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Background: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a

common disease that has serious cardiovascular and metabolic effects.

Insulin-like growth factor 1 (IGF-1) levels are reportedly reduced in

patients with OSAHS; however, this is still a matter of debate. Therefore, we

investigated the association between serum/plasma IGF-1 levels and OSAHS in

this meta-analysis.

Methods: Wan Fang, Excerpta Medica dataBASE, Web of Science, China

National Knowledge Infrastructure, VIP, PubMed, and other databases were

searched for materials published in any language before April 2, 2022. Two

researchers analyzed the studies for quality according to the Newcastle-

Ottawa Scale. The acquired data were analyzed using Stata 11.0 and R 3.6.1

software. The effect size was estimated and calculated using standard mean

differences and correlation coefficients. Moreover, a combined analysis was

conducted using either a random- or fixed-effects model.

Results: Ultimately, 34 studies met our inclusion criteria. Our findings revealed

that the plasma/serum IGF-1 concentrations in patients with OSAHS was

significantly reduced compared with those in healthy subjects. Subgroup

analyses were performed according to OSAHS severity, ethnicity, age, body

mass index, specimen testing method, and study design. The outcomes

suggested that nearly all subgroups of patients with OSAHS had reduced

serum IGF-1 levels. Disease severity and differences in ethnicity were

identified as possible influencing factors of serum IGF-1 levels in patients

with OSAHS in the meta-regression analysis, and no other factors were

found to alter plasma/serum IGF-1 concentrations. Moreover, plasma/serum

IGF-1 concentrations were negatively correlated with apnea-hypopnea index

and oxygen desaturation index scores and positively associated with minimum

oxygen saturation.
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Conclusion: Serum/plasma IGF-1 concentrations in patients with OSAHS were

greatly reduced compared with those of patients in the control group, and

were negatively correlated with apnea-hypopnea index and oxygen

desaturation index scores and positively correlated with minimum

oxygen saturation.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42022322738.
KEYWORDS

obstructive sleep apnea hypopnea syndrome(OSAHS), meta-analysis, IGF-1, serum,
plasma, correlation
1 Introduction

The characteristic features of obstructive sleep apnea-

hypopnea syndrome (OSAHS) include periodic, intermittent

reductions in airflow (hypopnea) or no airflow (apnea) owing

to complete or partial collapse of the upper respiratory tract

during sleep (1). The respiratory physiological reactions to

OSAHS include major alterations in intrathoracic pressure,

intermittent hypoxemia, sleep fragmentation, and nocturnal

awakening (2). Sleep patterns can change as a result of

repeated awakenings, with reduced slow-wave sleep (SWS),

rapid eye movement sleep, and enhanced light sleep (3). In the

United States, 26% of people aged 30–70 years have had mild

OSAHS, whereas 10% had moderate to severe OSAHS between

2007 and 2010 (4). OSAHS is more prevalent in men than

women, and its incidence increases sharply with increasing body

weight and age (4, 5).

OSAHS causes excessive daytime sleepiness, poor quality of

life, poor job performance, and a higher risk of traffic accidents

at a societal level (6). More importantly, OSAHS results in

increased morbidity and mortality of comorbid conditions,

such as coronary heart disease and cardiac failure, creating

serious health risks for affected individuals (7). Hypertension,

hyperlipidemia, insulin resistance, and metabolic syndrome are

all risk factors for early cardiovascular disease, and the incidence

of these diseases in patients with OSAHS is much higher

than that in subjects matched by sex and body mass index

(BMI) (8, 9).

In addition, OSAHS reportedly affects some hormonal

systems, including catecholamines and the hypothalamic-

pituitary axis. Sleep fragmentation related to awakening

reportedly activates the sympathetic nervous system, which

stimulates the release of nocturnal catecholamines (10, 11).

Growth hormone (GH) secretion is closely associated with
02
different sleep stages. GH is usually released in the form of

pulses; two-thirds of GH secretion occurs during the first few

hours of sleep, and the onset of pulses is linked to the stages of

SWS (12). Accordingly, SWS disorder and shorter sleep times

in patients with OSAHS may disrupt GH secretion at night.

GH directly effects numerous tissues; however, many of its

functions are achieved by increasing the levels of the second

messenger, insulin-like growth factor-1 (IGF-1) (13). The liver

produces most of the IGF-1 in the blood, which combines with

IGF-associated binding proteins resulting in prolonged half-

life and stable serum/plasma levels (14). The synergistic effect

of GH and IGF-1 is important for the development of bones in

children and helps maintain normal metabolism in

adults (15).

According to some reports, serum/plasma IGF-1

concentration is negatively associated with apnea-hypopnea

index (AHI) and respiratory awakening index scores among

patients with OSAHS and positively associated with minimum

oxygen saturation during sleep (16–18). Following reports of the

above observation, the IGF-1 concentrations of patients with

OSAHS became the focus of an increasing number of studies.

Unfortunately, previous studies have shown conflicting results

regarding decreased IGF-1 concentrations in patients with

OSAHS. Furthermore, most studies included comparatively

small sample sizes. Therefore, the current relevant research

must be used for meta-analysis to evaluate the association

between serum/plasma IGF-1 levels and the occurrence of

OSAHS. To the best of our knowledge, the present analysis

includes the most accessible literature. Furthermore, this meta-

analysis and systematic review is the first to report the

correlation coefficients (CORs) between OSAHS and AHI

score, oxygen desaturation index (ODI) score, and minimum

oxygen saturation, to better understand the potential function of

serum/plasma IGF-1 in patients with OSAHS.
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2 Methods

2.1 Determination of qualified literature
and data screening

Wan Fang, Excerpta Medica dataBASE, China National

Knowledge Infrastructure, VIP, Web of Science, and PubMed

databases were systematically searched to find relevant studies

published until April 2, 2022. The keywords and subject terms

used included “Insulin-Like Growth Factor 1” or “IGF-1” and

“Obstructive Sleep Apnea-Hypopnea Syndrome” or “Obstructive

Sleep Apnea” or “Obstructive Sleep Apnea Syndrome” or “OSA” or

“OSAHS” or “OSAS.” The eligibility criteria were as follows:
Fron
1. Case-control, cohort, or cross-sectional study.

2. Serum/plasma levels of IGF-1 were analyzed in patients

with OSAHS and healthy people of all sexes,

nationalities, ages, and ethnicities.

3. Subjects met the diagnostic criteria for OSAHS based on

polysomnography (PSG) (adults: AHI ≥5/h; children:

AHI ≥1/h) (19, 20),
OSAHS severity was defined using traditional definitions

(AHI<5, normal; AHI 5–14, mild OSAHS; AHI 15–29, moderate

OSAHS; and AHI ≥30, severe OSAHS) (21). The exclusion

criteria were as follows:
1. Editorials, reviews, letters, other types of literature

reviews, or case report.

2. Unable to extract enough information from the original

article or contact the corresponding author for more

information.

