, although icariin itself
may act through non-estrogenic mechanisms [219]. On the other hand, icaritin was able to enhance
osteoblastic differentiation of mesenchymal stem cells (as indicated by increased mRNA expressions of
relevant markers of osteoblastogenesis) [220,221]; it also inhibited adipogenesis, which was associated
with the suppression of glycogen synthase kinase-3β (GSK3β) and peroxisome proliferator-activated
receptor γ (PPARγ) [221]. Icaritin was shown to possess anabolic and anti-resorptive properties
on osteoporotic bone in ovariectomized rats, but the beneficial effects seemed to be dependent on
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the intervention timing relative to estrogen depletion. Rats treated with icaritin one month after
ovariectomy were protected, but those treated at 3-month post-operation did not respond to the
effects of icaritin [222]. The compound was also found to reduce the incidence of steroid-associated
osteonecrosis with inhibition of intravascular thrombosis and extravascular lipid-deposition [223].
Icaritin was shown to display synergistic effect with icariside II in suppressing the growth of
pre-osteoclastic RAW 264.7 cells [224].

Icaritin has been studied for potential applications in fabricated scaffold materials for bone healing
by incorporating the compound into a porous poly(l-lactide-co-glycolide)/tricalcium phosphate
(PLGA/TCP) scaffold [225]. The structure, composition, and mechanical properties of the scaffold were
characterized and it was found to facilitate the attachment, proliferation and osteogenic differentiation
of bone marrow mesenchymal stem cells [226,227]. When tested in vivo in rabbit bone tunnel
model, muscle pouch model, or an ulnar bone defect model, the scaffold promoted new bone
formation within the bone defect and enhanced new vascularization in the rabbit muscle pouch
experiment [228,229]. The potential application of such scaffold for the prevention of hip joint collapse
was also explored [230].

3.9. Erythrina variegata L.

The bark of Erythrina variegata is a folkloric medicine used for treating arthritic pain.
Administration of an extract to ovariectomized rats for 14 weeks resulted in an increase in serum

osteoprotegrin, alkaline phosphatase and urinary deoxypyridinoline levels [231]. Histomorphometric
analysis of the proximal end of the tibia showed the prevention of estrogen deficiency-induced decrease
in trabecular thickness and trabecular area, as well as restoring the increase in trabecular separation in
a dose-dependent manner [231]. It also suppressed the up-regulation of cathepsin K mRNA and the
down-regulation of osteoprotegrin mRNA in the tibia [232]. In vitro studies indicated that the plant
extract decreased TRAP-positive cell numbers in RANKL-treated RAW 264.7 cells [232]. The protective
effects on bone properties were likely mediated by inhibiting bone resorption via the suppression of
osteoclast differentiation and maturation. A series of prenylated isoflavones such as 6-prenylgenistein
(49, Figure 6), 8-prenylgenistein (50, Figure 6), and 6,8-diprenylgenistein (51, Figure 6) were isolated
from the active fractions, and a structure-activity relationship analysis indicated the prenylation at C-8
was most active in promoting UMR-106 cell proliferation, differentiation and mineralization [233].

3.10. Eucommiae Cortex (Stem bark of Eucommia ulmoides Oliv.)

Eucommiae Cortex is derived from the stem bark of Eucommia ulmoides. It is a common liver- and
kidney-tonic often used in Chinese medicine for strengthening general physical weakness, muscle
pain, and bone disorders such as low back pain and weakness in the knees and other joints.

In ovariectomized rats fed with Eucommiae Cortex extract, the femur biomechanical quality
and trabecular microarchitecture were improved without hyperplastic effect on uterus [234].
When adolescent female rats were treated with the bark extract, promotion of longitudinal bone growth
was observed, with increased BMP-2 and IGF-1 expressions in the proliferative and hypertrophic
zones [235]. In a disuse-induced osteoporosis model of hind-limb suspended rats, the Eucommia
bark extract could prevent bone loss as indicated by decreased levels of bone turnover markers;
it enhanced the biomechanical bone strength and prevented the deterioration of trabecular bone
microarchitecture [236].

Three of the iridoid glycoside ingredients, geniposidic acid (52, Figure 7), geniposide (53, Figure 7)
and aucubin (54, Figure 7), exhibited proliferative activity in osteoblasts; and at the same time,
they suppressed the growth of osteoclasts [237]. The in vitro and in vivo osteoprotective effects have
also been ascribed to the lignan constituents [238]. In addition, 5-hydroxymethyl-2-furaldehyde
(55, Figure 4) was reported to enhance the osteogenic differentiation of rat bone mesenchymal
stem cells [239].
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In an attempt to explore the potential utilization of other plant parts of E. ulmoides, an ethanol
extract of the leaves were found to promote the growth of MC3T3-E1 cells and suppress the
H2O2-indcued apoptosis [240]. It also prevented ovariectomy-induced osteoporosis and obesity
in rats [241]. On the other hand, the total glycosides obtained from the seeds of E. ulmoides increased
bone mineral density, bone volume/tissue volume ratio, connectivity density, trabecular number,
and trabecular thickness in normal rats [242].
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3.11. Ligustri Lucidi Frustus (Fruit of Ligustrum lucidum W.T. Aiton)

Ligustri Lucidi Fructus is a tonic often included in Chinese herbal prescriptions for vitalizing the
“liver and kidney” functions; it is indicated for “weakness of the loin and knees”, which may represent
a symptom of bone deterioration.

A recent review article on the anti-osteoporosis activity of Ligustrum lucidum fruit has summarized
the current knowledge about this herb [243]. Several ingredients have been demonstrated to display
potential anti-osteoporosis activities in cell-based and/or animal models. Thus, oleanolic acid
(56, Figure 3) and its glycosidic and synthetic derivatives have been known to be inhibitors of osteoclast
formation [244–247]. They inhibited the formation of osteoclast-like multinucleated cells induced by
1α, 25-dihydroxyvitamin D3. Apart from the anti-osteoclastogenic activity, oleanolic acid was able to
promote osteoblastic differentiation and change the gene expression profile of bone marrow stromal
cells obtained from corticosterone-induced osteoporotic rats [193]. In ovariectomized rats, oleanolic
acid exerted osteoprotective effect by increasing the population of osteoblasts as well as the levels of
osteocalcin and the Runt-related protein-2. It also stimulated the osteoblastic differentiation of bone
mesenchymal stem cells in vitro. Gene expression profile analysis suggested that the effect might be
related to the Notch signaling pathway [248].

