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Inferring miRNA sponge
modules across major
neuropsychiatric disorders

Rami Balasubramanian and P. K. Vinod*

Centre for Computational Natural Sciences and Bioinformatics, International Institute of
Information Technology, Hyderabad, India

The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is

an emerging field of study. The long non-coding RNAs (lncRNAs) are

shown to sponge the microRNAs (miRNAs) from interacting with their

target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will

provide further insights into biological mechanisms and help identify disease

biomarkers. In this study, a large-scale inference of the lncRNA-related

miRNA sponge network of pan-neuropsychiatric disorders, including autism

spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD),

was carried out using brain transcriptomic (RNA-Seq) data. The candidate

miRNA sponge modules were identified based on the co-expression pattern

of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical

correlation. miRNA sponge modules are associated with chemical synaptic

transmission, nervous system development, metabolism, immune system

response, ribosomes, and pathways in cancer. The identified modules

showed similar and distinct gene expression patterns depending on the

neuropsychiatric condition. The preservation of miRNA sponge modules was

shown in the independent brain and blood-transcriptomic datasets of NPDs.

We also identified miRNA sponging lncRNAs that may be potential diagnostic

biomarkers for NPDs. Our study provides a comprehensive resource on

miRNA sponging in NPDs.

KEYWORDS

non-coding RNAs, network biology, co-expression network, miRNA sponge modules,
neuropsychiatric disorders (NPD)

Introduction

Neuropsychiatric disorders (NPDs) are considered the leading cause of disease
burden worldwide. The global number of disability-adjusted life years (DALYs) due
to psychiatric disorders increased from 80.8 million to 125.3 million (Ferrari, 2022).
Psychiatric disorders affect cortical functions, including mood, behavior, perception,
and cognition (Sullivan and Geschwind, 2019). Autism spectrum disorder (ASD),
schizophrenia (SCZ), and bipolar disorder (BD) are the common NPDs leading to
long-term disabilities, and comprehending the pathogenesis of these disorders is
critical. Genetic variants of NPDs are well known. However, little is known about the
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neurobiological mechanisms by which genetic variants interact
with environmental and epigenetic risk factors in the brain. The
brain transcriptome, a quantitative phenotype, provides disease-
related signatures and associated molecular pathways across the
NPD. In ASD, SCZ, and BD, patterns of shared and distinct gene
expression perturbations are observed. Glial cell differentiation
and fatty acid metabolism pathways are upregulated across the
three conditions (Gandal et al., 2018a).

The largest class of transcripts in the human genome,
non-coding RNAs(ncRNAs), are linked to various complex
phenotypes. However, only a few ncRNAs have been functionally
characterized in NPDs. ncRNAs show heterogeneity across the
human cell types and tissue. Tissue-specific transcriptome aids
in studying transcriptional regulation and non-coding genome
function. Understanding the dysregulation of non-coding
RNAs in the brain during disease conditions can help in
the development of more effective diagnostic and treatment
strategies (Gandal et al., 2018a). The competing endogenous
RNA (ceRNA) hypothesis suggests that long non-coding
RNAs(lncRNAs) can act as microRNA sponges by competitively
binding to microRNAs (miRNA) via microRNA response
elements (MREs) and indirectly controlling the expression
level of mRNAs. The crosstalk between miRNAs, lncRNAs,
and mRNAs forms a miRNA sponge or ceRNA network
(Salmena et al., 2011). The differential expressed miRNAs,
lncRNAs and mRNAs are commonly used to construct disease
ceRNA networks based on putative or predicted lncRNA-mRNA
and miRNA-mRNA interactions. Some of the other existing
methods relate miRNA expression and their co-regulated genes
by considering the pair-wise correlation between two ceRNAs
(positive) and the ceRNAs and their miRNA (negative) (Zhang
et al., 2022). Partial association-based methods are also used
to model the relationship between ceRNAs and their miRNA
expressions directly. List et al. (2019) developed a sparse partial
correlation-based sponge network inference method that uses
gene expression and miRNA target binding sites.

Generally, the ceRNA networks are large, so identifying the
subnetwork or modules may help to understand the functional
role of ceRNAs and identify important genes by the guilt-by-
association principle. Different methods have been proposed
for identifying miRNA sponge modules, including network-
based clustering and matrix factorization. Zhang J. et al. (2020)
proposed a modular approach, lncRNA-related miRNA sponge
modules (LMSM), based on the hypothesis that co-expressed
lncRNAs can compete with a group of mRNAs for binding
with miRNA. Zhang et al. (2022) assessed the performance
of different methods to obtain biologically meaningful miRNA
sponge modules based on the efficiency of methods in capturing
the disease molecular signatures. In their comparison study, the
LMSM approach identified disease-associated diagnostic and
prognostic modules in a higher percentage than other methods.