3. Studies that were not conducted in humans.

4. Studies including patients with OSAHS with a history of

chronic airway disease, cerebrovascular disease, chronic

cardiac failure, endocrine disease, and malignancies.

5. Studies lacking a control group.

6. Studies reporting controls with AHI ≥5 events/h in

adults and AHI ≥1 events/h in children.

7. Overlapping studies and overlapping data from studies

by the same authors.
2.2 Literature selection

Based on the aforementioned data retrieval methods, two

authors separately searched the databases, and the titles and

abstracts of relevant articles were reviewed. We made a

preliminary list of all eligible full-text papers. Subsequently, we re-

evaluated the publications that met the inclusion criteria by

carefully reading and reviewing the full text. Upon disagreement

between the two authors regarding article eligibility, a third expert

researcher was consulted to resolve the dispute by consensus.
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2.3 Data extraction and management

We created some special tables to extract the following

information from each eligible study as follows:
1. Basic data, such as the publication date and first author’s

name.

2. Baseline features of study participants, such as BMI, age,

sample size, sex, ethnicity, study design, classification of

sleep breath disorder, and serum/plasma IGF-1

concentrations in patients as well as controls. We

converted the data into means and standard deviations

using an online computing tool if the selected studies

provided data on the median and range or median and

interquartile range (22, 23) (https://www.math.hkbu.

edu.hk/~tongt/papers/median2mean.html).

3. Disease severity.

4. Literature quality scores

5. Spearman’s rank COR, or Pearson’s COR for AHI score,

ODI score, minimum oxygen saturation, and IGF-1

concentration.
2.4 Methodological evaluation of
research quality

The Newcastle-Ottawa Scale (24) was used to assess the

quality of the selected papers as follows: study population (four

items, total score 4), exposure or outcome (three items, total

score 3), and comparability (one item, total score 2). Total scores

of 7–9, 4–6, and 0–3 were considered high-, medium-, and low-

quality studies, respectively.
2.5 Statistical analysis

R (version 3.6.1; R Foundation for Statistical Computing,

Vienna, Austria) and Stata software (version 11.0; StataCorp

LLC, College Station, TX, USA) were used to summarize and

examine the extracted data. We normalized and expressed the

continuous variables as the standardized mean difference (SMD)

with a 95% confidence interval (95%CI). The current meta-analysis

used Spearman’s CORs to examine the associations between IGF-1

concentrations and PSG indices in patients with OSAHS.

According to the standard error, which is mostly dependent on

the importance of the rank COR, the dependence of the

Spearman’s product-moment COR on the sampling distribution

is not indicated. Therefore, the Fisher transformation was used to

compare each COR, and an investigation was subsequently

conducted with the transformed values as the input before

converting them back to CORs. Cohen’s criteria was used to

examine the measured effect size (small, ≤0.3; moderate, 0.3–0.5;
frontiersin.org
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and large, >0.5 (25). Pearson’s COR was used to examine the

relationships among AHI score, ODI score, minimum oxygen

saturation, and IGF-1 levels.

In accordance with the above description, several studies

have reported a method for converting Pearson’s to Spearman’s

COR using the following formula:

r = 2sin(rs
p
6
)

where r and rs represent the Pearson’s and Spearman’s

CORs, respectively (26). Cochran’s Q and chi-square tests

were used to examine data heterogeneity. The I2 statistic was

used to detect heterogeneity (25%, 50%, and 75% represented

low, moderate, and high heterogeneity, respectively; I2 < 50%

and I2 > 50% indicated low and high heterogeneity among

studies, respectively). In the case of zero heterogeneity among

studies, we employed fixed- and random-effects models if

heterogeneity was not noted among studies.

Descriptive analysis, subgroup analysis, and meta-regression

were used to explore the source of heterogeneity. For subgroup

analyses, the overall population was categorized according to

disease severity, ethnicity, method of specimen testing, study

design, age, and BMI. One study at a time was removed for the

sensitivity analysis, which was conducted to explore how each

study impacted the combined effect size. Begg’s and Egger’s tests

were performed to assess for publication bias.
3 Results

3.1 Publications retrieved and included in
the study

A total of 276 related papers were collected from the

databases. Duplicated studies were excluded by filtering the

abstracts and titles; 228 articles were omitted from the study,

leaving 48 articles. We downloaded these 48 articles and

thoroughly reviewed the complete text; 14 papers were

discarded following review of the inclusion and exclusion

criteria. Articles were excluded for the following reasons: four

publications were reviews, two were letters to the editor, four did

not include a control group of healthy people, two lacked

relevant data, and two were animal experiments. We identified

34 studies (34 studies from 21 articles) (17, 18, 27–45) involving

IGF-1 levels in the plasma/serum, with 8 publications reporting

plasma IGF-1 concentrations and 26 publications reporting

serum IGF-1 concentrations. We selected 2 cohort studies, 10

cross-sectional studies, and 22 case-control studies were selected,

as shown in Table 1. Table 2 summarizes the data on age, IGF-1

concentrations, BMI, severity, and AHI scores. Twelve studies

provided Spearman’s or Pearson’s CORs between IGF-1

concentration and AHI score, ODI score, and minimum
Frontiers in Endocrinology 04
oxygen saturation. Figure 1 shows the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses flow diagram

for selecting and screening articles from the literature.

Tables 1– 3 present the fundamental data of the included studies.
3.2 Literature quality assessment

We used Newcastle-Ottawa Scale scores to help assess the

methodological quality of the studies selected for this analysis.

Every article in this study had a score > 6, suggesting that the

quality of the included publications was comparatively high. We

included 30 high-quality and 4 medium-quality publications.
3.3 Meta-analysis

3.3.1 IGF-1 concentrations in all patients
with OSAHS

From 34 studies, we identified 1407 patients with OSAHS

and 1039 healthy controls. The heterogeneity index I2 was

94.2%. Therefore, we opted for a random-effects model for

data combination. The meta-analysis outcomes revealed that

IGF-1 levels in patients with OSAHS were significantly lower

than those of healthy controls (SMD= -1.32, 95%CI= -1.71–0.92,

P< 0.001; Figure 2). Moreover, we performed a series of

sensitivity assessments to determine the reliability of the

merged data. Major alterations were not detected in the meta-

analysis outcomes after omitting the included studies

individually, thereby proving their reliability (Figure 3).

Because different sample types may cause heterogeneity in the

analysis outcomes, we assessed the changes in serum/plasma

IGF-1 concentrations in patients with OSAHS.

3.3.2 Comparison of Serum IGF-1
concentrations among patients in OSAHS and
control groups

The correlation between serum IGF-1 concentrations in

patients with OSAHS and those of patients in the control group

was investigated in our meta-analysis, which included 26 eligible

observational studies. Serum IGF-1 levels were greatly reduced in

patients with OSAHS (SMD=-1.37, 95%CI= -1.78–0.96, P<

0.001). For further investigation, we selected a random-effects

model owing to increased heterogeneity (I2 = 92.8%, Figure 2).