Oleanolic acid acetate was demonstrated to inhibit receptor activator of nuclear factor-κB
(RANKL)-induced osteoclast differentiation; and it attenuated lipopolysaccharide-induced bone
erosion in mice [249].

Another triterpene ingredient of L. lucidum, ursolic acid (57, Figure 3), has been found to
stimulate osteoblast differentiation and mineralization by activating osteoblast-specific genes such
as mitogen-activated protein kinases, nuclear factor-κB, and activator protein-1 [250]. It also
promoted bone formation in a mouse calvarial bone formation model [251]. In addition, recent
studies showed that ursolic acid was able to inhibit RANKL-induced osteoclast differentiation and
down-regulate the NFATc1-regulated osteoclast marker genes [252,253]. Using a mouse model of
titanium particle-induced osteolysis, ursolic acid protected calvarial bone loss and decreased the
population of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts [253].

Two screening and bioactivity-guided isolation reports on the osteoprotective activity of
L. lucidum have identified a number of active compounds [254,255]. While the screening results
are considered to be preliminary at this time, the active compounds were reported to promote the
proliferation of osteoblast-like UMR-106 cells, increase the alkaline phosphatase activity, and/or
protect the cells from hydrogen peroxide-induced damage. The active compounds include tyrosol
(58, Figure 4), hydroxytyrosol (59, Figure 4), salidroside (60, Figure 4), acteoside (61, Figure 2),
oleoside dimethyl ester (62, Figure 7), oleoside-7-ethyl-11-methyl diester (63, Figure 7), oleuropein
(64, Figure 7), nu(e)zhenide (65, Figure 7), GI-3 (66, Figure 7), luteolin 7-O-β-D-glucopyranoside
(67, Figure 7), apigenin (68, Figure 1), apigenin 7-O-β-D-glucopyranoside (69, Figure 1),
and apigenin 7-O-β-D-(6”-O-acetyl)-glucopyranoside (70, Figure 1). Among these compounds,
tyrosol, hydroxytyrosol and oleuropein are also present in the olive oil, which has been reported
to possess anti-osteoporosis property [256]; and salidroside was active in suppressing diabetes-related
osteoporosis in animal model [257].

3.12. Morindae Officinalis Radix (Root of Morinda officinalis F.C. How)

Morindae Officinalis Radix (“Ba-Ji-Tian” in Chinese medicine) is a well-known tonic for the Yang
component of the kidney. It is renowned for use to strengthen tendon and bone, as well as to alleviate
arthritis. It is also used to treat menstrual disorder and female infertility.

Using a neurectomized disused osteoporotic mouse model, feeding with Morinda extract resulted
in both suppression of bone resorption and enhancement of bone formation. Thus, the thickness of
the hind-limbs, tibia failure load, tibia bone mineral density, tibia calcium and phosphorus contents,
and serum osteocalcin levels were elevated. In addition, the histomorphometrical parameters of the
tibia such as volume, length and thickness of trabecular bone and thickness of cortical bone were
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improved after treatment [258]. The polysaccharide-rich fraction of the plant was shown to increase
bone mineral density and decrease serum IL-6 and TNFα levels in ovariectomized rats [259]. However,
another study reported that, an ethanol extract of Mordina officinalis roots increased trabecular bone
mineral content and bone mineral density, the phosphorus and calcium levels and OPG, as well as
suppressed the levels of TRAP, ACTH and corticosterone, it did not reverse the levels of alkaline
phosphatase, IL-6, and TNFα [260]. The controversy has yet to be solved. The active ingredients
that inhibited osteoclastic bone resorption include physicion (71, Figure 4), rubiadin (72, Figure 4),
rubiadin-1-methyl ether (73, Figure 4), 2-hydroxy-1-methoxy-anthraquinone (74, Figure 4),
1,2-dihydroxy-3-methylanthraquinone (75, Figure 4), 1,3,8-trihydroxy-2-methoxyanthraquinone
(76, Figure 4), 2-methoxy-3-hydroxyanthraquinone (77, Figure 4), 2-methoxyanthraquinone
(78, Figure 4), and scopoletin (79, Figure 4) [261,262].

3.13. Podocarpium podocarpum (DC.) Yang et Huang [syn. Desmodium podocarpum DC.]

The whole plant of Podocarpium podocarpum is occasionally used in Chinese folk medicine for the
treatment of fever and cough.

The plant is known to contain cytotoxic phenylpropanoids [263] and flavonoids [264,265].
An ethanol extract of the plant exhibited anti-osteoporosis activity in ovariectomized rats, as shown
by inhibition of urinary calcium excretion and the activities of bone resorption markers such
as TRAP, cathepsin K, and deoxypyridinoline crosslinks; the bone quality (e.g., bone mineral
content, bone volume fraction, connectivity density, tissue mineral content, tissue mineral density,
and trabecular number) was improved [265]. When the isolated flavonoids were evaluated in
osteoblasts and osteoclasts, several of them exhibited stimulatory activity to enhance osteoblast
proliferation, increase alkaline phosphatase activity, and promote mineralized nodes formation;
at the same time, they suppressed osteoclastic TRAP activity. The active compounds include
podocarnone (80, Figure 6), luteolin (81, Figure 1), astragalin (82, Figure 1), afzelin (83, Figure 1),
kaempferitrin (84, Figure 1), rutin (85, Figure 1), quercetin-7-O-D-glucopyranoside (86, Figure 1),
genistein (87, Figure 6), laburnetin (88, Figure 6), wighteone (89, Figure 6), luteone (90, Figure 6),
and 7-O-methyl-luteone (91, Figure 6) [265]. Cajanin (92, Figure 6) was also reported to promote
osteoblast differentiation involving the MEK-ERK and Akt pathways, and it increased bone mineral
density, bone biomechanical strength, mineral apposition rate and bone formation rate in newborn
female rats [266].

3.14. Psoraleae Fructus (Fruit of Psoralea corylifolia L. [syn. Cullen corylifolium (L.) Medik.])

Psoraleae Fructus, literally meaning “bone-marrow tonic” in Chinese medicine, is a well-known
herbal drug for kidney-tonifying and bone-nourishing applications. The herbal drug is often used in
the treatment of general physical weakness, joint disorders, lower back pain and knee weakness.