Several studies have explored the novel role of the ceRNA
network in different cancers. A comprehensive resource of

interactions of miRNA sponging for cancers is available,
including Pan-ceRNADB, SPONGEDB, and ENCORI starbase
databases (Li et al., 2014; Xu et al., 2015; Hoffmann et al., 2021).
On the other hand, only a few studies investigate the miRNA
sponging in neurodegenerative and NPDs. These studies are
restricted to inferring ceRNA primarily based on differential
expressed lncRNAs and mRNA (Zhou et al., 2019; Zhang X.
et al., 2020; Zhang J. et al., 2021; Zhang Y. et al., 2021; He et al.,
2021; Sabaie et al., 2021a,b). There is a need to infer miRNA
sponge modules by considering the expression of miRNA,
lncRNAs, and mRNA.

In this study, we predicted the miRNA sponge modules
of pan-neuropsychiatric disorders, including ASD, SCZ, and
BD, using a modular approach. A co-expression network
was constructed using RNA-Seq data of pan-neuropsychiatric
disorders. The candidate miRNA sponge modules were
identified based on sharing of miRNA binding sites and the
sensitivity canonical correlation (Zhang J. et al., 2020). We also
investigated the biological processes and molecular pathways
associated with miRNA sponge modules and identified potential
lncRNAs that can serve as diagnostic markers to distinguish
NPDs. Our study provides a comprehensive resource on miRNA
sponging in NPDs.

Materials and methods

Data processing

The overall pipeline of the work is shown in Figure 1. The
pre-processed RNA-Seq datasets from the BrainGVEX study
and ASD-pan cortical study were retrieved from Synapse with
accession numbers syn4590909 and syn11242290, respectively
(Gandal et al., 2018b). BrainGVEX contains the prefrontal cortex
of post-mortem samples (53 Schizophrenia and 47 bipolar
disorder patients). ASD pan-cortical data includes 53 samples
from Brodmann Area 4/6, Brodmann Area 38, Brodmann Area
7, and Brodmann Area 17 (Supplementary Table S1). We
also retrieved common mind consortium data (syn2759792)
and GEO datasets of post-mortem brains of ASD, SCZ,
and BD patients for validation (Irimia et al., 2014; Ramaker
et al., 2017; Gandal et al., 2018b; Supplementary Table
S2). Further, blood-based samples of ASD, SCZ, and BD
patients were retrieved for the comparative study (Kong et al.,
2012; Krebs et al., 2020; Gatta et al., 2021). For RNA-Seq
data, read counts were normalized using conditional quantile
normalization (cqn R package) (Hansen et al., 2012). Genes
that are not expressed in more than 50% of samples were
removed. The microarray data were processed using Robust
MultiChip Average (RMA) algorithm in the R (affy package)
(Irizarry et al., 2003). This package does background correction,
quantile normalization, and probe summarization (Gautier et al.,
2004). The outliers were removed based on a standardized
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FIGURE 1

The workflow to infer the lncRNA-related miRNA sponge
modules in pan-neuropsychiatric orders.

network connectivity score (Z score <−2) (Oldham et al., 2012).
A pan-neuropsychiatric disorder (pan-NPD) expression data
was created by combining BrainGVEX and ASD pan-cortical
datasets. The Combat function (sva package v3.26.0) in R was
used to correct batch effects (Johnson et al., 2007).

Weighted gene co-expression network
analysis (WGCNA)

The gene co-expression network of pan neuropsychiatric
disorder was constructed using the WGCNA package in R to
organize the transcriptome into functional modules (Langfelder
et al., 2008). At first, a correlation matrix (Sij) was constructed
based on the Pearson correlation between gene expression
and its sign retained by a linear transformation. A weighted
adjacency matrix was constructed with the function aij = Sβ

ij.
A scale-free topology criterion was used for choosing the soft
threshold power β. The square of the correlation R2 was used
to measure the goodness of scale-free topology. Saturation is
reached where the R2 value is greater than 0.8 in the power-law
curve. The power β = 18 was considered for the analysis,
and the resulting adjacency matrix was transformed into a

topological overlap matrix (TOM), and a dendrogram was
constructed using 1-TOM as a distance measure (Zhang and
Horvath, 2005). The genes were clustered into modules using
a dynamic tree-cut algorithm with a minimum module size of
50. The module eigengene (ME) expression values representing
the maximum variation of module genes were obtained using
singular value decomposition. Co-expressed modules with at
least three lncRNAs were considered for further analysis.