3.3.3 Comparison of plasma IGF-1
concentrations between OSAHS and control
groups

The outcomes of the pooled analysis of plasma IGF-1

concentrations in patients with OSAHS are shown in Figure 2.

The results indicated that plasma IGF-1 concentrations in

patients with OSAHS were significantly lower than those of
frontiersin.org
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TABLE 1 Characteristics of included studies.

Author Year Country Ethnicity Case/Control
(n)

IGF-1
Source

Assay
approach

NOS Study
design

Measurement
and type

Damanti S 2017 France Caucasian 47/25 Plasma Chemiluminescence 7 Cross-sectional
study

PSG II

Makino S (Mild and
Moderate)

2012 Japan Asian 88/34 Plasma ELISA 7 Cross-sectional
study

PSG I

Makino S(Severe) 2012 Japan Asian 69/34 Plasma ELISA 7 Cross-sectional
study

PSG I

Gozal D 2008 USA Caucasian 87/23 Plasma ELISA 7 Case-control
study

PSG I

Barceló A 2008 Spain Caucasian 22/23 Plasma Chemiluminescence 7 Case-control
study

PSG I

Ursavas A 2007 Turkey Caucasian 39/36 Plasma Chemiluminescence 7 Cross-sectional
study

PSG I

McArdle N 2007 Australia Caucasian 21/21 Plasma ELISA 7 Case-control
study

PSG I

Nieminen P 2002 Finland Caucasian 30/35 Plasma Radioimmunoassay 7 Case-control
study

PSGIII

Martı́ nez Cuevas E 2021 Spain Caucasian 36/31 Serum ELISA 7 Cohort study PSG I

Zhao X (Mild and
Moderate)

2021 China Asian 18/13 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Zhao X (Severe) 2021 China Asian 18/13 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Wang X 2018 China Asian 192/100 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Guo X 2018 China Asian 13/12 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Kanbay A 2017 Turkey Caucasian 33/17 Serum Radioimmunoassay 7 Cross-sectional
study

PSG I

Izumi S (Mild) 2016 Brazil Latino 8/11 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Izumi S (Moderate and
Severe)

2016 Brazil Latino 28/11 Serum Chemiluminescence 7 Cross-sectional
study

PSG I

Gianotti L 2002 Italy Caucasian 13/15 Serum Radioimmunoassay 7 Cohort study PSG I

Xie CB (Mild) 2018 China Asian 31/50 Serum ELISA 7 Case-control
study

PSG I

Xie CB (Moderate) 2018 China Asian 32/50 Serum ELISA 7 Case-control
study

PSG I

Xie CB (Severe) 2018 China Asian 44/50 Serum ELISA 7 Case-control
study

PSG I

Chen XL (Mild) 2020 China Asian 42/50 Serum ELISA 7 Case-control
study

PSG I

Chen XL (Moderate) 2020 China Asian 56/50 Serum ELISA 7 Case-control
study

PSG I

Chen XL (Severe) 2020 China Asian 20/50 Serum ELISA 7 Case-control
study

PSG I

Qu BB 2016 China Asian 80/80 Serum ELISA 7 Case-control
study

PSG I

Zhou JJ (Mild) 2018 China Asian 82/40 Serum Chemiluminescence 7 Case-control
study

PSG I

Zhou JJ (Moderate) 2018 China Asian 78/40 Serum Chemiluminescence 7 Case-control
study

PSG I

Zhou JJ (Severe) 2018 China Asian 60/40 Serum Chemiluminescence 7 Case-control
study

PSG I

Zhang W (Mild) 2019 China Asian 15/15 Serum Chemiluminescence 7 Case-control
study

PSG I

(Continued)
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patients in the control group (SMD=-1.13, 95%CI= -2.21–0.05,

P=0.04). We selected a random-effects model for further

investigation owing to high heterogeneity (I2 = 96.9%).
3.4 Subgroup analysis of plasma IGF-1
concentrations

3.4.1 Age
Plasma IGF-1 levels in children with and without OSAHS

were studied in four investigations. According to the findings,

there was no major variation in plasma IGF-1 levels between

children with OSAHS and those of children in the control group

(SMD=0.20, 95%CI= -1.71–1.89, P=0.818). Four studies

compared plasma IGF-1 concentrations in adults with and

without OSAHS, with lower plasma IGF-1 levels reported in

adults with OSAHS (SMD=-1.58, 95%CI= -2.82–0.33, P<

0.001, Table 4).

3.4.2 BMI
Subgroup analysis was performed according to mean BMI (>

30), which was reported in all included studies. Two studies

reported plasma IGF-1 concentrations in patients with a mean

BMI > 30, suggesting that plasma IGF-1 concentrations in

patients in the OSAHS group were lower than those of

patients in the healthy control group (SMD=-0.81, 95%CI=

-1.36–0.26, P=0.004). According to six studies, plasma IGF-1

concentrations in patients with a mean BMI< 30 showed no

major variations between patients in the OSAHS and control

groups (SMD=-0.135, 95%CI= -2.73–0.23, P=0.46, Table 4).

3.4.3 OSAHS severity
A subgroup meta-analysis of OSAHS severity was also

performed. Plasma IGF-1 levels were measured in five patients

with an mean AHI score ≥30 and three studies reported plasma
Frontiers in Endocrinology 06
IGF-1 levels in patients with an mean AHI score< 30. The

outcomes revealed that regardless of mean AHI score, there were

no major variations in plasma IGF-1 levels between patients in

the OSAHS and control groups (SMD=-1.32, 95%CI= -2.64–

0.005, P=0.05; SMD=-0.82, 95%CI=-3.01–1.37, P=0.46, Table 4).

3.4.4 Assay approaches
A subgroup analysis was performed according to the

different detection techniques used in the samples because

variations in detection techniques for plasma IGF-1 levels may

cause errors in the outcome analysis. In four studies, plasma

IGF-1 levels were calculated using an enzyme-linked

immunosorbent assay. The findings indicated no major

variations in plasma IGF-1 concentrations between the

OSAHS and control groups (SMD=-1.32, 95% CI = -2.64–

0.005, P=0.05). In three studies, plasma IGF-1 concentrations

were calculated using chemiluminescence, which also revealed

no major differences in plasma IGF-1 concentrations between

OSAHS and control groups (SMD=-0.54, 95% CI = -1.16–0.09,

P=0.093). Table 4 summarizes these findings. One study used

radioimmunoassay to determine plasma IGF-1 concentrations

and reported the same results as with the above assays; there

were no major differences in plasma IGF-1 concentrations

between 30 pat ients with OSAHS and 35 heal thy

subjects (P=0.92).

