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A B S T R A C T

The solvent diffusivity is considered as a key factor in the design of solvent assisted processes in the bitumen field.
In this study, a novel Adaptive neuro-fuzzy interference system (ANFIS) is employed to evaluate the diffusivity of
the light hydrocarbons in the bitumen system. The particle swarm optimization (PSO) and genetic algorithm (GA)
are adopted to promote ANFIS efficiency. The proposed models are established by a prepared dataset from
multiple papers in the literature. Temperature (T), pressure (P) and molecular weight of alkanes (Mw) were
considered as the input variables and on the other hand, Statistical parameters and graphical methods were used
to appraise ANFIS, ANFIS-PSO, and ANFIS-GA performance. The results demonstrated that the highest correlation
coefficient is related to ANFIS-PSO with R2 ¼ 0.991 and 0.987 for train and test data, respectively. In the end, the
results indicated that the ANFIS-PSO model has a higher level of desirability based on statistical parameters.
1. Introduction

Bitumen is known with a specific gravity of less than 10 API [1, 2].
Due to the high viscosity of produced bitumen by conventional methods
(i.e., commercial recovery procedures such as cyclic steam stimulation
(CSS) and steam-assisted gravity drainage (SAGD) used to reduce the
bitumen viscosity) [2, 3, 4, 5, 6], these processes require a great amount
of steam per volume unit of the produced oil [3, 5, 7]. Environmental
issues and greenhouse gas emissions are a product of burning natural gas
so as to produce the steam required for viscosity reduction [3, 5, 8]. A
superseded system based on solvent has been considered regarding its
low energy-consuming less than 3% of SAGD, where water is not required
in this procedure [9]. Solvent dissolution of bitumen in solvent-aided
thermal recovery technique decreases the viscosity of bitumen by
co-injecting a blend of saturated steam and solvent into bitumen [8]. The
production rate of heavy oil recovery processes using hydrocarbon in-
jection is dependent on the diffusivity of these solvents [2, 10]. Solvent
diffusivity plays an essential role in the development of the
solvent-assisted processes in the bitumen system [11, 12]. There are
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some experimental studies on the light n-alkane diffusivity in heavy oils
reported in the literature [2,13, 14, 15, 16, 17, 18, 19]. All of these
measuring procedures are expensive and time-consuming for the
computation of diffusivity coefficient, and it's because of the low rate of
diffusion, composition analysis, and a few data sets available [19].

Recently, artificial intelligence technologies such as artificial neural
network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and
support vector machine (SVM) have drawn researchers’ attention
because of their high capability, and flexibility in different applications
including system classifications, predictive processes, and control sys-
tems [4, 20] that can be applied to a vast range of systems to predict the
behavior of experimental systems [21, 22, 23, 24, 25]. To estimate
diffusivity, different types of intelligent predictive tools have been re-
ported [4,26, 27, 28, 29]. Based on the paper of Abbasi and et. Al., a
multilayer perceptron and ANFIS approach were employed to predict the
diffusivity of hydrocarbons combination. Eslamloueyan and et. Al stud-
ied a feed-forward neural network to estimate the binary diffusivity co-
efficient over a wide range of temperatures.
mber 2020
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In the current investigation, hybrid models are proposed equipped
with an adaptive neuro-fuzzy inference system as a powerful, intelligent
technique coupled with a Genetic algorithm (GA) and particle swarm
optimization (PSO) to develop the ANFS model for the prediction of
diffusivity of light n-alkane solvent in bitumen in operational conditions.

2. Methodology

2.1. ANFIS

The adaptive neuro-fuzzy inference system known as ANFIS was
initially designed by Jang and Sun [30]. This intelligent system has been
considered in detail due to incorporation of artificial neural network
(ANN) with the Fuzzy Inference System (FIS) [31]. Regarding this ability,
it is a powerful network structure, which is a popular and effective tool
for function approximation application. To reach the optimized response,
the ANFIS can be coupled with hybrid learning methods like GA, PSO, or
Imperialist Competitive algorithm (ICA) [32, 33]. The ANFIS establishes
a communication between input and output based on seers of Sugeno
type of the If-Then rules. The model includes two fuzzy rules that can be
explicated as follows:

Rule 1: If x is n1 and y is m1, then z1 ¼ p1x1þq1y þ v1 (1)

Rule 2: If x is n2 and y is m2, then z2 ¼ p2x þ q2y þ v2 (2)

Where qi, pi, vi are the consequent parameters, ni andmi are the linguistic
labels.

Layer 1:

d1;i
¼ μniðxÞd1;i
¼ μmiðyÞ; for i ¼ 1; 2 (3)

Where d1, i is the output of the ith node, and μni and μmi represent
membership function (MF).

Layer 2:
Figure 1. The scheme
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d2;i ¼ μniðxÞ*μmiðxÞ for i ¼ 1; 2 (4)
Where d2i is the output of layer 2.
Layer 3:

d3;i ¼w ¼ wi

w1 þ w2
for i ¼ 1; 2 (5)

Where d3, i is the normalized value, and w is the normalized firing
strength.

