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Abstract: Background: Lipid metabolism disorders, especially hypertriglyceridemia (HTG), are risk
factors for non-alcoholic fatty liver disease (NAFLD). However, the association between genetic fac-
tors related to HTG and the risk of NAFLD has been scarcely studied. Methods: A total of 185 subjects
with moderate HTG were prospectively included. We investigated the association between genetic
factors’ (five allelic variants with polygenic hypertriglyceridemia) clinical and biochemical biomark-
ers with NAFLD severity. The five allelic variants’ related clinical and biochemical data of HTG were
studied in all the subjects. NAFLD was assessed by abdominal ultrasound and patients were divided
into two groups, one with no or mild NAFLD and another with moderate/severe NAFLD. Results:
Patients with moderate/severe NAFLD had higher weight and waist values and a higher prevalence
of insulin resistance than patients with no or mild NAFLD. Moderate/severe NAFLD was indepen-
dently associated with APOAS rs3134406 and ZPR1 rs964184 variants, and also showed a significant
inverse relationship with lipoprotein(a) [Lp(a)] concentrations. Conclusions: APOAS rs3135506
and ZPR1 rs964184 variants and lipoprotein(a) are associated with moderate/severe NAFLD. This
association was independent of body weight, insulin resistance, and other factors related to NAFLD.

Keywords: non-alcoholic fatty liver disease (NAFLD); hypertriglyceridemia; SNP; APOA5 variant;
ZPR1 variant; Lp(a)

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is currently the most common liver disease
in developed countries [1] in parallel with the increase of metabolic syndrome and obe-
sity [2]. Its global prevalence in the general population is variable and has been estimated
at 52 million in European countries.

Although NAFLD is relatively benign in early stages [3], it can progress to non-
alcoholic steatohepatitis (NASH). Progressive NASH may lead to cirrhosis and its compli-
cations [4]. NAFLD has well-established risk factors such as insulin resistance associated
with overweight, physical inactivity, and type 2 diabetes mellitus [5]. However, epidemio-
logical, familial, and twin studies have clearly indicated that the risk of the development of
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NAFLD also has a strong genetic component [6]. Therefore, the appearance and develop-
ment of NASH is attributed to the interaction of genetic and environmental factors [7].

The hallmark of NAFLD is the accumulation of triglycerides in the cytoplasm of
hepatocytes that arises from an imbalance between the intake and consumption of lipids.
NAFLD is strongly associated with obesity, insulin resistance, and hyperinsulinemia. In
these disorders, the increase of the content of fatty acids (FAs) in the liver is caused by an
increased release of FAs from the adipose tissue as well as a high “de novo” lipogenesis.
This leads to a greater availability of FAs for triglyceride (TG) synthesis, which are incor-
porated into very-low-density lipoprotein (VLDL) and this, together with the failure of
insulin to suppress VLDL production, predisposes to hypertriglyceridemia (HTG) [8]. On
the other hand, the excessive contribution and production of FAs in the liver cannot be
compensated by the increase in the excretion of TG in the VLDL particles, which is limited
by the availability of ApoB100 and, as a consequence, an excessive deposition of TG within
the cytosolic lipid droplets (LD) occurs [9].

Clinical HTG has been related to the presence of hepatic steatosis [10,11] in the same
way as disturbances in TG metabolism are related to the development of NAFLD. Polygenic
HTG is related to the presence of multiple allelic variants since its new re-definition. The
presence of these variants together with environmental factors determines clinical HTG.
In the studies performed by Hegele et al., the five variants we studied were the most
prevalent in population with polygenic HTG. If the presence of these polymorphisms
causes alterations in triglyceride metabolism pathways and these alterations are related to
NAFLD, it can be expected that single nucleotide polymorphisms (SNPs) associated with
HTG could also be related to NAFLD. However, the association between SNPs and HTG
and the risk of NAFLD has been scarcely studied.

An inverse relation between Lipoprotein (a) [Lp(a)] and NAFLD as well as with Lp(a)
and TG has been found, although little evidence is available in this respect [12,13].