3.4.5 Ethnicity
The results of the subgroup analysis of plasma IGF-1

concentrations in patients with OSAHS of different ethnicities

are compiled in Table 4. The Caucasian and Asian populations

were the major subgroups. No major variations in plasma IGF-1

concentrations were observed between the OSAHS and control

groups (SMD=-0.20, 95%CI=-0.91–0.35, P=0.383) in the

Caucasian population. In the Asian subgroup, serum IGF-1

levels were lower in the OSAHS group than those in the
TABLE 1 Continued

Author Year Country Ethnicity Case/Control
(n)

IGF-1
Source

Assay
approach

NOS Study
design

Measurement
and type

Zhang W (Moderate) 2019 China Asian 15/15 Serum Chemiluminescence 7 Case-control
study

PSG I

Zhang W (Severe) 2019 China Asian 15/15 Serum Chemiluminescence 7 Case-control
study

PSG I

Lou F (Mild) 2015 China Asian 14/10 Serum Chemiluminescence 7 Case-control
study

PSG I

Lou F (Moderate) 2015 China Asian 19/10 Serum Chemiluminescence 7 Case-control
study

PSG I

Lou F (Severe) 2015 China Asian 17/10 Serum Chemiluminescence 7 Case-control
study

PSG I

Hashim Z 2022 india Caucasian 25/10 Serum Chemiluminescence 7 Case-control
study

PSG I
NOS, Newcastle-Ottawa scale; ELISA, Enzyme linked immunosorbent assay.
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control group (SMD=-3.70, 95%CI= -5.36–2.04, P<

0.001, Table 4).

3.4.6 Research design
We conducted a matched subgroup analysis because of the

differences in study designs of the included studies, which might

alter the heterogeneity of the results. Plasma IGF-1 concentrations

in patients with OSAHS were reduced compared with those of

subjects in the control group (SMD=-2.12, 95 percent CI= -3.89–

0.34, P=0.019), according to a subgroup analysis of cross-sectional

studies. No major variations were observed in plasma IGF-1
Frontiers in Endocrinology 07
concentrations between patients in the OSAHS and control

groups (SMD=-0.14, 95%CI= -1.01–0.72, P=0.745) according to a

subgroup analysis of case-control studies (Table 4).
3.5 Subgroup analysis of serum IGF-1
concentrations

3.5.1 Age
The serum IGF-1 levels of children with OSAHS and healthy

children were evaluated in seven investigations. The combined
TABLE 2 Participants’ characteristics of included studies.

Author IGF-1 (Mean±SD) BMI (Mean±SD) Age (Mean±SD) AHI (Mean±SD)

Case Control Case Control Case Control Case Control

Damanti S 101.42±67.32 164.99±93.88 26.8±4.4 24.3±4.5 75.2±8.1 73.1±7.1 35.1±15.7 8.3±4.3

Makino S (Mild and Moderate) 176.2±5.3 194±8.1 25.6±0.7 24.8±1.1 49.8±12.7 46.32±12.77 24.6±2.4 2.2±0.8

Makino S(Severe) 165±5.3 194±8.1 28.5±1.1 24.8±1.1 47.1±11.3 46.32±12.77 77.1±10.3 2.2±0.8

Gozal D 1070±240 840±70 18.3±0.5 17.4±0.6 6.4±0.4 6.2±0.5 10.0±2.0 0.8±0.2

Barceló A 106±27 122±36 31±4 25±3 50±5 48±6 52±19 3±1

Ursavas A 89.8±39.2 140.1±54.5 33.6±7.2 30.5±6.5 52.0±9.6 48.8±10.3 50.5±23.5 1.9±1.2

McArdle N 123.59±39.75 143.59±39.63 28.4±3.4 27.9±3.6 46±10.2 46±9.7 40±27 2.8±1.5

Nieminen P 11.01±1.89 11.11±2.0 15.93±1.17 16±0.77 5.63±1.07 6.45±1.27 6.14±2.52 NA

Martı́ nez Cuevas E 101.42±67.32 164.99±93.88 NA NA 4.97±2.38 6.41±2.64 NA NA

Zhao X (Mild and Moderate) 421.3±113.7 477.9±161 25.5±2.8 25.7±3.3 40.2±10.1 34.1±10.5 16.6±7.4 2.3±1.8

Zhao X (Severe) 438.9±124.2 477.9±161 27.6±4.0 25.7±3.3 48.1±9.7 34.1±10.5 62±20 2.3±1.8

Wang X 64.74±22.89 78.39±34 28.37±3.89 24.1±3.27 44.15±11.49 46.24±12.23 49.3±21.16 6.32±4.83

Guo X 954.2±203 1045±317.6 27.1 ± 3.1 25.5 ± 3.7 47.0 ± 8.5 35.1 ± 9.5 23.77±44.35 NA

Kanbay A 79.1±36.1 147.1±49.1 35.4±5.7 31.5±4.3 51±9 47±6 46.97±25.96 1.48±0.89

Izumi S (Mild) 177.2±41.4 225.5±80.5 34.6±6.2 31.9±2.9 51±9 42.3±8.3 8.93±6.7 2±2.29

Izumi S (Moderate and Severe) 156.8±54.3 225.5±80.5 33±3.2 31.9±2.9 45.0±3.03 42.3±8.3 39.06±26.4 2±2.29

Gianotti L 17.5±1.9 21.3±1.6 38.5±2.9 22.2±0.6 52.6±2.8 39.6±0.9 51.6±9.2 2.2±0.6

Xie CB (Mild) 65.48±4.88 68.73±5.47 26.35±3.66 24.76±4.01 46.1±7.7 45.9±8.2 10.77±5.08 3.57±2.41

Xie CB (Moderate) 52.77±6.21 68.73±5.47 25.29±3.21 24.76±4.01 47.2±6.5 45.9±8.2 24.93±4.77 3.57±2.41

Xie CB (Severe) 43.84±5.96 68.73±5.47 26.03±4.13 24.76±4.01 48.7±9.6 45.9±8.2 48.77±10.51 3.57±2.41

Chen XL (Mild) 471.28±73.81 549.37±71.09 NA NA 45.37±12.95 45.05±11.72 NA NA

Chen XL (Moderate) 350.26±65.77 549.37±71.09 NA NA 44.81±11.75 45.05±11.72 NA NA

Chen XL (Severe) 198.04±35.83 549.37±71.09 NA NA 46.11±13.06 45.05±11.72 NA NA

Qu BB 77.33±22.15 50.25±19.95 26.21±1,65 26.08±1.33 50.21±11.22 53.12±10.05 NA NA

Zhou JJ (Mild) 147.63±26.83 149.44±31.44 15.6±1.27 15.84±2.35 4.5±0.84 4.47±0.89 NA NA

Zhou JJ (Moderate) 142.11±34.5 149.44±31.44 15.38±0.96 15.84±2.35 4.49±0.84 4.47±0.89 NA NA

Zhou JJ (Severe) 121.86±36.47 149.44±31.44 15.52±1.37 15.84±2.35 4.49±0.87 4.47±0.89 NA NA