Ovariectomized rats fed with Psoralea extract for three months showed an increase in serum
calcium and a concomitant decrease in urinary calcium excretion, suppression of the upregulated
serum osteocalcin level, and increase in bone mineral density [267]. In male mice, feeding with Psoralea
extract led to an increase in bone volume/tissue volume ratio; the bone trabeculae also increased in
thickness so that bone density was increased [268].

P. corylifolia is well known to contain furocoumarins such as psoralen (93, Figure 4) and
isopsoralen (94, Figure 4) [269,270]. Psoralen is an estrogen receptor-α agonist [271] and a photoactive
mutagen [270]. It has been used in photochemotherapy together with long-wavelength ultraviolet
irradiation (PUVA) for treating psoriasis, vitiligo and other skin problems. As far as bone disorders
are concerned, psoralen, when mixed with collagen matrix, was shown to stimulate local new bone
formation in the defected areas of a rabbit model of bone grafting, the outcome being better than those
grafted with collagen matrix alone [272]. Similar result was observed with the plant extract [273].
In ovariectomized rats, psoralen improved bone mass indicators including increased trabecular
thickness and decreased trabecular space. The osteoprotective effect was pointed to an association



Molecules 2016, 21, 239 23 of 52

with the Notch signaling pathway, thus possibly related to the stimulation of differentiation of bone
mesenchymal stem cells [274]. Using a rat model of corticosterone-induced osteoporosis, feeding
with psoralen resulted in an alteration of mRNA expressions of 12 genes (compared to the normal
levels) in the bone marrow stromal cells; five of these genes were involved in osteoblast differentiation,
cell cycle regulation and the Notch signal pathway [193]. In vitro studies have demonstrated that
psoralen promoted osteoblast differentiation in primary mouse calvarial osteoblasts as evidenced by
up-regulation of expressions of type-1 collagen, osteocalcin and bone sialoprotein [275]. The action
was likely associated with the activation of BMP signaling, including the expressions of BMP-2 and
BMP-4 genes, phosphor-Smad1/5/8 protein, osterix, and BMP reporter (12xSBE-OC-Luc) activity [275].
The compound was also shown to work on cartilages; it promoted cartilaginous gene expressions
(e.g., type-II collagen, aggrecan, and SOX-9) in rat chondrocytes [276] as well as in a tissue culture of
rat cartilage of lumbar intervertebral disc [277].

Isopsoralen (94, Figure 4) has been reported to promote osteogenic differentiation of bone marrow
stromal stem cells [278] and rat calvarial osteoblasts [279], as demonstrated by the elevation of alkaline
phosphatase activity, calcium salt sediment yield, osteocalcin, and calcified tubercle amount.

Psoralidin (95, Figure 4) is a coumestan derivative present in Psoralea corylifolia. It was reported to
be able to increase not only the bone density of lumbar vertebra and thigh bone of ovariectomized rats,
but also the maximum bending strength [280].

Besides coumarins, two flavonoid components of P. corylifolia, corylin (96, Figure 6) and bavachin
(97, Figure 5), were identified as active principles for osteoblastic stimulating activity in UMR-106
cells [281,282]. Bavachin and isobavachin (98, Figure 5) were demonstrated to stimulate rat calvarial
osteoblast proliferation and differentiation as well [283].

Neobavaisoflavone (99, Figure 6) was found to promote osteogenesis in MC3T3-E1 cells
as evidenced by enhancement of alkaline phosphatase activity, upregulation of bone-specific
matrix protein expressions including type 1 collagen, osteocalcin and bone sialoprotein [284].
Neobavaisoflavone also up-regulated the expressions of bone-specific transcription factors such as
Runx2 and osterix [284]. Activation of p38 phosphorylation was also observed. Taken together,
the osteogenic activity of neobavaisoflavone might act through activation of p38-dependent signaling
pathway to up-regulate the mRNA levels of Runx2 and osterix, thereby stimulating bone matrix
proteins expression [284].

Bakuchiol (100, Figure 4) is a meroterpene found in P. corylifolia. It had strong binding affinity for
estrogen receptor α. In ovariectomized rats, the compound reduced bone loss by increasing alkaline
phosphatase, serum estradiol, and bone mineral density [285]. In mouse primary calvarial osteoblasts,
bakuchiol enhanced cell differentiation [283].

Apart from the osteoblastic activities, P. corylifolia contains anti-osteoclastic constituents. Thus,
bavachalcone (101, Figure 4) was found to inhibit osteoclast formation from precursor cells, suppressing
the activation of MEK, ERK, and Akt (protein kinase B), as well as inducing c-Fos and NFATc1 [286].

3.15. Puerariae lobatae Radix [Root of Pueraria lobate (Willd.) Ohwi]

Puerariae lobatae Radix is the dried roots of Pueraria lobata. It is widely used in Chinese medicine
as a “cooling” agent for the treatment of fever and other “hot” diseases. Although this herbal drug
is not traditionally used for treating bone disorders, it has found applications for osteoporosis more
recently due to the presence of isoflavonoids such as daidzein and genistein, both of which are well
known soybean phytoestrogens. Since daidzein and genistein are beyond the scope of this review,
only other Pueraria isoflavonoids such as puerarin (102, Figure 6) will be discussed here. Puerarin is an
isoflavone possessing a structure of daidzein-8-C-glucoside, and its general pharmacological effects
have recently been reviewed [287,288].

Owing to the presence of phytoestrogen contents in Puerariae lobatae Radix, the plant has
been found to be able to prevent bone loss [289,290], enhanced bone mass, and promote osteoblast
proliferation and differentiation [291–293] in ovariectomized animals. In a parietal bone defect model
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of rabbit, treatment with a graft containing puerarin and collagen matrix stimulated new bone
formation [294]. Stimulation of new bone formation was also observed in a rat model of osteoblast
implant [295]. In the streptozotocin-induced diabetic rat model, puerarin treatment suppressed the
caspase-3 expression in osteoblasts and improved bone mineral density [296]. Puerarin prevented
osteonecrosis induced by alcohol in mice as well as in cultured bone marrow stromal cells [297]. While
the in vitro activity of puerarin has been shown to be dependent on estrogen receptors (see below),
a report on feeding puerarin diet to ovariectomized mice suggested the anti-osteoporotic action
was non-estrogen receptor mediated [298]. The osteoclast-inhibitory activity of puerarin was also
reported [299].