The aim of this study was to analyze the association between NAFLD and lipid and
non-lipid risk factors and the five allelic variants shown to have the greatest effect on plasma
TG concentrations and clinical HTG [14] according to genome-wide association studies.

2. Materials and Methods
2.1. Population

A total of 185 patients, aged 18 to 80 years with primary HTG, from a lipid clinic in
a tertiary hospital were prospectively included between January 2019 and August 2020.
Ultrasonography (US) was performed in all patients within their routine study.

HTG was defined as a serum TG concentration between 2-10 mmol/L on at least two
occasions. Patients with severe systemic or life-threatening disease or with the following
secondary causes of HTG were excluded: chronic hepatic disease, stage 4-5 chronic kidney
disease or on dialysis, type II diabetes mellitus (DM) with insufficient metabolic control
(glycated hemoglobin (HbAlc) > 10%) and hypothyroidism with thyroid-stimulating
hormone >8 mU/L, drug-induced HTG, and alcohol overuse, defined as a consumption of
more than 40 g (four standard drink units (SDU) for males and more than 20 g (two SDU) a
day for females) [15].

2.2. Variables Selected
All patients provided information about their age, sex, profession, medication, smok-

ing habit, and alcohol consumption. Cigarette smoking was categorized as “none”, “past”,
or “current”, and alcohol consumption was classified according to the number of SDU
per week. Diet assessment was performed using a validated and standardized question-
naire of the Spanish Atherosclerosis Society (SEA). This is a questionnaire of adherence to
heart-healthy diet carried out by the Spanish Atherosclerosis Society in which 14 items are
evaluated and a global score is obtained that defines the degree of adherence to this diet [16].
Physical activity was assessed by self-reporting of hours of physical activity per week with
only activities of at least moderate intensity such as fast walking, swimming, cycling, or
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other aerobic activities were considered. Physical activity carried out during travel or basic
daily activities was not taken into account. The questionnaire was performed by a trained
physician during the regular visit. Anthropometric measures such as weight, height, and
waist were measured during the first visit, and the body mass index (BMI) was calculated
as weight/height? (kg/m?). Data on hypertension, DM, and hypercholesterolemia were
also registered.

Variables from lipid profiles corresponding to the lowest, highest, and the most recent TG
results with corresponding treatments were recorded for each patient. Analytical results were
collected from the electronic clinical records of the patients. Fasting lipid profiles included
plasma concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c)
(when possible), high-density lipoprotein cholesterol (HDL-c), non-high-density lipoprotein
cholesterol (non-HDL-c), TG, apolipoprotein B (ApoB), and apolipoprotein Al (ApoAl).
Serum concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT),
gamma glutamyltranspeptidase (GGT), insulin, basal glucose, HbAlc, Lp(a), homocysteine,
albumin, and high-sensitivity C reactive protein (CPR-hs) were also studied. The home-
ostasis model of insulin resistance (HOMA-IR) was calculated using fasting values in the
following formula: HOMA-IR = (fasting glucose (mmol/L) x insulin (uIU/mL))/22.5 [17].
Insulin resistance was considered when HOMA-IR was >2.

All the biochemical analyses were performed in plasma using a COBAS 711 automated
analyzer (Roche Diagnostics®). HbAlc was measured in serum using an HA-AutoA 1C

8180 auto-analyzer from Menarini®.

2.3. Genetic Testing

The allelic variants selected for our study were those that were shown by Genowe-
wide association study (GWAS) to have the greatest effect on plasma TG concentrations
and on the risk of HTG [18], which were: (c.724C > G) from the ZPR1 gene, (c.56G > C)
from the APOAS5 gene, (c.1337T > C) from the GCKR gene, (g.19986711A > G) from the
LPL gene, (c.107 + 1647T > C) from BAZ1B, and (g.125478730A > T) from the TRIB gene. A
higher prevalence than expected by GWAS was found in these patients when these allelic
variants were analysed.

The genotypes of the six variants studied were codified as “0” when the variant was
non-present, “1” if one allele was present (heterozygous), and “2” if two alleles were
present (homozygous).