Canonical correlation-based approach
for miRNA sponge module identification

Zhang J. et al. (2020) proposed a modular approach
to identify lncRNA-related miRNA sponge modules by
integrating gene expression data and miRNA-target interactions.
The putative miRNA-mRNA targets were retrieved from
miRTarBase, TarBase, TargetScan, and miRCode (Sethupathy
et al., 2006; Jeggari et al., 2012; McGeary et al., 2019; Huang
et al., 2020). The putative miRNA-lncRNA targets were retrieved
from DIANA-LncBase, NpInter, and miRCode (Jeggari et al.,
2012; Karagkouni et al., 2020; Teng et al., 2020). A miRNA-target
matrix was created from these databases.

A co-expression module is considered a miRNA sponge
module if the group of lncRNAs and mRNAs in the
co-expression module: (1) have significant sharing of miRNAs;
(2) have a high canonical correlation between their expression
levels; and (3) have significant sensitivity canonical correlation.
We performed the hypergeometric test to identify the modules
with significant sharing of miRNAs between the group of
lncRNAs and mRNAs in the module based on miRNA-target
interactions. The significance of the hypergeometric test is
calculated as

p− value = 1−

∑L1−1
i1 = 0

(
M1

i1

)(
N1 −M1

K1 − i1

)
(

N1

K1

) (1)

In Equation 1, N1 is the number of miRNAs in the expression
data, and M1 and K1 are the total number of miRNAs interacting
with the group of lncRNAs and mRNAs in the module,
respectively. L1 is the number of miRNAs shared by the lncRNAs
and mRNAs in the co-expression module. Modules with a p-
value < 0.05 were filtered as modules with significant sharing
of miRNAs. For the filtered modules, the canonical correlation
(CClncR-mR) of lncRNAs and the mRNAs in the module was
calculated using Equation 2.

CClncR-mR =
aT
∑

XY b√
aT
∑

XX a
√
bT
∑

YY b
(2)
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The vectors X = (x1, x2, ..., x3)
T and Y =

(
y1, y2, ..., y3

)T in
Equation 2 represent the group of lncRNAs and the group of
mRNAs in a module, respectively.

∑
XX,

∑
YY , and

∑
XY are

the variances and cross-variance matrices calculated from the
expression of X and Y. a (a ∈ Rm) and b (b ∈ Rn) are the
canonical vectors to maximize the correlation.

The miRNAs shared by the lncRNAs and mRNAs in a
module strongly influence the competition between RNAs.
Sensitivity canonical correlation (SCC) explains the influence of
miRNA expression over the lncRNAs and mRNAs (Equation 3).

SCClncR-mR = CClncR-mR − PCClncR-mR (3)

Where PCClncR-mR is the partial canonical correlation (Equation
4) between the group of lncRNAs and mRNAs in the module,
including the effect of shared miRNAs.

PCClncR-mR =
CClncR-mR − CCmiR-mRCCmiR-lncR√

1− CC2
miR-mR

√
1− CC2

miR-lncR

(4)

Modules with high canonical correlation were tested for
significance with the null method model (List et al., 2019).
The null model method hypothesizes that the miRNAs do
not influence the canonical correlation between the group of
lncRNAs and mRNAs (SCClncR-mR = 0). For the null model, the
number of sampled datasets is 1E+6. A module with an adjusted
p-value (adj p-value) < 0.05 (Benjamini-Hochberg correction
method) is considered a miRNA sponge module.

The ME expression value of significant miRNA sponge
modules was correlated with disorders (ASD, SCZ, and BD).
We also validated the identified modules by performing module
preservation analysis on the independent brain and blood-
transcriptomic datasets of ASD, SCZ, and BD. The modules
are shown to be reproducible (or preserved) based on the
preservation of connectivity patterns of modules from reference
networks in the different test networks (Langfelder et al., 2011).
Density-based preservation statistics are used to find which
module nodes remain highly connected in the test network. A
connectivity-based preservation statistics are used to evaluate
whether the connectivity pattern between nodes in the reference
network is comparable to the test network. A preservation
statistic is obtained by aggregating the density-based and
connectivity-based preservation statistics. We accomplished this
using the WGCNA package “module preservation” in R. The
mean and variance of the preservation statistic were computed
by random 200 permutations of module labels in the test
network. Z statistic is defined by standardizing the preservation
statistics with mean and variance. All individual Z statistics are
aggregated by (Equation 5).

Zsummary =
Zdensity + Zconnectivity

2
(5)

A Zsummary > 10 is considered strong evidence for module
preservation, a value between 2 and 10 (2 < Zsummary < 10)
is considered weak to moderate evidence of preservation and
a Zsummary < 2 is considered no evidence of preservation
(Langfelder et al., 2011). Additionally, we also examined whether
the preserved modules show a strong canonical correlation
between the lncRNAs and mRNAs in the test brain and blood-
based transcriptome datasets.