Zhang W (Mild) 70.25±8.55 75.03±10.1 24.38±1.56 21.18±1.36 52.6±6.9 53.1±6.6 11.55±2.25 3.75±1.12

Zhang W (Moderate) 54.28±8.25 75.03±10.1 27.58±1.72 21.18±1.36 54.8±5.8 53.1±6.6 20.68±4.65 3.75±1.12

Zhang W (Severe) 42.25±6.95 75.03±10.1 30.78±2.02 21.18±1.36 55.1±7.7 53.1±6.6 45.95±8.09 3.75±1.12

Lou F (Mild) 166.43±44.46 192.1±61.51 NA NA NA NA NA NA

Lou F (Moderate) 160.06±57.14 192.1±61.51 NA NA NA NA NA NA

Lou F (Severe) 114.60±33.24 192.1±61.51 NA NA NA NA NA NA

Hashim Z 516.6±415.97 571.1±283.4 28.3±5.5 26.3±6.6 41.4±13.4 33.6±12.4 16.91±18 7.86±7.84
fron
NA, not available.
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results revealed that serum IGF-1 levels in children with OSAHS

were considerably lower than those in healthy children (SMD=-

0.58, 95% CI=-0.92–0.23, P=0.001). The blood IGF-1

concentrations of adults with OSAHS were studied in 19

investigations, and the combined results revealed that serum

IGF-1 concentrations in adults with OSAHS were considerably

lower than those of participants without OSAHS (SMD=-1.66,

95%CI= -2.21–1.12, P 0.001, Table 4).
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3.5.2 BMI
We conducted a subgroup meta-analysis according to BMI

in 26 studies. Five studies were based on serum IGF-1

concentrations in patients with mean BMI≥30, and the

analysis revealed that these patients had greatly reduced IGF-1

concentrations compared with those of patients in the control

group (SMD=-1.81, 95%CI=-2.66–0.97, P< 0.001). Twenty-one

publications provided data on serum IGF-1 concentrations in
FIGURE 1

Flow diagram indicating the literature selection process and results based on the preferred reporting items for the meta-analysis.
TABLE 3 Correlation coefficients (cor‐values) of included studies.

Author Year N Cor of IFG-1 versus AHI Cor of IFG-1 versus ODI Cor of IFG-1 versus Minimum oxygen saturation

Makino S 2012 157 -0.226 0.259

Gozal D 2008 87 0.12 0.19

Izumi S 2016 36 -0.312 0.323

Ursavas A 2007 39 -0.42 -0.224

Wang X 2018 192 -0.141 -0.116

Xie CB 2018 107 -0.641 0.506

Chen XL 2020 118 -0.633

Zhang W 2019 45 -0.296

Lou F(Mild) 2015 14 -0.334 0.207

Lou F
(Moderate)

2015 19 -0.02 0.61

Lou F(Severe) 2015 17 -0.505 0.553

Kanbay A 2017 33 -0.486 0.452
AHI, Apnea-hypopnea index.
ODI, Oxygen-desaturation index.
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patients with a mean BMI< 30, and the analysis indicated that

these patients had significantly lower IGF-1 concentrations

than those of patients in the control group (SMD=-1.27, 95%

CI= -1.73–0.82, P< 0.001, Table 4).

3.5.3 OSAHS severity
Many studies reported a close association between serum

IGF-1 concentrations and AHI scores in patients with OSAHS.

In the current study, we compared serum IGF-1 concentrations

between patients with OSAHS with an mean AHI score ≥30 and
Frontiers in Endocrinology 09
those of patients in the control group in 10 studies. The findings

suggested that serum IGF-1 levels in these patients were greatly

reduced compared with those of patients in the control group

(SMD=-2.14, 95%CI= -1.73–0.82, P< 0.001). Sixteen studies

were based on comparisons of serum IGF-1 concentrations

between patients with OSAHS with a mean AHI score< 30

and those of patients in the control group, which indicated that

serum IGF-1 concentrations in these patients were greatly

reduced compared with those of subjects in the control group

(SMD=-0.95, 95%CI= -1.38–0.51, P< 0.001, Table 4).
FIGURE 2

SMD forest plot and its 95%CI for serum/plasma IGF-1 measures in the OSAHS group and the control group.
FIGURE 3

Sensitivity analysis of studies on IGF-1 levels for OSAHS versus controls.
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3.5.4 Assay approaches
The enzyme-linked immunosorbent assay results of eight

reports suggested that serum IGF-1 levels were decreased in

patients with OSAHS compared with those of patients in the

control group (SMD=-2.36, 95%CI= -3.39–1.43, P< 0.001). We

checked the serum IGF-1 concentration in 16 studies using

chemiluminescence and found that serum IGF-1 concentrations

in patients with OSAHS were greatly reduced compared

with those of subjects in the control group (SMD=-0.74, 95%

CI= -1.04–0.43, P< 0.001). In two studies, serum IGF-1

concentrations were studied using radioimmunoassay, and

similar results were obtained (SMD=-1.84, 95%CI= -2.38–1.29,

P< 0.001, Table 4).
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3.5.5 Ethnicity
We included 26 reports on Caucasian, Asian, and Latin

American populations in this study. The serum IGF-1

concentrations of patients with OSAHS among these three

groups were all lower than those of patients in the respective

control groups in subgroup analyses based on varying

demographics and ethnicities (see Table 4).

3.5.6 Research design type
Among cross-sectional studies, blood IGF-1 concentrations

in patients with OSAHS were substantially higher than those of

subjects in the control group (SMD=-0.52, 95%CI=-0.72–0.32, P

0.001). Similarly, serum IGF-1 concentrations were lower in
TABLE 4 Subgroup analyses of IGF-1 levels in OSAHS and controls.

Subgroup analysis of plasma
levels (n)

SMD(95% CI), P-value, I2

(%), Ph

Subgroup analysis of serum
levels (n)

SMD(95% CI), P-value, I2

(%), Ph

Overall (8) Overall (26)

Ethnicity Ethnicity

Caucasian (6) -0.20 (-0.91,0.35), 0.383, 88.70% ,
<0.0001

Caucasian (4) -1.15 (-1.94,-0.37), 0.004, 80.70%, 0.001

Asian (2) -3.70 (-5.36,-2.04), <0.0001, 92.20% ,
<0.0001

Asian (20) -1.46 (-1.96,-0.97), <0.001, 94.20%,
<0.0001

Latino Latino (2) -0.95 (-1.54,-0.37), 0.001, 0.0%, 0.533

Assay approaches Assay approaches

ELISA (4) -1.71 (-4.11,0.69), 0.163, 98.50%,
<0.0001

ELISA (8) -2.36 (-3.39,-1.43), <0.0001, 96.00%,
<0.0001

Chemiluminescence (3) -0.54 (-1.16,0.09) ,0.093, 77.00%, 0.013 Chemiluminescence (16) -0.74 (-1.04,-0.43), <0.0001, 75.40%,
<0.0001