DNA was extracted from peripheral blood using an automated DNA purification sys-
tem (Maxwell® RSC Instruments, Promega, Madison, WI) and stored at —80 °C. The follow-
ing SNPs were genotyped: ZPR1 gene rs964184 (NM_003904.4:¢c.*724C > G), APOAS gene
rs3135506 (NM_001166598.1:¢.56G > C), GCKR gene rs1260326 (NM_001486.3:¢.1337T > C),
LPL gene rs12678919 (NC_000008.11:g.19986711A > G), BAZ1B gene rs7811265 (NM_032408.3:
¢.107 + 1647T > C), and TRIB gene 152954029 (NC_000008.11:g.125478730A > T).

Genotyping was carried out using the TagMan SNP Genotyping Assay (assays ID:
C_8907629_10, C_25638153_10, C_2862880_1, C_9639494_10, C_2632556_10, and
C_15954645_10) Applied Biosystems®, Foster City, CA, USA) in 96-well plates that in-
cluded positive and negative controls. Real-time polymerase chain reaction (PCR) tests
were carried out in the 7500 Real-time PCR System, Applied Biosystems (Thermo Fisher
Scientific®, Waltham, MA, USA) following standard recommendations. Briefly, 1 uL Assay
Mix was mixed with 10 uL Supermix SsoAdvanced (Biorad® Hercules, CA, USA), 2 uL
genomic DNA (20 ng/uL), and purified water up to 20 pL. The resulting mixture was
heated to 50 °C for 2 min and 95 °C for 10 min in a thermal cycler, followed by 40 cycles of
denature at 95 °C for 15 s and anneal/extend at 60 °C for 1 min.

2.4. Diagnosis of NAFLD

Abdominal US was used to evaluate fatty liver disease in all subjects based on known
standard criteria, including hepatorenal echo contrast, liver brightness, and vascular
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blurring. The radiologists performing the US examination were blinded to the clinical
status of the subjects.

The US results were codified as “0” no fatty liver disease, “1” mild or geographic fatty
liver disease, “2” moderate fatty liver disease, and “3” severe liver disease.

The assessment of liver echogenicity by US has a high sensitivity and specificity for
the detection or exclusion of moderate to pronounced fatty infiltration [19], but has a low
accuracy to effectively differentiate between absent and mild steatosis [20]. According to
the US results, the patients were separated into two groups, one group without or with
mild NAFLD (non/mild NAFLD patients) and another group with moderate or severe
NAFLD (moderate/severe NAFLD).

2.5. Statistical Analysis

To calculate the statistical power of this study, it was considered that with 93 patients
in each group a power of 71.3% existed to detect differences in the contrast of the null
hypothesis Hy: p1 = p2 by means of a bilateral chi-square test for two independent samples,
taking into account that the level of significance was 5% and assuming that the proportion
in the reference group (mild/moderate) was 3% and the proportion in the moderate/severe
group was 13%, with the percentage expressed being the prevalence of the variant ZPR1.

The descriptive analysis of categorical variables across groups was shown as frequency
and percentages. Normal quantitative variables were expressed as means and standard
deviation (SD) and non-normal quantitative variables were expressed as median and
interquartile range. Comparisons among groups of NAFLD severity were made using the
chi-square or Fisher exact test for categorical variables, ANOVA for normal quantitative
variables, and the Mann-Whitney U-test and Kruskal-Wallis for non-normal quantitative
variables. The normality of the variables was evaluated using Q-Q plots. The association
between the different variables as predictive factors of NAFLD severity was analysed by
logistic regression analysis with the variable NAFLD as a dependent variable and the
genetic variant as an independent variable. These variables, which showed statistical
significance on the bivariate analysis, were included as confounders. The p values < 0.05
were considered statistically significant.

3. Results

The baseline characteristics of the study participants are shown in Table 1. No dif-
ferences were found between the two groups of patients in terms of biological sex and
age. Compared with non/mild NAFLD patients, patients with moderate or severe NAFLD
presented a higher BMI and waist circumference and a higher prevalence of insulin resis-
tance and elevated ALT. Moreover, moderate/severe NAFLD patients presented lower
levels of Lp(a), but no differences in other lipid metabolism and inflammatory parameters
were found.