Functional enrichment analysis

The GO terms and KEGG pathways associated with each
module were obtained using WebGestalt (Over-representation
analysis) (Wang et al., 2017) with a background list of
genes expressed in 50% of samples. To correct for multiple
hypothesis testing, Benjamini–Hochberg method was used for
GO terms and KEGG pathways. An adj p-value threshold of
less than 0.05 was applied to find significant biological processes
and pathways.

ROC curve analysis

The lncRNAs of the identified modules can be a good
candidate as diagnostic biomarkers. We obtained the expression
level of the lncRNAs from miRNA sponge modules and used
the pROC package in R to calculate the area under the ROC
(receiver operating characteristic) curve and to plot the ROC
curves.

Results

Pan-neuropsychiatric disorder miRNA
sponge modules

The normalized pan-neuropsychiatric disorder gene
expression data contains 14,030 mRNAs, 2,671 lncRNAs,
and 35 miRNAs. We performed WGCNA on the expression
data of mRNAs and lncRNAs. A gene co-expression network
was constructed, and we identified 29 co-expressed modules.
The miRNA sponge modules were identified based on three
conditions: significant sharing of miRNAs, high canonical
correlation, and sensitivity canonical correlation conditioning
on shared miRNAs. We first selected 25 of these 29 modules
based on the criteria that a miRNA sponge module should have
at least three lncRNAs.

Of these, 10 modules were identified as miRNA sponge
modules with significant sharing of miRNAs and high canonical
correlation (adj p-value < 0.05; Supplementary Table S3).
This approach predicted 1,705 ceRNA interactions between
67 lncRNAs and 782 mRNAs from the 10 modules (Table 1).

Frontiers in Molecular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1009662
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#articles
https://www.frontiersin.org


Balasubramanian and Vinod 10.3389/fnmol.2022.1009662

Figure 2 shows the ceRNA interactions within each significant
module. These modules are associated with 10 overlapping
miRNAs that target more than one module (Supplementary
Data S1). hsa-miR-421, hsa-miR-1299, hsa-miR-3167, and hsa-
miR-4705 are the most common miRNAs shared between
modules. The association between the identified modules and
the clinical traits was explored. The ME expression value of
some of the modules shows a significant correlation with disease
(p-value < 0.05; Figure 3). M1, M3, and M8 modules show a
positive correlation with ASD. These modules are upregulated
in ASD compared to SCZ and BD conditions (Supplementary
Figure S1).

The differentially expressed mRNAs and lncRNAs between
the control and disease groups for ASD, SCZ, and BD
conditions were retrieved from Gandal et al. (2018a) and
mapped to the identified modules. This helps to identify
modules containing disease-specific genes whose pattern of
expression may vary across disorders. The differentially
expressed mRNAs are majorly distributed across the modules
M2, M3, M6, and M8 (Supplementary Table S4). Modules
with the maximum number of differentially expressed lncRNAs
are M2, M4, M6, and M10 (Supplementary Table S5). In the
M2 module, 23 lncRNAs are differentially expressed in ASD
conditions, including OIP5-AS1 and MIR600HG. OIP5-AS1 is
downregulated in ASD patients, and its mRNA interactors are
associated with the Hippo signaling pathway and glutamatergic
synapse (Figure 2). MIR600HG is also downregulated in
ASD patients, and its interactors are associated with the Wnt
signaling pathway, TGF-beta signaling pathway, and longevity
regulating pathway. On the other hand, SBF2-AS1 from the
M2 module is a downregulated lncRNA in SCZ patients, and
its interacting mRNAs are associated with serotonergic synapse
and necroptosis. In the M1 module, the lncRNA FGD5-AS1
and LINC00909 are downregulated in SCZ patients. The mRNA
interactors of FGD5-AS1 are associated with the JAK-STAT
signaling pathway and circadian rhythm. The mRNA interactors
of LINC00909 are associated with apoptosis and interferon-
alpha response. LINC00511 of M8 is upregulated in SCZ, and its
mRNA interactors are associated with proteoglycans in cancer,
spliceosome, and fatty acid elongation.