In vitro osteogenic properties of puerarin were also documented; it increased cell viability, alkaline
phosphatase activity, and mineral nodules formation in newborn rat osteoblasts [291,295,300,301].
The osteogenic activity has been proposed to be associated with the PI3K/Akt [300,302], p38 MAPK,
and Wnt/β-catenin pathways, and the activity could be blocked by estrogen receptor antagonist ICI
182780 [291,302]. Puerarin was also shown to exert anti-apoptotic activity on osteoblast via the estrogen
receptor-dependent ERK signaling pathway [303]. Using primary osteoblasts obtained from female
mice, bone anabolic activity of puerarin was demonstrated and the osteogenic effect was induced by
BMP-2 and NO synthesis, subsequently regulating Cbfa1/Runx2, osteoprotegerin, and RANKL gene
expressions [304]. The involvement of interleukin-6 mediated by estrogen receptor α [305], and the
NO/cGMP [306] pathways was also suggested. In MC3T3-E1 cells, puerarin promoted cell proliferation
which might be mediated by activation of the TGF-β1/Smad pathway [307]. In a study using rat
osteoblast-like UMR-106 cells, osteoblast differentiation, but not cell proliferation, was observed,
and the activity was estrogen receptor dependent [308]. In an attempt to study the osteogenic activity
of puerarin in non-human primate cells, baboon osteoblasts were found to be responsive to puerarin
by displaying increased rate of proliferation and elevated mRNA levels of alkaline phosphatase and
type-1 collagen, together with a decrease in the RANKL/OPG ratio [309]. Puerarin was recently
shown to reduce the alveolar bone loss and collagen destruction in a rat model of ligature-induced
periodontitis by inhibiting the production of RANKL, IL-1β, TNF-α, MMP-2 andMMP-9 [310].

Puerarin 6”-xyloside (103, Figure 6) has also been shown to possess anti-osteoporotic property on
ovariectomized mice [311].

3.16. Rehmanniae Radix [Root of Rehmannia glutinosa (Gaertn.) DC.]

Rehmanniae Radix is the dried roots of Rehmannia glutinosa; it is available in Chinese medicine
either raw (dried) or pre-treated with a steaming process. The steamed root is often used as a tonic
for its liver- and kidney-tonifying effects, and it has a long history of medicinal applications for the
treatment of joint weakness and arthritic pain.

An early in vitro study using osteoblasts demonstrated that the plant extract promoted
the proliferation, the alkaline phosphatase activity, mRNA expressions of bone-related genes,
and osteoprotegerin secretion [312] Its effects on osteoclasts, on the other hand, included decreased
formation of the TRAP(+) multinucleated cells as well as decreased resorption areas in a culture
of osteoclast precursors [312]. In vivo studies using ovariectomized rats revealed that the extracts
alleviated the decreased trabecular bone mineral density and it increased the cortical bone thickness
and the trabeculation of the bone marrow space [312]. The bone loss preventive effect of the plant was
also demonstrated in ovariectomized rats after 8-week treatment [313]. The treated group showed
significantly higher bone mineral density in the femur and lumbar when compared to the untreated
ovariectomized animals.

Acteoside (verbascoside (61, Figure 2)), a caffeoyl phenylethanoid glucoside, was identified
as an anti-resorption ingredient capable to reduce bone loss by blocking osteoclast activation [314].
The compound suppressed the effects of RANKL on osteoclast formation and differentiation from
bone marrow macrophages and RAW264.7 macrophages, through the inhibition of transcription
factors such as NF-κB, c-Fos and NFATc1. Furthermore, acteoside was found to increase the growth
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and differentiation of the UMR-106 [255] and MC3T3-E1 [315] cells; it also inhibited the X-ray
irradiation-induced decrease in cell viability and DNA synthesis in MC3T3-E1 cells [316].

3.17. Salviae miltiorrhizae Radix et Rhizoma (Root and rhizome of Salvia miltiorrhiza Bunge)

The root and rhizome of Salvia miltiorrhiza has been used to treat gynecological disorders such as
irregular menstruation, blood stasis, and abdominal pain.

In early studies, aqueous extracts of S. miltiorrhiza were reported to prevent trabecular bone loss
in ovariectomized rats [317] and steroid-treated rats [318]. In a rat model of alloxan-induced diabetic
osteoporosis, the plant extracts was shown to improve bone mineral density and increase the levels of
alkaline phosphatase and TRAP [319]. Using a bone graph model in rabbits, the S. miltiorrhiza extract
(mixed with collagen) increased bone formation by over 4-folds [320].

A number of chemical ingredients of S. miltiorrhiza have been shown to possess osteoprotective
activities [321]. Salvianic acid A (104, Figure 2) increased bone formation markers including alkaline
phosphatase and osteoprotegerin (OPG) in rat osteoblasts [322]. Salvianolic acid B (105, Figure 2) not
only prevented bone loss in steroid-treated osteoporotic rats, but also increased bone mass and improve
microvasculature in bones [323]. Tanshinone IIA (106, Figure 7) and cryptotanshinone (107, Figure 7)
were reported to prevent trabecular bone loss in the lumbar vertebrae in ovariectomized rats, without
evidence of demineralizing activity [324]. Indeed, tanshinone IIA and cryptotanshinone, as well as
two other ingredients in S. miltiorrhiza, tanshinone I (108, Figure 7) and 15,16-dihydrotanshinone
I (109, Figure 7), displayed in vitro activity against osteoclast differentiation [325,326], which might
result from the suppression of genes such as calcitonin receptor, c-Src kinase, integrin β3, and c-Fos
and NFATc1-induced RANKL, NF-κB, and COS-2/PGE2 [327–329]. More recently, another tanshinone
derivative, tanshinone VI (110, Figure 7), was demonstrated to inhibit osteoclast differentiation by
attenuating RANKL expression and NF-κB induction in a three-dimensional osteoblast/bone marrow
model [330].

In a recent study of the cathepsin K inhibitory activity of S. miltiorrhiza extracts as a potential
inhibitor of bone resorption, dihydrotanshinone and cryptotanshinone displayed anti-collagenase
activity [331].