No differences were found in clinical or biochemical parameters in the group of
non/mild NAFLD patients.

Among the genetic variants studied, the ZPR1 rs964184 and APOAS5 rs3135506 variants
were found to be associated with NAFLD (Table 2).

Logistic regression analysis was used to test the independent association of genetic
factors with NAFLD. A recessive model of inheritance best explained the association of
NAFLD with the ZPR1 rs964184 variant (odds ratio (OR) = 4.1). This association was
stronger after adjustment for age, gender, and BMI (OR = 4.99).

For the APOASb rs3135506 variant a real estimation of the association with NAFLD
could not be provided because only five homozygous patients were identified. A Fisher ex-
act test was, therefore, made to calculate the relationship with NAFLD, achieving borderline
significance (p = 0.06) in the recessive model.

When the relationship of at least one of these two variants in homozygosis with
NAFLD severity was analysed, a significant association was observed with an OR = 5.44 in
the adjusted model.
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Table 1. Clinical and metabolic characteristics of the study subjects.

Variables (1) Non/Mild NAFLD Mod/Severe NAFLD p
Biological sex (male) 62 (69.7%) 74 (77.1%) 0.253
Age, years 53.3 (10.7) 52.1 (9.8)) 0.438
BMI, kg /m? 28.1 (3.8) 29.6 (3.9) 0.012
Waist circumference, cm (136) 98.3 (13.4) 104.3 (12.3) 0.008
Alcohol consumption, units/w (174) ** 0.0 (0.0-1) 0.697
Diet, SEA (144) 7.1(3.7) 8.0 (34) 0.151
Physical activity, h/week (153) ** 1.0 (0.0-3.8) 2.0 (0.0-4.0) 0.580
Total cholesterol, mmol/L (183) 6.78 (1.9) 6.72 (1.8) 0.856
HDL-c, mmol/L (183) 1.00 (0.3) 0.92 (0.3) 0.092
LDL-c, mmol/L (66) 3.48 (1.5) 3.73(1.7) 0.532
Non-HDL-c, mmol/L (182) 5.77 (1.8) 5.77 (1.9) 0.984
TG, mmol/L (183) ** 5.1(4.0-9.6) 6.2(3.5-10.8) 0.439
ApoB, mg/L (179) 1.13 (0.3) 1.20 (0.4) 0.253
ApoAl, mg/L (178) 1.39 (0.2) 1.36 (0.2) 0.400
DM 15 (16.9%) 22 (22.9%) 0.303
Glucose, mmol /L ** 5.4 (5.0-6.3) 6.15 (3.5-10.8) 0.356
HbA1lc, % (182) ** 5.8 (5.4-6.0) 5.9 (5.5-6.3) 0.100
Insulin, pmol/L (133) ** 99.1 (71.4-149.8) 126 (82.9-182.0) 0.044
HOMA-IR (131) ** 3.6 (2.5-5.7) 44 (3.1-7.1) 0.039
Insulin resistance (131) * 51 (83.6%) 66 (94.3%) 0.048
AST, ukat/L ** 0.4 (0.3-0.5) 0.5 (0.4-0.6) 0.087
ALT, ukat/L ** 0.5 (0.3-0.6) 0.6 (0.4-0.8) 0.040
Albumin (mg/dL) (139) 47.30 (2.6) 47.48 (3.0) 0.706
Lp(a), nmol/L (174) ** 54.8 (10-4—184.8) 29 (7.0-98.4) 0.027
Homocysteine, umol /L (109) 10.80 (3.9) 15.59 (5.5) 0.060
CRP-hs, mg/L (119) ** 1.0 (0.6-2.0) 1.0 (0.6-3.1) 0.507