Radioimmunoassay (1) NA Radioimmunoassay (2) -1.84 (-2.38,-1.29), <0.0001, 0.0%,
0.386

BMI BMI

Mean BMI≥30 (2) -0.81 (-1.36,-0.26), 0.004 , 52.10%,
<0.0001

Mean BMI≥30 (5) -1.81 (-2.66,-0.97), <0.0001, 93.60%,
<0.0001

Mean BMI<30 (6) -0.135 (-2.73,0.23), 0.10, 97.70%,
0.148

Mean BMI<30 (21) -1.27 (-1.73,-0.82), <0.0001, 78.70%,
0.001

Degree of severity Degree of severity

Mean AHI≥30 (5) -1.32 (-2.64,0.005), 0.05, 96.30%,
<0.0001

Mean AHI≥30 (10) -2.14 (-3.05,-1.22), <0.0001, 95.40% ,
<0.0001

Mean AHI<30 (3) -0.82 (-3.01,1.37), 0.46, 98.30%,
<0.0001

Mean AHI<30 (16) -0.95 (-1.38,-0.51), <0.0001, 89.60% ,
<0.0001

Age Age

Adult (6) -1.58 (-2.82,-0.33), 0.013, 96.60%,
<0.0001

Adult (19) -1.66 (-2.21,-1.12), <0.0001, 93.80%,
0.0001

Nonage (2) 0.20 (-1.49,1.89), 0.818 , 95.90%,
<0.0001

Nonage (7) -0.58 (-0.92,-0.23), 0.001, 64.90%,
0.009

Design Design

Cross-sectional study (4) -2.12 (-3.89,-0.34), 0.019, 97.60%,
<0.0001

Cross-sectional study (6) -0.52 (-0.72,-0.32), <0.0001, 0.0%,
0.662

Case-control study (4) -0.14 (-1.01,0.72), 0.745, 90.30%,
<0.0001

Case-control study (18) -1.65 (-2.23,-1.08), <0.0001, 94.50%,
<0.0001

Cohort study NA Cohort study (2) -1.42 (-2.78,-0.07), 0.040, 84.5%, 0.816
NA, not available.
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patients with OSAHS than those in patients in the control group

in both case-control and cohort studies (SMD=-1.65, 95%CI=

-2.23–1.08, P 0.001; SMD=-1.42, 95%CI=-2.78–0.07, P

0.001, Table 4).
3.6 Meta-analysis of correlation between
plasma/serum IGF-1 concentration and
ODI score, AHI score, and minimum
oxygen saturation

Eleven studies reported Pearson’s or Spearman’s CORs for the

correlation between plasma/serum IGF-1 concentrations and AHI

scores. Three studies reported Pearson’s or Spearman’s CORs for

the correlation between ODI score and serum/plasma IGF-1 levels

in patients with OSAHS. Eight studies reported Pearson’s or

Spearman’s CORs for the relationship between minimum oxygen

saturation and serum/plasma IGF-1 levels in patients with OSAHS.

The ODI score, AHI score, and minimum oxygen saturation are

important criteria for evaluating OSAHS, and AHI scores directly

correlate with OSAHS severity. We conducted a meta-analysis on

serum/plasma IGF-1 concentrations, as well as AHI score, ODI

score, and minimum oxygen saturation in patients with OSAHS

using the “meta” R package. The analysis revealed an effect size for

serum/plasma IGF-1 concentration and AHI score of -0.33 (95%

CI= -0.49–0.15, P< 0.001) (Figure 4A). The effect size for serum/

plasma IGF-1 concentration and ODI score was -0.24 (95%CI=
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-0.49–0.15, P< 0.001). P< 0.001) (Figure 4B) and 0.37 (95%CI=

0.25–0.48, P< 0.001) for serum/plasma IGF-1 concentration and

minimum oxygen saturation (Figure 4C).
3.7 Meta-regression

All included studies had an I2 value of 94.2%, indicating a

high level of heterogeneity. Therefore, we explored the possible

sources of heterogeneity using meta-regression. Table 5 shows

the meta-regression of serum/plasma IGF-1 concentrations.

Meta-regression suggested that ethnicity may influence plasma

IGF-1 concentration (R=-3.396, P=0.003). In the meta-

regression of serum IGF-1 concentrations, disease severity was

also a possible factor affecting serum IGF-1 levels (R=-1.288,

P=0.027). Serum IGF-1 levels were more reduced in patients

with severe OSAHS compared with patients with mild or

moderate OSAHS. This heterogeneity was not caused by the

sample detection method, age, or study design.
3.8 Publication bias

Funnel plots were used to investigate the probability of

publication bias in studies investigating the association

between IGF-1 concentration and OSAHS, which appeared to

be symmetrical. Begg’s (P=0.556) and Egger’s (P=0.307) tests did
A

B

C

FIGURE 4

Funnel plot of effect sizes measured as correlations between serum/plasma IGF-1 levels and AHI, ODI and minimum oxygen saturation. (A) AHI;
(B) ODI; (C) minimum oxygen saturation.
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not reveal any publication bias in studies of patients with

OSAHS (Figure 5A). A funnel plot was also drawn to evaluate

the publication bias of the two meta-analyses with combined

CORs (IGF-1 concentration versus AHI score and IGF-1

concentration versus minimum oxygen saturation). The funnel
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plots appeared to be symmetrical with no indication of

publication bias (all P values >0.05, Figures 5B, C). Only three

publications showed a correlation between IGF-1 concentration

and ODI score; therefore, publication bias analysis was

not conducted.
TABLE 5 Meta-regression analysis of variables predicting serum and plasma levels of IGF-1.

Variables R Adjusted R2 P

Age

Serum - 1.025 0.086 0.095

Plasma - 1.778 0.094 0.241

BMI

Serum -0.561 -0 017 0 439

Plasma 0.465 -0. 157 0.773

Severity

Serum - 1.288 0. 163 0.027

Plasma - 0.499 -0. 149 0.728

Ethnicity

Serum 0.013 -0.048 0.982

Plasma -3.396 0.793 0.003

Assay approaches

Serum -2.820 -0.001 0.220

Plasma 0.706 -0.068 0.472

Design

Serum -0.695 0.037 0.182

Plasma 1.963 0.257 0.118
frontiers
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FIGURE 5

Funnel plots were employed to assess the publication bias among the included studies examining the relationship of leptin levels with OSAS.
(A) Funnel plot of the serum/plasma IGF-1 levels in patients with OSAS versus the control group. (B) Funnel plot of correlation coefficient between
serum/plasma IGF-1 levels and AH. (C) Funnel plot of correlation coefficient between serum/plasma IGF-1 levels and minimum oxygen saturation.
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4 Discussion

IGF-1 levels are reportedly low in a variety of metabolic

diseases and are believed to be involved in OSAHS progression

(46). The serum/plasma IGF-1 concentrations of individuals

from 34 studies were evaluated in this meta-analysis to compare

the IGF-1 concentrations in patients with OSAHS and controls.