The above studies have revealed the inhibitory activity of S. miltiorrhiza on osteoclast
differentiation without pinpointing the exact molecular mechanisms. In a study comparing the
in vitro efficacy of the Salvia extract and four major ingredients (i.e., tanshinone I, tanshinone IIA,
cryptotanshinone, and 15,16-dihydrotanshinone I), the anti-osteoclastogenic activity of the extract was
almost 1000 times higher than the sum of individual compounds. This suggested that the plant extract
must have contained other unknown active ingredients, some of which might have synergistic effects
with one another [326].

Apart from the anti-osteoclastogenic and anti-resorptive activities, the S. miltiorrhiza extract
have demonstrated enhancing effect on bone remodeling by regulating the gene expression of
alkaline phosphatase, OCN, OPG, and RANKL in MC3T3-E1 cells [332]. Salvianolic acids A and
B have been reported to stimulate osteoblast differentiation and suppress adipogenic differentiation
in prednisone-treated rats [322,323], likely acting through the activation of the ERK signaling
pathway [333].

3.18. Sambuci Caulis (Stem of Sambucus williamsii Hance)

Sambuci Caulis, derived from the stems of Sambucus williamsii, is known in Chinese medicine as
the “bone-healing wood”. It is often used for treating arthritic pain, joint disorders, traumatic damages
and bone fracture.

When administered to ovariectomized rats, an extract of S. williamsii increased serum calcium
levels, with a concomitant decrease in urinary calcium excretion [334]. It also suppressed the elevated
serum alkaline phosphatase and osteocalcin levels as well as the urinary deoxypyridinoline level
in ovariectomized rats, in addition to improvement of the biomechanical strength of cortical bone
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and trabecular bone mass [334]. In a similar experiment using mice, the plant extract increased tibial
bone mineral density and exerted beneficial effects on the microarchitecture of trabecular bone [335].
It suppressed the elevated Cbfa1 and cathepsin K mRNA levels and enhanced the OPG/RANKL
mRNA expression ratios in the tibia [335].

In vitro results are also available to demonstrate the osteoprotective activity of S. williamsii.
In UMR-106 osteoblast-like cells, the plant extract was found to increase the osteoprotegrin/RANKL
mRNA ratio, in favor of suppressing osteoclastogenesis [334]. In vitro study also showed that
the extract reduced the number of TRAP-positive cells in RANKL-induced RAW264.7 cells [336].
An active fraction obtained from elution by aqueous ethanol over D101 macroporous resin contained
lignans and phenolic acids. [336,337]. Subsequent studies led to the identification of (7R,8S)-ficusal
(111, Figure 2), (7R,8S)-ceplignan (112, Figure 2), (7R,8S)-dehydrodiconiferyl alcohol (113, Figure 2),
(7R,8S)-dehydrodiconiferyl alcohol-γ’-methyl ether (114, Figure 2), and samwinol (115, Figure 2)
as active principles to promote proliferation of the UMR-106 cells [338]. A lignan, namely,
(+)-erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropanyl)-2-methoxyphenoxy]-1,3-propanediol
(116, Figure 2) was reported to induce mRNA expressions of Runx2, alkaline phosphatase and
osteocalcin, and increase the OPG/RANKL ratio; it failed to bind to either ERα or ERβ and did not
activate ERE-luciferase activity via ER. The compound, however, induced phosphorylation of ERK
as well as the phosphorylation of ERα at serine-118. These finding suggested the involvement of a
ligand-independent, ERE-independent, and MAPK-mediated rapid nongenomic estrogen receptor
signaling pathway [339].

Apart from the lignans, vanillic acid (117, Figure 4) obtained from this plant was claimed to be
responsible for the bone protective effect through the MAP kinase (MEK/ERK)-mediated estrogen
receptor signaling pathway [340].

3.19. Sophorae Fructus (Fruit of Sophora japonica L. [syn. Styphnolobium japonicum (L.) Schott.])

Sophorae Fructus, derived from the fruits of Sophora japonica, is an herbal medicine to
“expel excessive heat” from the body and to “cool the blood”.

An isoflavone glycoside-rich extract of Sophorae Fructus was reported to up-regulate the growth
factors IGF-1 and TGF-β in rat bone marrow cells [341]. Genistein [342,343] and 8-prenylkaempferol
(118, Diagram 1) [344] isolated from the plant were shown to be active in promoting the differentiation
and maturation of osteoblasts. In particular, the latter was found to accelerate osteoblast maturation
through the bone morphogenetic protein-2/-38 pathway and activation of Runx2 transcription [344].

Apart from the fruit part, the seeds of Sophora japonica were found to contain estrogenic ingredients,
of which sophoricoside (119, Figure 6) displayed anti-osteoporotic activity in ovariectomized rats [345].
From the root of S. flavescens, on the other hand, (2S)-2’-methoxykurarinone (120, Figure 5) was shown
to inhibit osteoclast differentiation through the down-regulation of the RANKL-induced MAPKs and
c-Fos-NHATc1 signaling pathways [346].

3.20. Visci Herba [Twig of Viscum coloratum (Kom.) Nakai]

Visci Herba is the twigs of Viscum coloratum. The herbal drug is known for its medicinal effects for
treating arthritic pain and joint weakness.

A study has shown the inhibitory activity of an ethyl acetate fraction of Viscum coloratum on
the formation of osteoclast-like cells from mouse bone marrow cells [347]. In ovariectomized rats,
the extract displayed anti-osteoporotic activity as shown by increased bone mineral density, bone
mineral content, cortical bone thickness, and the X-axis strength index of tibiae. The following active
principles were identified: (+)-syringaresinol O-β-glucopyranoside (121, Figure 2), 2-homoeriodictyol
7-O-β-glucopyranoside (122, Figure 5), and viscumneoside I (123, Figure 5) [347]. Four flavonoids,
namely, 2-homoeriodictyol 7-O-β-glucopyranoside and viscumneoside I, viscumneoside IX
(124, Figure 5) and viscumneoside X (125, Figure 5), were also reported to inhibit the formation
of osteoclast-like multinuclear cells in mouse calvarial osteoblasts [348].
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3.21. Yams (Dioscorea spp.)

Many species of the Dioscorea genus are known as yams and they possess various medicinal
properties, including in vitro anti-osteoporotic potentials, such as D. spongiosa J.Q. Xi. M. Mizuno &
W.L. Zhao [349], D. alata L. [350], and D. batatas Decne. [351].