Further, the lncRNAs with the highest out-degree in different
modules were identified. This includes lncRNAs SAPCD1-AS1
(M2), SNHG16 (M3), RP11-9819.4 (M5), PINK1-AS (M8),
and LINC00657 (M6) (Figure 2). The mRNA interactors
of these lncRNAs map to axon guidance and neurotrophin
signaling pathway (SAPCD1-AS1), pathways in cancer (PINK1-
AS, SNHG16), p53 signaling pathway (RP11-9819.4, SNHG16)
and neurodegeneration (LINC00657). LINC00893 from M10 is
found to be interacting with MEMO1, which controls the radial
unit development and neuronal laminar structure via regulating
radial glial cell tiling. MEMO1 mutations and the resulting
cortical abnormalities may increase the risk of autism (Nakagawa
et al., 2019).

Preservation of miRNA sponge modules

We analyzed the preservation of the identified miRNA
modules in post-mortem brain and blood-based samples of
ASD, SCZ, and BD patients (Table 2). The modules show
moderate to high preservation in the test brain transcriptome
data of ASD, SCZ, and BD patients with Z(summary) > 2
(Figures 4 and 5). In the blood-based transcriptome of SCZ and
BD, modules M2, M4, M9, and M10 show moderate to high
preservation. Module M6 is preserved only in SCZ, and modules
M3 and M7 are preserved only in BD blood-based transcriptome
profiles. Modules M4, M6, M8, and M9 show moderate to
high preservation in the PBMC dataset of ASD. The conserved
miRNA sponge modules also show a significant canonical
correlation between lncRNAs and mRNAs in post-mortem brain
and blood-based transcriptomes. Modules M1 to M6, M9, and
M10 are significant in ASD, while modules M1 to M4, M6, and
M8 to M10 are significant in SCZ and/or BD (adj p-value < 0.05;
Table 2).

miRNA sponge modules associated
pathways and biological processes

We identified the KEGG pathways and biological processes
associated with the miRNA sponge modules using WebGestalt
(Supplementary Data S1). The ASD upregulated module M1 is
related to fatty acid oxidation and amino acid metabolism.
Abnormal β-oxidation of unsaturated fatty acids has been
reported in ASD (Clark-Taylor and Clark-Taylor, 2004). Module
M2 is associated with chemical synaptic transmission, nervous
system development, and KEGG pathways, Axon guidance
and Wnt signaling pathway. The ASD upregulated modules
M3 and M8 are associated with pathways in cancer, cytokine-
mediated signaling pathways, and immune system processes.
The pathways in cancer include genes involved in cell adhesion,
oxidative stress, MAPK signaling, and apoptosis. Cell adhesion
gene CTNNA2 in the module M8 encodes α-catenin, which
plays a role in synaptic plasticity, and is associated with BD
and SCZ (Terracciano et al., 2011). It is strongly expressed
in the central nervous system, but its expression significantly
changes in the post-mortem brain samples of SCZ. Increasing
the expression or function of CTNNA2 is proposed as a potential
therapeutic strategy for NPDs (Eszlari et al., 2021). NFE2L2 in
the module M8 encodes Nrf2, which plays a role in cellular
antioxidant response. NQO1, a target of Nrf2, is also a part
of module 8. BD and SCZ are linked to persistent oxidative
and nitrosative stress. Increasing Nrf2 activity is proposed as a
therapeutic treatment for NPDs (Morris et al., 2021).

Modules M3 and M8 include different MAPKs and members
of the Frizzled gene family. In module M3, MAPKs are
co-expressed with GADD45 s, which are known to act through
the MAPK cascade to control the response to stress signals.
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TABLE 1 miRNA sponge modules of pan-neuropsychiatric disorders and the number of miRNA-sponge interactions in each module.

Modules miRNAs lncRNAs mRNAs Putative Putative lncRNA-related miRNA
miRNA-lncRNA miRNA-mRNA sponge interactions

M1 5 78 421 8 65 75
M2 7 213 1,624 13 279 470
M3 5 25 553 8 89 180
M4 8 299 331 23 48 178
M5 5 73 600 5 90 90
M6 5 107 1,189 6 109 111
M7 4 68 404 5 13 18
M8 3 70 766 7 121 505
M9 3 12 184 4 24 41
M10 5 532 361 12 25 37

FIGURE 2

lncRNA-related miRNA sponge modules of pan-neuropsychiatric disorders.

TABLE 2 Modules showing moderate to high preservation and
significant canonical correlation of lncRNAs and mRNAs in the test
post-mortem brain and blood-based transcriptome.