Data are expressed as percentage (analysed by chi-square or Fisher test) or mean (+/-SD) for normal quantitative variables (analysed
by ANOVA test) or median and interquartile interval for non-normal quantitative variables (analysed by Mann-Whitney U-test). The
lipid profile corresponding to the highest TG levels was selected. The highest AST and ALT levels were selected. * Insulin resistance
was considered with HOMA-IR >2. Only n values other than 185 are described. ** Non-normal quantitative variables. Abbreviations:
BMI: body mass index, LDL-c: low-density lipoprotein cholesterol, HDL-c: high-density lipoprotein cholesterol, non-HDL-c: non-high
density lipoprotein cholesterol, TG: triglyceride, ApoB: apolipoprotein B, ApoA1: apolipoprotein Al, AST: aspartate aminotransferase, ALT:
alanine aminotransferase, HbAlc: glycosylated hemoglobin, Lp(a): Lipoprotein (a), CRP-hs: high-sensitivity C reactive protein, HOMA-IR:
homeostasis model of insulin resistance, Diet SEA: standardized diet questionnaire of the Spanish Atherosclerosis Society.

The results of the logistic regression analysis performed to investigate the effect of
genetic and non-genetic factors including Lp(a) serum levels on NAFLD severity are shown
in Table 3. Two models were evaluated, one adjusted by BMI and the other adjusted by
HOMA-IR as these variables are clinically related. For the model adjusted by BMI the
presence of one or both genetic variants in homozygosis showed the strongest association
with the severity of NAFLD, as the presence of one or both variants in homozygosis
increased the risk of presenting moderate/severe NAFLD (OR = 4.53; CI.18 to 17.41)
(p = 0.028). Lp(a) showed a significant inverse relation with NAFLD severity (OR = 0.997
95% IC 0.99 to 1) (p = 0.048). The BMI was also related to NAFLD, with a variation of one
unit of BMI increasing the probability of presenting moderate-severe NAFLD by 10%. For
the model adjusted by HOMA-IR the results were similar except for Lp(a). HOMA-IR was
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also related to NAFLD, with a variation of one unit of HOMA-IR increasing the probability
of presenting moderate-severe NAFLD by 17%.

Table 2. Genotype frequencies and odds ratios of variants associated with non-alcoholic fatty liver disease.

Non/Mild Moderate/Severe Genotype Model
Gene SNP N N x2 ko ORO5%CH U‘;fg;‘l‘zt:d OR (95%CI) ’;‘_i‘j,‘ﬁid
ZPR1 Rs964184 527  0.072
cC 45 (50.6) 46 (47.9)
CG 41 (46.1)  38(39.6) 0.91 (0.50-1.66) 0.750 0.86 (0.46-1.60) 0.625
GG 3(34) 12(125) 3.91 (1.04-14.8) 0.044 4.65 (1.20-18.01) 0.026
Dominant model CG + GG 44 (494) 50(52.1) 0.13 0.719 1.11 (0.62-1.98) 0.719 1.10 (0.61-1.98) 0.765
Recessive model GG 3(34) 12 (12.5) 5.17 0.023 4.10 (1.12-15.03) 0.034 4.99 (1.33-18.76) 0.017
APOAS5 Rs3135506 NA
cC 68 (77.3) 66 (68.8)
CcG 20 (22.7)  25(26.0)
GG 0(0) 5(5.2)
Dominant model CG + GG 20(22.7) 30(31.3) 1.69 0.184
Recessive model GG 0(0) 5(5.2) NA 0.06 *
APOAS + ZPR1 6.05 0.014
Non-hom 86 (96.6) 83 (86.5)
1 or2in hom 3(34) 13 (13.5) 4.54 (1.25-16.53) 0.022 5.44 (1.46-20.25) 0.012

Data are expressed as absolute numbers and percentages by NAFLD severity group (analysed by chi-square or Fisher test). Models of
logistic regression analysis unadjusted and adjusted for gender, age, BMI, and genotypes (that were considered as dominant or recessive).
* Due to the low frequency of presentation, the relation between the APOAS5 variant and NAFLD was analysed with the Fisher exact
test. In the dominant model homozygotes and heterozygotes are compared with non-mutant (GG + GC vs. CC), and in the recessive
model homozygotes were compared with heterozygotes and non-mutant (GG vs. GC + CC). Abbreviations: OR: odds ratio; CI: confidence
interval; SNP: single nucleotide polymorphism; Non-hom: none of the variants are present in homozygous; 1 or 2 in hom: one or both
variants are present in homozygosis; NA: not applicable.