Diosgenin (126, Figure 4), a common steroidal saponin found in yam, could enhance the
proliferation of MC3T3-E1 cells with up-regulation of bone marker expressions such as Runx2 and
osteopontin [352].

Diarylheptanoids and lignans were obtained from D. spongiosa and some of them displayed
inhibitory activity against bone resorption in the parathyroid hormone-treated parietal bone of mice.
The active compounds included diospongin B (127, Figure 4), diospongin C (128, Figure 4), piperitol
(129, Figure 4), sesaminone (130, Figure 2), and syrinaresinol (131, Figure 2) [353]. From the same
plant species, a series of triterpene glycosides were demonstrated to exhibit stimulatory activities on
proliferation and/or mineralization, inhibitory activity on bone resorption and/or formation [354].

3.22. Miscellaneous Compounds

Formononetin (132, Figure 6) is present in Sophora flavescens Aiton [355], Astragalus mongholicus
Bunge and Trifolium pretense L. [356] and it has been shown to prevent ovariectomy-induced bone loss in
rats by increasing trabecular bone areas within the tibia and lumbar vertebrae [357]. It also up-regulated
BMP-2 expression in a high-throughput assay using MC3T3-E1 cells transfected with mouse BMP-2
promoter-luciferase [355]. In vitro osteoblastic activity was shown to be associated with the p38 MAPK
pathway, without observable effects on estrogen receptor and osteoclast differentiation [358]. In female
rats, the compound increased bone mineral density [358]; and in ovariectomized rats, it enhanced bone
biomechanical properties (maximum load and fracture load) and improved the chemical composition
of bone (water content and mineral content) [359].

Isoformononetin (133, Figure 6) is an isoflavone found in Pueraria lobate [360] as well as
other Chinese medicinal herbs such as Ormosia henryi Prain [361] and Oxytropis falcate Bunge [362].
It exhibited both anti-apoptotic and differentiation-promoting activities on osteoblasts that might
involve the activation of MEK/ERK and Akt pathways [266]. In ovariectomized osteopenic rats,
isoformononetin treatment restored trabecular microarchitecture, increased new bone formation,
increased the serum osteogenic marker (procollagen N-terminal propeptide), decreased resorptive
marker (urinary C-terminal teleopeptide of type 1 collagen) and diminished osteoblast apoptosis
in bone [363].

The polysaccharides of Lycium babarum L. has been shown to protect against
dexamethasone-induced osteoporosis in rats by improved bone mineral density, serum alkaline
phosphatase activity, and calcium and phosphorus contents. The urinary calcium/creatinine and
phosphorus/creatinine ratios were lowered after treatment with Lycium polysaccharides [364].
The root extract also promoted the proliferation and differentiation of C3H10T1/2 and MC3T3-E1
cells, as well as elevating the bone mineral density in ovariectomized mice [365].

From the root of Paeonia lactiflora Pall., 6’-O-β-D-glucopyranosylalbiflorin (134, Figure 7) was
obtained and shown to be able to increase the alkaline phosphatase activity and nodule mineralization
of MC3T3-E1 cells [366].

Ferutinin (135, Figure 7) is a sesquiterpene found in Ferula spp. and a phytoestrogen acting as
an agonist of estrogen receptor α [367–369]. It was shown to restore histomorphometrical damages
in ovariectomized rats by improving the trabecular and cortical bone from lumbar vertebrae and
femur [370,371]. Inhibition of bone resorption was suggested [372]. While ferutinin acted similarly to
estradiol benzoate on the uterus stimulating endometrial and myometrial hypertrophy, it increased
apoptosis in uterine luminal and glandular epithelia, suggesting a protective function against uterine
carcinoma [373]. Similar protection in the mammary gland was also observed [374]. In an in vitro study
using stem cells derived from human amniotic fluid and from the dental pulp, ferutinin promoted
the expressions of osteocalcin, osteopontin, collagen I, Runx2 and osterix; it also increased calcium
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deposition and osteocalcin secretion in the culture medium [375]. In a rat model of cranial defects
treated with implanted scaffold containing amniotic fluid stem cells and collagen, oral administration
of ferutinin resulted in better improvement of bone regeneration as shown by histomorphometric,
immunohistochemical and immunofluorescence analyses [376].

Resveratrol (136, Figure 4) is a stilbene polyphenolic present in many plant species such as grapes,
mulberries and medicinal herbs such as Polygonum cuspidatum Siebold & Zucc. (syn. Reynoutria
japonica Houtt.). It has estrogenic, anti-inflammatory, antioxidant and proliferative properties [377],
and potential applications to improve bone health have been suggested [378,379]. In early studies,
resveratrol was found to stimulate the proliferation and differentiation of MC3T3-E1 [380] and human
bone marrow mesenchymal stem cells [381]. Mechanistic studies have subsequently demonstrated
the involvement of an estrogen receptor-dependent mechanism coupling to ERK1/2 activation [381],
the Wnt signaling pathway [382], an upregulation of Runx2 gene expression via the SIRT1/FOXO3A
axis [383,384]. Apart from its effects on osteoblastogenesis, resveratrol prevented RANKL-induced
osteoclast differentiation, likely through inhibition of reactive oxygen species (ROS) production and/or
deacetylation of RANKL-induced NF-κB and inhibition of NF-κB transcriptional activation [385,386].
Resveratrol has been reported to modulate biomarkers of bone metabolism in animal studies as
well [387]. It increased epiphysial bone mineral density and inhibited the decrease of femur bone
calcium content in ovariectomized rats [388]. Improvements in bone mineral density and trabecular
microarchitecture were observed without hyperplastic effects on the uteri of ovariectomized rats [389].
In a hind-limb immobilization (tail-suspension) rat model, feeding of resveratrol for 45 days could
prevent against bone loss as demonstrated by an increase in tibial and femoral bone mineral density
and preservation of trabecular bone in the proximal tibial metaphysis [390]. However, contradictory
results were observed in another study of 21-day treatment [391]. In spinal cord-injured rats, treatment
with resveratrol attenuated sublesional bone loss (as demonstrated by bone mineral density, bone
mineral content, bone structure and mechanical strength); and the effects were associated with abating
oxidative stress, attenuating inflammation, depressing PPARγ signaling, and restoring Wnt/β-catenin
and IGF-1 signaling [392]. Resveratrol was found to improve the repair of calvarial bone defects
and the biomechanical retention of titanium implants in the tibia of rats [393]. In the same model,
the compound up-regulated the gene expressions of osteogenic markers such as BMP-2, BMP-7 and
osteopontin [393]. Using aged (22-month) male rats, feeding with resveratrol resulted in improved
bone microstructure (higher bone volume, bone trabecular number, and cortical thickness and
lower spacing between trabeculae) and biomechanical properties (higher flexural modulus, stiffness,
and ultimate load), suggesting it might be useful as anti-aging therapy to resist aged-induced bone
loss [394]. Similar results were observed after resveratrol treatment in 33-month-old male rats that
were hind-limb-suspended or kept ambulatory [395]. In a study of osteogenic biomaterials, resveratrol
was incorporated in scaffold containing porous poly-ε-caprolactone grafted with acrylic acid and
subjected to in vitro and in vivo studies. The osteogenic effect of this scaffold was demonstrated by
increased alkaline phosphatase activity and enhanced mineralization in rat bone marrow stromal cells;
and in a rat calvarial defect model, the implant enhanced the formation of bone-like structures that
were positively immunostained for bone sialoprotein [396].