Datasets Sample Canonical correlated
modules

ASD—GSE64018 Cortex M1–M6, M9, and M10
SCZ—GSE80655 Post-mortem brain region M1 and M8
BD—GSE80655 Post-mortem brain region M1 and M8
ASD—GSE18123 Peripheral blood M4, M6, and M9
SCZ—GSE165604 Lymphocytes M6 and M10
BD—GSE124326 Whole blood M2, M3, M4, M9, and M10

Increased activity of the MAPK signaling pathway is shown
in ASD (Rosina et al., 2019). The knockdown of GADD45a
reduces the effect of mood stabilizer Valproic acid (Yamauchi

et al., 2007), and GADD45a regulates the expression of brain-
derived neurotrophic factor (BDNF) (Feng et al., 2021). Module
M3 also includes genes of HIF-1 signaling pathway genes,
NFKβ signaling pathway, TNF signaling pathway, and cytokine-
cytokine receptor interaction. The expression of immune-
receptor genes (M3) is lower in SCZ, and BD compared to ASD
(Supplementary Figure S2). Proinflammatory cytokines (TNF-
α, IL-6) are shown to be significantly increased in the brain of
ASD patients (Li et al., 2009).

Module M7 is associated with glutamatergic synapse,
oxytocin signaling pathway, GABAergic synapse, and
cholinergic synapse. Module M6 is associated with metabolic
pathways and ubiquitin-mediated proteolysis. This module
includes genes from glycolysis, the TCA cycle, and oxidative
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FIGURE 3

Heatmap of correlation between the disease traits and module
eigengene. Correlation with disorders is calculated based on
ASD-1, SCZ-2, and BD-3, and ASD vs. SCZBD is calculated based
on ASD-1 and SCZBD-0. The p-values are given in the bracket.

phosphorylation (Supplementary Data S1). We also observed
that genes of module M6 map to pathways of neurodegeneration.
Module M9 is associated with the ribosome, protein export,
protein processing in ER, and ncRNA processing.

lncRNAs as potential biomarkers for
neuropsychiatric disorders

We performed a ROC curve analysis to find the lncRNAs
which can be the potential diagnostic biomarker. We obtained
the expression levels of lncRNAs from the identified miRNA
sponge modules. In the ASD- pan-cortical data, we identified
126 lncRNAs with the area under the ROC (AUC) >
0.7 (Supplementary Data S1). Of these, 40 lncRNAs have
AUC value > 0.7 in both ASD pan-cortical and GSE64018
(ASD—cortex). HAR1A from M6 is a candidate lncRNA for
ASD with the best AUC value of 0.88 (Figure 6A). HAR1A is
associated with the central nervous system, Huntington’s disease,
Alzheimer’s disease, and SCZ. It is also associated with ASD,
impulsive behavior, and ADHD (Piñero et al., 2017; Rappaport
et al., 2017). STXBP5-AS1 (M2) has an AUC of 0.83 in ASD
brain datasets and is also differentially expressed in PBMC of
ASD patients (Wang et al., 2015; Tang et al., 2017). RP11-
448G15.3 (M8) and WAC-AS1 (M2) have an AUC value > 0.70 in
both brain and blood-based datasets and can be the diagnostic
biomarkers for ASD (Figure 6).

In SCZ, we identified 64 overlapping lncRNAs across
different brain datasets (BrainGVEX, CMC, and GSE80655)
with AUC > 0.6 (Supplementary Data S1). The candidate
LINC00672 of M2 has an AUC value of 0.69 (in BrainGVEX)
and is also associated with Alzheimer’s disease (Rappaport
et al., 2017) (Figure 7A). BAIAP2-AS1 (M2) module has an
AUC value of 0.60 in BrainGVEX and 0.72 in lymphocytes
data of SCZ patients. McKinney et al. (2017) reported the

FIGURE 4

The preservation of miRNA sponge modules in (A) ASD cortex and (B) PBMC datasets.
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FIGURE 5

The preservation of miRNA sponge modules in the post-mortem brain and blood-based datasets of SCZ (top panel: A,B,C) and BD (bottom panel:
D,E,F).

hypomethylation of BAIAP2-AS1 in SCZ patients, which may
result in increased transcription of BAIAP2-AS1. SBF2-AS1, a
downregulated lncRNA in SCZ from M2, has an AUC value
of 0.67 in BrainGVEX and 0.84 in lymphocytes. LINC00173
(M10) has an AUC value of 0.74 in BrainGVEX and 0.65 in
lymphocytes.

Eight overlapping lncRNAs were identified with an
AUC value greater than 0.6 across different brain-based
transcriptomic datasets of BD. The best candidate lncRNA
RP11-383C5.4 from M6 has an AUC value of 0.81 in
BrainGVEX data (Figure 7B). Twenty-three lncRNAs have
AUC values greater than 0.6 in both BrainGVEX and
whole blood transcriptome. The blood-based candidate

lncRNAs with high AUC values include AC140542.2
(M6), RP11-143K11.1 (M2), RP11-672L10.2 (M2), and
ZFAS1 (M9).