Table 3. Factors associated with non-alcoholic fatty liver disease.

Model Variables OR CI p Value Adjusted
Age 0.983 0.95-1.01 0.297
Biological Sex (male) 1.232 0.58-2.58 0.582
Adjusted by BMI Lp(a) 0.997 0.99-1 0.048
BMI 1.103 1.01-1.20 0.027
ZPR1 + APOA5 4.537 1.18-17.41 0.028
Age 0.963 0.92-1.01 0.081
Biological Sex (male) 1.513 0.61-3.74 0.582
Adjusted by Lp(a) 0.998 0.99-1 0.431
HOMA-IR
HOMA-IR 1.172 1.03-1.34 0.017
ZPR1 + APOA5 10.798 1.22-94.89 0.032

Logistic regression analysis was used to test the association of genetic (independent variable), clinical, and
biochemical factors (as confounders) with NAFLD severity (dependent variable). Lp(a): lipoprotein a; OR: odds
ratio; CI: confidence interval; BMI: body mass index; HOMA-IR: homeostasis model of insulin resistance.

Analysis of the relationship between genetic factors and metabolism was also per-
formed as it is shown in Table 4. No differences in clinical or anthropometric indices
were found across carriers or non-carriers of the ZPR1 (rs964184) or APOA5 (rs3135506)
variants. In terms of metabolic parameters, only differences in TG values were found for
APOA5 (rs3135506) and TC, TG, non-HDL-c, and HDL-c for ZPR1 (rs964184), with carriers
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presenting higher concentrations of all these values than non-carriers. No differences were

observed in glucose metabolism parameters or inflammatory and hepatic parameters.

Table 4. Relationship between the genotype and metabolic traits of the ZPR1 (rs 964184) and APOA5

(rs 3135506) genes.
ZPR1 Wild Type Heterozygous Homozygous
(rs 964184) cC CG GG P
Biological sex (male) 66 (72.5%) 61 (77.2%) 9 (60.0%) NA

BMI kg /m? 28.60 (4.4) 29.20 (3.5) 28.40 (2.8) 0.558

TC mmol/L 6.44 (1.7) 6.82 (1.7) 7.55 (2.1) 0.009
TG mmol /L * 4.55 (3.0-7.9) 6.30 (4.3-11.6) 12.70 (9.4-20.6) <0.0001

Non-HDL-c mmol/L 5.47 (1.7) 5.80 (1.7) 6.73 (2.18) 0.004
HDL-c mmol/L 0.97 (0.3) 1.00 (0.3) 0.82 (0.2) 0.033
Glucose mmol/L * 5.50 (5.1-6.4) 5.60 (5.1-6.2) 5.30 (4.8-6.8) 0.855
Insulin pmol/L* 95.6 (71.4-134.0) 129 (79.6-176.0) 131 (81.9-191.0) 0.114

HOMA-IR * 3.59 (2.8-5.3) 4.83 (2.6-6.4) 4.23 (2.9-6.9) 0.279
AST pkat/L* 0.45 (0.4-0.6) 0.42 (0.3-0.5) 0.35 (0.3-0.5) 0.125
ALT pkat/L* 0.53 (0.4-0.8) 0.45 (0.4-0.7) 0.42 (0.3-0.6) 0.232

CRP—hs mg/L* 1.00 (0.6-2.8) 0.9 (0.6-2.4) 1.95 (0.5-3.9) 0.765
Lp(a) nmol/L * 37 (7.4-121.8) 47 (8.3-183.4) 18.4 (7-64.8) 0.235
APOA5 Wild Type Heterozygous Homozygous
(rs 3135506) cC CG GG P
Biological sex (male) 100 (74.6%) 34 (75.6%) 2 (40.0%) NA