Ginsenosides are triterpene glycosides in ginseng and related Panax species. Early studies have
reported the osteoprotective effects of ginsenosides [397,398]. More recently, several ginsenosides
were demonstrated to possess bone anabolic and/or anti-resorption activities. Thus, ginsenoside Rb1
(137, Figure 3) inhibited RANKL-induced osteoclast differentiation and TNFαmRNA expression in
RAW 264.7 cells. It was further shown to inhibit the JNK and p38 MAPKs pathways, and consequently
down-regulating the gene expression of c-Fos and NFATc1 [399]. On the other hand, in a hydrogen
peroxide-damaged MC3T3-E1 cell model, ginsenoside Rb2 (138, Figure 3) was able to promote cell
proliferation, increase alkaline phosphatase activity, elevate calcium mineralization and mRNA
expressions of osteocalcin (OCN) and osteopontin (OPN). At the same time, it suppressed the
expressions of RANKL and IL-6, and inhibited the production of reactive oxygen species (ROS) [400].
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The compound also protected dexamethasone-induced apoptosis in primary murine bone marrow
mesenchymal stem cells, likely by inducing the Ras-ERK1/2 signaling pathway through the GPR120
receptor [401]. In ovariectomized mice, ginsenoside Rb2 reduced oxidative stress and improved
the microarchitecture of trabecular bones and increased bone mineral density of the fourth lumbar
vertebrae and the distal femur [400]. Interestingly, ginsenoside Rd (139, Figure 3) was reported to
possess stimulatory activity on osteoblastic differentiation and mineralization in MC3T3-E1 cells
as shown by increased levels of BMP-2, phosphorylated AMP-activated protein kinase (pAMPK),
and Smad1/5 [402]. Ginsenoside Rg1 (140, Figure 3) has been reported to stimulate osteoblast
proliferation and increase alkaline phosphatase activity [398]; it also enhanced the proliferation and
osteogenic differentiation of human periodontal ligament stem cells and human dental pulp stem cells,
up-regulating the expressions of alkaline phosphatase, OCN, BMP-2, FGF2 [403,404]. Nevertheless,
the osteoprotective effect of ginsenoside Rg1 could not be demonstrated in ovariectomized mice [405].
On the other hand, ginsenoside Rg3 (141, Figure 3) was reported to display inhibitory activity
against osteoclastogenesis in RAW 264.7 cells, as evidenced by reduction of mRNA expressions
of markers such as RANK, TRAP, and cathepsin K through the down-regulation of the p38 and JNK
pathways [406]. In a sample of fermented red ginseng root, in which the contents of ginsenoside Rg3
was significantly enriched, the differentiation and mineralization in MC3T3-E1 cells was found to be
enhanced (compared to non-fermented sample) [407]. A mixture of ginsenosides Rg5 (142, Figure 3)
and Rk1 (143, Figure 3) was shown to enhance the osteoblastic function of MC3T3-E1 cells by displaying
increased alkaline phosphatase activity and type 1 collagen contents, as well as up-regulation of
mRNA expressions of BMP-2 and Runx2 [408]. Ginsenoside Rh1 (144, Figure 3) shared the same
properties [409]. On the other hand, ginsenoside Rh2 (145, Figure 3) demonstrated a suppression
of RANKL-induced osteoclastogenesis both in vitro and in vivo through down-regulation of NF-κB,
NFATc1 and c-Fos [410]. Interestingly, the anti-osteoclastic activity seems to be stereochemically specific
to the 20(R) isomer when evaluated in RAW 264 cells [411]. The 20(S)-ginsenoside Rh2 was shown to
enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells through the protein kinase
D (PKD) and AMP-activated protein kinase (AMPK) signaling pathways [412,413].

4. Concluding Remarks

The current knowledge of natural products suggests that they are a viable source of potential
osteoprotective agents. There have been many biological and pharmacological studies, both in vitro
and in vivo, demonstrating that a wide variety of natural products possess potential beneficial
effects on maintaining or promoting bone health. Table 2 summarizes the Chinese herbal medicine
sources of these bioactive molecules. These substances may be useful as alterative medicines for
osteoporosis, especially as preventive agents or as treatment at the early stages, along with exercise
and calcium/vitamin D supplementation, to slow down bone loss. Nevertheless, clinical data are
nonexistent, except for limited reports on the phytoestrogens derived from soy and red clover as well
as a study on the Epimedium flavonoids. The efficacy and safety of most, if not all, of these natural
compounds is unproven.

This review clearly shows the osteoprotective potential of natural products, but it may leave the
readers with a series of questions. Do these natural products act on similar biological targets? Do they
work on multiple targets? Why can compounds with diverse chemical structures share similar effects on
osteoblasts/osteoclasts? Clearly an essential area that requires better understanding is the mechanism
of action. Without probing into where and how the molecules interact with the cellular components,
it is difficult to fully appreciate the therapeutic potential of these substances. Another area that requires
further attention is the dosage which has not been covered in the present review. The current literature
indicates that many studies do not include dose-response relationships, which makes it difficult to
extrapolate into human situations. In addition, comparison of study results is not easy, particularly
those obtained in different laboratories, due to variations in experimental conditions.
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Table 2. Botanical sources of natural products from Chinese medicinal herbs showing osteoprotective potential.