Discussion

We investigated the role of lncRNAs as miRNA sponges in
NPDs (ASD, SCZ, and BD). A pan-neuropsychiatric disorder
transcriptome of ASD, SCZ, and BD patients was analyzed to
construct the gene co-expression network. Using a canonical
correlation-based approach, we identified 10 modules as
significant miRNA sponge modules. We identified the biological
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FIGURE 6

ROC analysis based on lncRNA expression in ASD. (A) ROC curves of HAR1A, STXBP5-AS1, RP11-448G15.3, and WAC-AS1 in syn11242290
(ASD—pancortical). (B) ROC curved of RP11-448G15.3 and WAC-AS1 with AUC > 0.70 in PBMC.

processes and pathways associated with the modules. The
preservation of these modules in other post-mortem brain and
blood-based transcriptomes was studied. We also investigated
the diagnostic potential of the lncRNAs from these modules
by performing ROC analysis using their expression level in
both the post-mortem brain and blood-based transcriptome
studies. The identified modules showed similar and distinct
gene expression patterns depending on the neuropsychiatric
condition (Figure 3). Our approach identified 1,477 lncRNAs
as miRNA sponging RNAs (Table 2) based on co-expression
patterns, providing information on the associated biological
processes.

The miRNA sponge modules of NPD are associated with
metabolic, inflammatory, and cancer pathways, which show
a distinct pattern of expression. These are upregulated in
ASD compared to SCZ and BD (Supplementary Figure S1).
Module M1 is associated with metabolic pathways (fatty acid
oxidation, amino acid metabolism). Recent evidence shows that
ASD, SCZ, and BD are associated with metabolic abnormalities
(Clark-Taylor and Clark-Taylor, 2004; Gillberg et al., 2017;
Moolamalla and Vinod, 2020). The lncRNA FGD5-AS1 from
the M1 module (Figure 2) is shown to act as a competing
endogenous RNA protecting against neuron injury (Zhang X. Q.
et al., 2019). The genes from modules M3 and M8 are related

to inflammatory pathways and show a difference between
NPDs (Supplementary Figure S1). This is consistent with
the observation that immune dysfunction plays a role in
neurodevelopmental deficits in autism (Hughes et al., 2022)
and SCZ (Murphy et al., 2021). Gandal et al. (2018a) showed
that the microglial cell enriched module is upregulated in
ASD and downregulated in SCZ and BD. As opposed to
the episodic nature of active psychosis in SCZ, the clinical
pattern of ASD patients is marked by relative symptom
continuity. In studies of post-mortem brain and peripheral
blood samples of ASD, immunological abnormalities have
been found in individuals of all ages, pointing to a persistent
immune activation that worsens with the severity of symptoms
(Michel et al., 2012).

Interestingly, inflammatory pathways are co-expressed with
pathways in cancer in modules M3 and M8. The risk
genes and pathways for ASD and cancer are reported to
be similar (Forés-Martos et al., 2019). Module M3 includes
lncRNA SNHG1 (Figure 2), which has been previously linked
to neuroinflammation in Parkinson’s disease (PD) and cell
proliferation in cancer via miRNA sponging (Tian et al., 2017;
Cao et al., 2018). The lncRNA GAS5 from module M3 suppresses
inflammatory responses and apoptosis of alveolar epithelial cell
MLE-12 by targeting the miR-429/DUSP1 axis. GAS5 sponges
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FIGURE 7

ROC analysis based on lncRNA expression in SCZ and BD. (A) ROC curves of LINC00672, BAIAP2-AS1, SBF2-AS1, and LINC00173 in BrainGVEX
SCZ patients. (B) ROC curves of lncRNAs with AUC > 0.6 in BrainGVEX BD patients.

the miRNA miR-429 and facilitates the DUSP1 expression
(Li and Liu, 2020). DUSP1 (M3) is co-expressed with
GAS5 in the pan-NPD transcriptome. However, miR-429
is not expressed in 50% of samples and is eliminated
during pre-processing. DUSP1 is involved in the regulation
of anti-inflammatory genes, and it is associated with mental
disorders including BD, major depressive disorder, Alzheimer’s
disease, Huntington’s disease, and cognition disorder (Piñero
et al., 2017). PINK1-AS from module M8 is linked to
PD and has a neuroprotective role against stress-induced
mitochondrial dysfunction (Policarpo et al., 2021). hsa-miR-
421 and hsa-miR-3167 are two miRNAs shared by M1, M3, and
M8 modules. hsa-miR-421 is shown to be upregulated in BD
(Pisanu et al., 2019).