BMI kg /m? 28.60 (4.1) 29.71 (3.2) 29.20 (2.8) 0.252

TC mmol/L 6.61 (1.82) 6.83 (1.69) 7.77 (1.67) 0.113
TG mmol/L * 5.18 (3.6-9.5) 7.07 (4.2-12.5) 18.4 (10.6-25.3) 0.002

Non-HDL mmol/L 5.63 (1.83) 5.82 (1.71) 7.03 (1.71) 0.051

HDL-c mmol/L 0.98 (0.33) 0.97 (0.30) 0.73 (0.13) 0.048

Glucose mmol/L * 5.5 (5.1-6.4) 5.6 (5.2-6.2) 5.2 (4.7-6.8) 0.804

Insulin pmol/L * 99.3 (73.4-152.0) 129.00 138 (98.2-179.5) 0.127
(88.9-173.5)

HOMA-IR * 3.63 (2.6-56) 5.28 (3.2-6.5) 4.28 (3.4-4.7) 0.148
AST pkat/L * 0.43 (0.4-0.6) 0.40 (0.3-0.5) 0.38 (0.3-0.5) 0.148
ALT pkat/L* 0.53 (0.4-0.8) 0.42 (0.4-0.8) 0.40 (0.3-0.7) 0.529

CRP-hs mg/L * 0.90 (0.6-2.5) 1.3 (0.5-3.2) 2.05 (0.8-4.0) 0.749
Lp(a) nmol /L * 31.9 (7.4-111.5) 48 (7-190) 50 (16.5-205.8) 0.638

Data are expressed as percentage (analysed by chi-square) or mean (+/—SD) for normal quantitative variables
(analysed by ANOVA test) or median and interquartile interval for non-normal quantitative variables (analysed by
Kruskall-Wallis test). BMI (body mass index), TC (total cholesterol concentration), Tg (triglycerides concentration),
non-HDL-c (total cholesterol except HDL), HOMA-IR (Homeostasis Model Assessment of Insulin Resistance),
AST (aspartate amino transferase), ALT (alanine amino transferase), CRP-hs (C-reactive protein high sensitivity),
Lp(a) lipoprotein (a), p-value of Kruskall-Wallis test. * Non-normal quantitative variables.

Analysis of the relationship between genetic factors and metabolism was also per-
formed for the rest of the allelic variants studied included in Table 52 of the Supplemen-
tary material.



Nutrients 2021, 13, 552

8of11

4. Discussion

NAFLD is a complex metabolic disorder related to alterations in TG metabolism [21].
Although several genes and genetic variants have been identified as being involved in the
development of NAFLD [22], the role of TG polymorphisms is not well known.

This was a cross-sectional study of patients with HTG aimed at assessing the clinical,
biochemical, and genetic factors related to moderate/severe NAFLD. As expected, the BMI,
waist circumference, and insulin resistance were found to be related to NAFLD in this
cohort, similar to the results of previous studies [23-25]. However, unlike other studies [26],
TG levels were not significantly higher in patients with moderate /severe NAFLD compared
with those with non/mild NAFLD, which may be because all the patients included in the
study had HTG.

The patients studied showed a higher frequency of risk alleles related to HTG than
expected by Global Lipids Genetic Consortium (GLGC) studies [14] and this was especially
remarkable in relation to the ZPR1 (rs964184) and APOAS5 (rs3135506) variants. Thus,
8.1% of patients were homozygous for the ZPR1 variant, whereas the expected frequency
according to GLGC studies is about 1%. In addition, 2.7% of patients were homozygous
for APOAS5, while the expected frequency is less than 1% in GLGC studies. The frequen-
cies in which the rest of the variants have been presented are shown in Table S1 of the
supplementary material.

Among genetic factors, the APOAS5 rs3135506 variant was found to be related to
moderate/severe NAFLD. This could be explained in that this variant has been related to
a decrease in hepatic ApoAb5 secretion [27] and high hepatic ApoAS5 concentrations have
been observed in liver biopsies of NAFLD patients and in animal models [28,29].