According to these findings, adult patients with OSAHS had

considerably lower plasma/serum IGF-1 levels than those in the

control group. Similarly, serum IGF-1 concentrations in

children with OSAHS were considerably reduced compared

with those in the control group, similar to the results reported

by Williams et al. and Nieminen et al. (37, 47). Bar et al. (48)

reported that children with OSAHS had increased serum IGF-1

concentrations and body weights after adenotonsillectomy

compared with children who did not undergo surgery,

suggesting that OSAHS can alter serum IGF-1 levels in

children. However, in our meta-analysis, no major difference

in plasma IGF-1 concentrations was noted between children

with and without OSAHS. The variance in the results might be

due to the various sample sources and small sample sizes.

Notably, only one study by Gozal et al. (17) reported

contradictory results in children, and found that IGF-1 levels

were increased in children with OSAHS without evidence of

cognitive dysfunction. The authors also pointed out that a

significant increase in IGF-1 levels can occur among children

who recovered their cognitive function, whereas in children

without cognitive deficits, a decreased rather than increased

IGF-1 concentration can be expected. This finding may be

related to the inclusion of some particularity for the

population resulting in a difference in their study. Cognitive

function may affect plasma IGF-1 levels; however, the

relationship between IGF-1 level and neurocognitive outcomes

in children requires further investigation. Notably, serum IGF-1

concentrations in children with OSAHS were less reduced

compared with those in affected adults, possibly owing to the

synthesis and secretion of IGF-1 according to GH levels. GH

levels are higher in young people than those in adults, and GH

and IGF-1 are important modulators of energy metabolism in

children (49). The difference in basal metabolism between

children and adults may explain the difference in IGF-1

reduction between adults and children with OSAHS.

Furthermore, subgroup analyses based on different study

designs revealed reduced plasma/serum IGF-1 concentrations in

patients with OSAHS in cross-sectional, case-control, and cohort

studies, indicating that in most reports, the serum/plasma IGF-1

concentrations in patients with OSAHS were reduced compared

with those of control groups and that IGF-1 concentration may be

related to OSAHS onset. Subsequently, a further meta-analysis of

the CORs was performed between IGF-1 concentration and ODI

score, AHI score, and minimum oxygen saturation. The results

indicated that IGF-1 concentration had a moderate negative
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correlation with AHI score, a negative correlation with ODI

score, and a moderate positive correlation with minimum

oxygen saturation. AHI score, ODI score, and minimum oxygen

saturation are all critical indicators for determining OSAHS

severity, implying that IGF-1 levels are associated with OSAHS.

Understanding the mechanism by which IGF-1 levels fluctuate in

patients with OSAHS is critical because studies have shown that

lower IGF-1 levels increase the risk of cardiovascular events

following ischemic stroke and coronary intervention (50, 51).

Tsai et al. (52) discovered that individuals with renal cell

carcinoma with better prognoses had considerably greater

baseline circulating IGF-1 concentrations than those in patients

with worse prognoses. OSAHS is associated with high

cardiovascular and cerebrovascular disease rates as well as

malignancies (53–55). Serum/plasma IGF-1 monitoring may be

important in determining the prognosis of patients with OSAHS.

However, more clinical studies are needed to evaluate the

correlations among cancer, OSAHS, and IGF-1 levels.

Furthermore, this research has crucial clinical consequences, as

the outcomes suggest that the metabolic levels of children and

adults with OSAHS should be evaluated in addition to sleeping

indicators assessed by PSG. Monitoring metabolism-related

molecules in patients with OSAHS can further our

understanding of IGF-1 variations among patients, thereby

enhancing OSAHS risk assessment.

IGF-1 is a polypeptide protein that depends on GH effects to

regulate insulin resistance (56). Fat and skeletal muscle are the

primary target organs of the GH/IGF-1 axis, and play a key role

in the pathophysiology of type 2 diabetes and obesity (57, 58).

Patients with obesity and low IGF-1 concentrations have

considerably more visceral obesity than patients with obesity

and normal IGF-1 concentrations (59). OSAHS and obesity have

a bidirectional relationship. Therefore, we conducted a subgroup

analysis according to BMI and found that serum IGF-1

concentrations in patients with OSAHS and a mean BMI ≥ 30

and< 30 were lower than those of subjects in the control group,

although the decreased serum IGF-1 levels in patients with

OSAHS and a mean BMI≥30 were more prominent. This

indicates that both obesity and OSAHS may lead to decreased

IGF-1 levels in vivo, which aligns with the findings of previous

research. Obesity mixed with OSAHS, meanwhile, creates a

superposition effect, and subsequent drop in IGF-1 levels.

However , we only found decreased plasma IGF-1

concentrations in patients with OSAHS who had a mean

BMI≥30 in our analysis of plasma IGF-1 concentrations,

possibly owing to the small number of studies on plasma IGF-

1 concentration included in our analysis.

Moreover, from the serum IGF-1-related studies we

discovered that serum IGF-1 concentrations in patients with

OSAHS were reduced independent of disease severity or

detection method, and that the serum IGF-1 level was more

reduced in patients with OSAHS and high AHI scores,
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indicating that serum IGF-1 concentration is a possible risk

factor for OSAHS. However, the results of the aforementioned

plasma IGF-1 investigation found no variations in plasma IGF-1

concentrations between patients in the OSAHS and control

groups among different AHI scores and sample testing

methodologies. The discrepancy in the plasma/serum IGF-1

analysis results may be because there were fewer samples of

plasma IGF-1 concentrations, and after subgroup analysis, each

subgroup had fewer reports. The small sample sizes had a major

impact on the outcomes. Further investigations on plasma IGF-1

concentrations and OSAHS are expected to be conducted in the

future with larger sample sizes to confirm our findings.

Surprisingly, decreased serum/plasma IGF-1 levels differed

slightly according to ethnicity, implying that ethnicity may

influence serum/plasma IGF-1 levels in patients with OSAHS.

Polymorphisms in human IGF-1 and IGF-1 receptor genes have

been identified. Genetic variations in the IGF-1 gene control

IGF-1 production (60). Grijalva-Avila et al. (61) hypothesized

that the IGF-1 RS6214 polymorphism is associated with higher

serum IGF-1 expression in Latinos, and that the TT genotype is

associated with obesity and body fat mass. Similarly, Chinese

individuals with the IGF-1 RS35767 AA genotype have reduced

serum IGF-1 levels and a higher risk of type 2 diabetes (62).