Although modules M2, M6, M7, and M9 did not show a
higher correlation with disorders compared to M1, M3, and
M8 modules, the pathway enrichment of modules captured
relevant pathways associated with NPDs. We observed that the
eigengene expression of these modules shows heterogeneous
patterns within disease groups. The modules M2 and M7 are
linked to neuron-specific pathways connected to synapses.
Module M2 is associated with the neuronal development
pathway, Wnt signaling, which controls many key functions
throughout the development of the vertebrate central nervous
system, including patterning and cell fate specification,

proliferation, and neuronal morphology. The Wnt signaling
pathway regulates neurite outgrowth, axon remodeling,
synapse formation and plasticity, and neurogenesis in the
adult brain (Valvezan and Klein, 2012). Hoseth et al. (2018)
found that the Wnt signaling pathway is disrupted in SCZ
and BD patients, and they hypothesized that medications
targeting the Wnt pathway could help cure mental illnesses
(Hoseth et al., 2018). The WNT/β-catenin pathway is also
dysregulated in ASD (Vallée and Vallée, 2018). The lncRNA
LINC00617/ TUNA from module M2 can affect the gene
expression in neuronal cells, and the knockout of TUNA is
shown to inhibit neuronal differentiation in mouse embryonic
stem cells (Lin et al., 2014). Chen et al. (2021) reported
the sponging effect of OIP5-AS1 (from the module M2)
with miR-186-5p, and this activity protects neuron injury
against cerebral hypoxia–ischemia-induced inflammation and
oxidative stress.

Module M9 is linked to the ribosome and protein export.
Studies show that the lncRNAs SNHG6 and ZFAS1 from
M9 (Figure 2) are the ribosome-linked lncRNAs (Hansji
et al., 2016; Birgani et al., 2018). The lncRNA landscape
obtained from brain tissues of SCZ patients shows that
the ribosome and protein synthesis pathway is upregulated.
The ribosome protein genes are also upregulated in ASD
post-mortem cortical tissues and induced pluripotent stem
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cell (iPSC)-derived neural progenitor cells of ASD (Tian
et al., 2018; Lombardo, 2020). The lncRNA SNHG6 functions
as a ceRNA to regulate neuronal apoptosis in ischaemic
stroke (Zhang X. et al., 2019). The lncRNA MIAT from
module M7 is a well-known lncRNA linked to NPD (Rusconi
et al., 2020). The MIAT level decreases with neuronal
activation, and it facilitates a pro-anxiety transcriptional
program. The lncRNA MEG3 from module 7 functions as
a ceRNA in ischemia-induced neuronal cell apoptosis (Liu
et al., 2016). MEG3 is upregulated, and PINT (from module
M10) is downregulated in SCZ post-mortem brain samples
(Ghafouri-Fard et al., 2021).

The role of lncRNAs OIP5-AS1 (M2), SBF2-AS1 (M2),
MIAT (M7), MEG3 (M7), SNHG5 (M8), LINC00511 (M8),
SNHG6 (M9) as miRNA sponges are well-studied in cancer
(Wang D. et al., 2020; Wang H. S. et al., 2020; Lu et al., 2021;
Zhang S. et al., 2021). Other well-known lncRNAs NEAT1
(M4) and MALAT1 (M4) in NPD are present in module
M4, which does not show a significant correlation with the
disease but shows higher module preservation in blood-based
transcriptomic data (Rusconi et al., 2020). We predicted the
potential biomarkers for NPD based on the expression level of
lncRNA in brain tissue and blood. The lncRNA-based approach
yielded higher AUCs for ASD than BD and SCZ (Figures 6 and
7). The analysis also revealed the preservation of co-expression
patterns across brain and blood samples in NPD, suggesting
common pathological mechanisms.

Overall, our study provides a detailed landscape of lncRNAs
in NPD and their role as competitive endogenous RNAs using
a modular approach. The prior studies on the ceRNA network
in NPD mapped differentially expressed mRNAs and lncRNAs
to the putative interactions from the databases (He et al., 2021;
Li et al., 2021; Sabaie et al., 2021a,b). However, these studies
do not consider the co-expression pattern of miRNA, lncRNA,
and mRNA, and all the potential RNAs may not be differentially
expressed. We performed a large-scale inference of the lncRNA-
related miRNA sponge network in the NPD, which captured
the co-expressed miRNA sponge RNAs (lncRNAs and mRNAs)
across the disorders. The miRNA sponge activity of lncRNAs
shows cross-disorder expression overlap and conservation in
the post-mortem brain and blood-based samples. We provide
the curated list, including interactions involving lncRNAs as
miRNA sponges and their associated biological processes and
potential biomarkers for NPDs (Supplementary Data S1).
It will serve as a valuable resource for further exploration
by experiments.
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