According to biochemistry studies, the relationship between ApoA5 and NAFLD is
not due to the role of Apo5 in stimulating lipoprotein lipase activity at an extracellular
level [30] but rather its activity at an intracellular level. ApoAS5 affects the number and size
of hepatic lipid droplets (LD), whereby high levels of this apolipoprotein lead to an increase
in the number and size of LD [31,32]. It has been speculated that ApoAS5 plays a role in
regulating the directionality of intracellular TG flux [31]. Mature ApoAS5 may interact with
membrane defects caused by nascent LD formation, leading to its association with nascent
LD in the cytosol, promoting the permanence of LD in hepatocytes. It may also pass from
the endothelial reticulum lumen to the Golgi and secrete from the cell [33,34].

As far as we know, this is the first study in which a relationship has been found
between the APOAS5 rs3135506 variant and moderate/severe NAFLD.

In the present study, a relation between ZPR1 (rs964184) and NAFLD was also found
for the first time. ZPR1 (rs964184) SNPs correspond to an intergenic zone located near
the APOA5-A4-C3-A1 gene cluster, which has been related to TG concentrations [35,36],
and it has been demonstrated that genetic variants in APOA5/A4/C3/A1 gene cluster
play an important role in the regulation of plasma triglyceride levels by increased ApoA5
concentration [37]. The variation present in the APOA5 gene included in this cluster may
be directly related to the development of NAFLD; however, since other genes are also
affected, functionality studies are needed to explain this association.

It was of note that the presence of both polymorphisms of APOA5 and ZPR1 in
homozygosity showed a stronger relationship with moderate/severe NAFLD than the
presence of other well-known factors, such as obesity or high glucose or TG concentrations.

It has already been demonstrated [38] that the ZPR1 rs964184 and APOAS5 rs3135506
variants are related to TG concentrations not only in the general population but also in a
population with HTG, as in the present study.

To date, few studies have reported an association between Lp(a) and NAFLD. In
accordance with the study by Yang et al. [39], Lp(a) concentrations in the present study
were lower in patients with moderate/severe NAFLD than in those with non/mild NAFLD.
In addition, in a cross-sectional study including 2242 subjects in whom abdominal US
was performed and patients were classified according to NAFLD severity and Lp(a) con-
centrations, Sun Nam et al. observed that Lp(a) concentrations were inversely associated
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with the presence of NAFLD, but this relation was attenuated after adjusting for insulin
resistance [40]. Along the same line, Jung et al. observed that subjects with low Lp(a)
and high insulin resistance showed a higher risk for NAFLD than those with high Lp(a)
and low insulin resistance, suggesting the opposite association of Lp(a) and insulin resis-
tance [12]. Nonetheless, the mechanism underlying the inverse relationship between Lp(a)
and NAFLD is not completely understood.

This study has several limitations. Although the sample size of the study was limited,
the patients were selected under strict uniform criteria and the data collection was carried
out with a high-quality standard, exclusively by physicians with clinical experience in
vascular risk and lipid metabolism disorders, thereby providing strength to the study.

Although liver biopsy is the gold standard for NAFLD diagnosis, it is an invasive
and expensive test that is unsuitable for regular screening. The advantages of ultrasound
include safety, wide availability, and little associated patient discomfort [19,41] and costs
compared with liver biopsy, computerized tomography (CT), and magnetic resonance
imaging (MRI), which are also considered as diagnostic tests for NAFLD.

The assessment of liver echogenicity by US has a high sensitivity and specificity for
detection or exclusion of moderate to pronounced fatty infiltration [18]. The sensitivity
and specificity of ultrasound to detect moderate to severe steatosis using histology as a
reference standard are 80-89% and 87-90%, respectively [42,43]. However, abdominal US
has low accuracy to effectively differentiate between absent and mild steatosis [20], and the
sensitivity and specificity drop to 65% and 81%, respectively, when all grades of steatosis
are considered.

5. Conclusions

Patients with moderate/severe NAFLD had a higher BMI and waist circumference
and a higher prevalence of insulin resistance than patients with mild or without NAFLD.
However, only APOAS5 rs3135506 and ZPR1 rs964184 variants and Lp(a) serum levels
were independently associated with moderate/severe NAFLD. Lp(a) showed a significant
inverse relation with moderate/severe NAFLD.
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