IGF-1 and insulin have certain structural similarities, and

the amino acid sequences of IGF-1 and insulin have a homology

of approximately 50% (63). Numerous studies have revealed that

IGF-1 enhances insulin sensitivity during glucose metabolism

(64). The mechanism underlying the association between serum/

plasma IGF-1 concentration and OSAHS remains unclear. Based

on the sources, metabolism, and other influencing factors of

IGF-1, several plausible biological explanations are summarized

as follows. First, the majority of patients with OSAHS are

complicated by insulin resistance. Respiratory disorders and

intermittent hypoxia during nighttime sleep are the major

causes of glucose metabolism disorders and insulin resistance,

and their pathogenic effects are independent of confounding

factors, such as obesity and age. Although OSAHS complicated

by type 2 diabetes is clinically common, its detailed mechanism

has not yet been elucidated. When patients are diagnosed with

type 2 diabetes, the activity of their islet cells is often reduced by

more than 50% relative to normal conditions, indicating that

islet function impairment plays a key role in diabetes

progression and occurs before diagnosis. IGF-1 and insulin

have a synergistic effect, possibly indicating the level of insulin

resistance in the human body. Clemmons et al. (65) revealed that

a mouse model of insulin resistance could be created by

knocking out the IGF-1 gene and injecting exogenous IGF-1

into mouse models, and found that the insulin resistance status

of the models was considerably improved. Insulin resistance may

be an indirect cause of the lower IGF-1 levels observed in

patients with OSAHS. Second, repeated sleep apnea in patients

with OSAHS can cause hypoxia, hypercapnia, acidosis, and even

lower the affinity of insulin to its receptor. Insulin receptor
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activity (tyrosine kinase) also decreases simultaneously, leading

to structural or functional defects in various enzymes in the

glucose metabolic pathway (e.g., glucokinase) and impaired

glucose metabolism in the body, which results in insulin

resistance and IGF-1 deficiency. Meanwhile, long-term and

repeated nocturnal hypoxic stress responses may increase the

antagonistic products of insulin in the body, thereby aggravating

insulin resistance (66, 67). Furthermore, even during the

intermittent stages of stressful periods, the catecholamine and

cortisol levels in patients with OSAHS are higher than those of

individuals in the general population, thereby aggravating

insulin resistance and lowering IGF-1 levels (68). Patients with

OSAHS may experience repetitive arousal at night, resulting in

sleep deprivation. Sleep deprivation can directly alter the

transcription and post-transcriptional translation levels of

IGF-1 mRNA in vivo, thereby lowering IGF-1 concentrations

below the normal range and exacerbating insulin resistance.

Reduced SWS time reportedly limits GH secretion, although

IGF-1 secretion depends on the release of GH. GHs may play a

major role in the stimulation of local IGF-1 synthesis (69). A

study by Zhang and Du showed that recurrent hypoxemia affects

GH and IGF-1 secretion, and in animals, hypoxia inhibits the

release of GHs or biosynthesis (70). According to Han et al.,

hyperoxia also boosted the expression of IGF-1 and its type I

receptor in rats (71). Consequently, we hypothesized that the

GH/IGF-1 axis control problem caused a decrease in IGF-1

concentration produced by reduced SWS time and hypoxemia in

patients with OSAHS. Our subsequent findings revealed that

IGF-1 concentration was negatively correlated with AHI and

ODI scores and positively correlated with minimum oxygen

saturation, demonstrating that sleep hypoxia and sleep structure

disorder have a significant impact on IGF-1 concentration.

The quality of the included studies, overall characteristics,

experimental procedures, and other factors contributed to the

heterogeneity of our meta-analysis. The overall heterogeneity in

this study was substantial (I2 = 94.2%); however, the sensitivity

analysis highlighted that none of the publications had a

considerable effect on the combined SMD, indicating that our

findings are valid. According to the ethnicity and disease severity

subgroup analysis, heterogeneity decreased although the I2

remained above 50% suggesting that unknown factors leading to

heterogeneity, such as the use of different experimental kits and

conditions or patient health status and lifestyle, may exist.

Moreover, variations in sleep-disordered breathing examinations

can cause heterogeneity, although most of the publications included

in this study used standard PSG examinations; therefore, none of

the subgroup analyses were based on the type of sleep-disordered

breathing examinations. This meta-analysis presents certain

advantages for detecting serum and plasma IGF-1 concentrations

in patients with OSAHS. First, our findings imply that serum/

plasma IGF-1 concentrations may be a possible biological

biomarker for measuring OSAHS severity, which may assist

clinicians in accurately diagnosing OSAHS and determining the
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disease severity. Second, this study is the first to combine the CORs

for AHI score, ODI score, minimum oxygen saturation, and IGF-1

concentration and reveal an association between IGF-1

concentration and OSAHS from an evidence-based medicine

perspective. Understanding the changes in serum/plasma IGF-1

concentrations in patients with OSAHS will aid researchers in

furthering their understanding of the metabolic processes in

OSAHS and in analyzing the OSAHS-related consequences.

Galerneau et al. (72) concluded that IGF-1 concentration is a

biomarker of OSAHS severity, and that using IGF-1

measurements in the personalized treatment of patients with

OSAHS may be useful for grading disease severity and guiding

specific interventions for OSAHS-related cardiometabolic risk.

Third, this is the most thorough meta-analysis of the relevant

literature conducted to date, resulting in reliable information. We

included cross-sectional, case-control, and cohort studies to

investigate variations in IGF-1 concentrations between patients

with OSAHS and controls. Our study included a comparatively

larger sample size (2,446 subjects) and more recent studies with

medium-to high-quality publications. Finally, the serum and

plasma IGF-1 concentrations were examined to eliminate sample

origin-related confounding factors.

Despite the originality of our findings, this study has some

limitations. First, this study may have included confounding

variables, such as age, smoking history, lifestyle, alcohol

consumption, sex, and diabetes. In particular, diabetes may be a

major confounding factor for circulating IGF-1 levels. Moreover,

OSA is more common in men, the older, and individuals with

obesity compared with the general population (4). We were unable

to control for the aforementioned confounding factors because the

included articles did not provide data on past medical history,

specific lifestyle factors, or analysis by sex, and no studies were

conducted only in older patients with OSAHS. To a greater or lesser

extent, several potential confounding factors might have influenced

the final findings. Second, the electroencephalography fragmentation

index and N3 sleep (SWS) were identified as important indicators in

the evaluation of OSAHS; however, the included studies did not

examine the direct relationship between serum/plasma IGF-1 levels,

electroencephalography fragmentation index and N3 sleep (SWS).

Third, we were unable to conclude a causal association between

serum/plasma IGF-1 concentrations and OSAHS in this

investigation because of the lack of an appropriate longitudinal

cohort study. Fourth, most of the studies included were small sample

studies comprised of< 100 cases, which was not sufficient to confirm

an association between IGF-1 and OSAHS.
Frontiers in Endocrinology 15
5 Conclusion

Patients with OSAHS had considerably lower plasma and

serum IGF-1 concentrations when compared with those of the

control group, which was negatively correlated with AHI and

ODI scores and positively correlated with minimum oxygen

saturation. The direct relationship between OSAHS and IGF-1

concentration was also affected by ethnicity and illness severity.

Finally, further well-designed studies are required to evaluate the

association between IGF-1 concentration and OSAHS risk.
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