Latin Name Chinese Name Plant Part Major Active Molecule

Actaea heracleifolia (Kom.) J. Compton;
A. dahurica (Turcz. ex Fisch. & C.A. Mey.) Franch.;

A. foetida L.
Sheng-Ma Rhizome cimicidol-3-O-β-xyloside, cimicidanol-3-O-β-xyloside,

acetylacteol-3-O-arabinoside [73]

Astragalus mongholicus Bunge Huang-Qi Root formononetin [355–359]

Carthamus tinctorius L. Hong-Hua Flower matairesinol, tilianine, acacetin and their derivatives [72]

Cistanche deserticola Y.C. Ma;
C. tubulosa (Forssk.) Beck Rou-Cong-Rong Stem 8-hydroxy-2,6-dimethyl-2-octenoic acid [81], echinacoside [85–87]

Cordyceps sinensis (Berk.) Sacc. Dong-Cong-Xia-Cao cordycepin [94–97]

Dioscorea spp. Rhizome diosgenin [353], diospongins B and C, piperitol, sesqminone, syrinaresinol [353]

Dipsacus asper Wall. ex C.B. Clarke;
D. japonicas Miq. Xu-Duan Root asperosaponins V and VI [103,106],

hederagenin-3-O-(2-O-acetyl)-α-L-arabinopyranoside [104]

Drynaria fortunei (Kunze ex Mett.) J. Sm. Gu-Sui-Bu Rhizome naringin and other flavos [116–147]

Eclipta prostrata L. Mo-Han-Lian Above-ground parts diosmetin, 31-hydroxybiochanin A, 31-O-methylorobol [150],
echinocystic acid [156], wedelolactone [157]

Epimedium brevicornum Maxim.;
E. sagittatum (Siebold & Zucc.) Maxim.;
E. pubescens Maxim.; E. koreanum Nakai

Yin-Yang-Huo Leaf

icariin [158–210], epimedins A, B and C [178,211], baohuoside-1 [189,212,213],
maohuoside A [214,215], sagittatoside A [189],

ikarisoside A [216], icaritin [209,220–230],
icariside I and II [209,219]

Erythina variegate L. Hai-Tong-Pi Bark 6-prenylgenistein, 8-prenylgenistein, 6,8-diprenylgenistein [233]

Eucommia ulmoides Oliv. Du-Zhong Stem bark geniposidic acid, geniposide, aucubin [237,238],
5-hydroxymethyl-2-furaldehyde [239]

Ferula spp. A-Wei Resin Ferutinin [370–376]

Ligustrum lucidum W.T. Aiton Lu-Zhen-Zhi Fruit oleanolic acid [244–250], ursolic acid [250–253],
tyrosol, hydroxytyrosol, oleuropein, and others [256]

Lycium babarum L. Gou-Qi-zi Fruit polysaccharide [364]

Morinda officinalis F.C. How Ba-Ji-tian Root

physicion, rubiadin, rubiadin-1-methyl ether, 2-hydroxy-1-methoxyanthraquinone,
1,2-dihydroxy-3-methylanthraquinone, 1,3,8-trihydroxy-2-methoxyanthraquinone,

2-hydroxymethyl-3-hydroxyanthraquinone,
2-methoxyanthraquinone, scopoletin [261,262]

Ormosia henryi Prain Lu-Mu Root isoformononetin [266,363]
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Table 2. Cont.

Latin Name Chinese Name Plant Part Major Active Molecule

Oxytropis falcata Bunge Lian-Xing-Ji-Dou Whole plant isoformononetin [266,363]

Paeonia lactiflora Pall. Bai-Shao Root 61-O-β-D-glucopyranosylalbiflorin [366]

Panax spp. Ren-Shen Root ginsenosides [397–413]

Podocarpium podocarpum (DC.) Yang et Huang Whole plant
podocarnone, luteolin, astragalin, afzelin, kaempferitrin, rutin,

quercetin-7-O-D-glucopyranoside, genistein, laburnetin,
wighteone, luteone, 7-O-methyl-luteone [265], cajanin [266]

Polygonum cuspidatum Siebold & Zucc. Hu-Zhang Root and Rhizome resveratrol [378–396]

Psoralea corylifolia L. Bu-Gu-Zhi Fruit
psoralen [274–276], isopsoralen [278,279], psoralidin [280], corylin [281],

bavachin, isobavachin [282,283], neobavaisoflavone [284],
bakuchiol [283,285], bavachalcone [286]

Pueraria lobate (Willd.) Ohwi Ge-Gen Root isoformononetin [266,363],
puerarin and its 611-xyloside [297–311]

Rehmannia glutinosa (Gaertn.) DC. Di-Huang Root acteoside [314–316]

Salvia miltiorrhiza Bunge San-Shen Root/rhizome
salvianolic acids A and B [322,323],

tanshinones I, IIA and VI, cryptotanshinone,
15,16-dihydrotanshinone I [324–331]

Sambucus williamsii Hance Jie-Gu-Mu Stem

ficusal, ceplignan, dehydrodiconiferyl alcohol,
dehydrodiconiferyl alcohol-γ1-methyl ether, samwinol [338],

erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropanyl)
-2-methoxyphenoxy]-1,3-propanediol [339], vanillic acid [340]

Sophora japonica L. Huai-Jiao Fruit, seed and root genistein [342,343], 8-prenylkaempferol [344],
sophoricoside [345], 21-methoxykurarinone [346]

Sophora flavescens Aiton Ku-Shen Root formononetin [355–359]

Trifolium pretense L. Hong-Che-Hou-Cao Inflorescence and twig formononetin [355–359]

Viscum coloratum (Kom.) Nakai Hu-Ji-Sheng Twig
syringareninol O-β-glucopyranoside,

2-homoeriodictyol 7-O-β-glucopyranoside,
viscumneosides I, IX and X [347,348]
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There seems to be no clear answers to many questions at this time. Certainly further work is
warranted to identify the mechanisms of action, to optimize the activity (e.g., by way of structural
modification), to ensure safety, and ultimately, to confirm clinical results.
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