Layer 4:

d4;i ¼wizi for i ¼ 1; 2 (6)

Where d4, i denotes the defuzzification value.
Layer 5:

d5;i ¼
X

i

wizi (7)

The ANFIS approach has five-layers including fuzzification layer,
normalized layer, defuzzification layer, and an output layer, which are
shown in Figure 1. In the first layer, a fuzzy set of input values are ob-
tained by adaptive nodes with their functions. The weight of the rules
(wi) in the second layer is obtained by multiplying the input values of
each node by each other. In the third layer, the normalization of the
weight of each rule is calculated. Defuzzification is fulfilled in the fourth
layer, and finally the output is extracted [34].

2.2. PSO

PSO is known as one of the most potent hybrid techniques, which can
lead to an excellent optimal output. This intelligent structure was rep-
resented by Kennedy and Eberhart in 1995 [35, 36]. Figure 2a shows the
structure of PSO as a random optimization population-based method
with accidental position and velocities, which are assigned to each par-
ticle. Initially, the algorithm is trying to reach the best optimal solution
that leads to updating the position of the particles in a certain number of
of ANFIS structure.



Figure 2. Optimized ANFIS with PSO (a),and GA(b).
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iterations [37, 38]. Eqs. (3) and (4) update the velocity, and position of
each swarm in each iteration.

gikþ1 ¼wgik þ c1rik
�
pik � xik

�þ c2r2k
�
pgbestk � xik

�
(8)

xikþ1 ¼ xik þ gikþ1 (9)

Where gi (kþ1), xi, and w denote the velocity of the ith swarm in the kth
iteration, position of the swarm, and the premier weight, respectively. r1
and r2 are random numbers between [0,1]. C1 and C2 are cognitive
Table 1. The range of experimental data.

n-alklane Temperature (K) Pressure (MP)

CH4 297–449 3.33–8

C2H6 297–373 0.77–8

C3H8 288–360 0.33–2.3

C4H10 299–365 0.22–0.99

3

acceleration and social acceleration, respectively. Pgbest is the optimum
solution obtained from swarms, and pi indicates the global best position
[39].

At first, an initial population is generated, and the random velocities
and positions are distributed. In the next level using regression analysis,
every swarm is examined. As the best swarm's compatibility rate met the
stopping criterion, the algorithm should be stopped. On the other side, if
the compatibility rate doesn't meet the stopping criterion, the positions
and velocities of swarms must be updated.
Diffusivity*10�10 (m2/s) Ref

0.6–168 [15, 16]

1.3–9.5 [13, 14]

0.3–11.5 [2, 17, 18]

2.7–22 [2]



Table 2. Specification of ANFIS structure.

ANFIS structure Description values

Fuzzy structure Sugeno-type

Initial FIS for training Genfis 3

Membership function type Gaussian

Number of input 12

Number of output 1

Optimal method Hybrid

Training maximum epoch number 2000

Step size decrease rate 0.059

Step size increase rate 0.95
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2.3. GA

GA is a type of random optimization procedures based on genetics
theories. GA is divided into three principal steps, known as elementary
population generation, GA operators (selection, crossover, and muta-
tion), and assessment through the adjustment function, which are
described more precisely in [40, 41].

� In GA, the solution is considered as a chromosome. The initial pop-
ulation is a set of solutions in optimization problem conditions.

� In the selection operator, each solution with high compatibility values
has a higher chance of continuing the process.

� In the crossover operator, a new chromosome is created by the scat-
tered random method.

� The mutation operation avoids trapping to local optima.
� In the assessment section, the fitness function is computed for any
individual solution.
Figure 3. Performance of AN

Table 3. Specification of PSO structure.

PSO structure parameters Description values

Maximum iteration 2000

Particle number 50

Initial inertia weight 0.9

Inertia weight damping ratio 0.99

Cognitive acceleration (C1) 1.05

Social acceleration (C2) 2.05

4

The scheme of the GA optimization method is shown in Figure 2 b.

2.4. Data processing

For the development of the proposed models, a set of reliable
experimental data is gathered from the literature, which is shown in
Table 1. To enhance the model accuracy, the collected data are
normalized using the following formula [42].

ni ¼ n� nmin

nmax � nmin
(10)

Where ni is the normalized value, n is the initial value, nmin minimum
variable value, and nmax denotes maximum variable value.

Generally, the error values are used as a credible evaluation for the
model's prediction. The results offer that the reliable model is considered
as the main model with the lowest error values. To evaluate the accuracy
of models, the statistical values such as mean absolute relative deviation
(MARD), mean squared error (MSE), maximum absolute error (MAE)
and, R2 were considered.

MSE¼
Pk
i¼1

ða� PÞ2

k
(11)

MAE¼ 1
k

Xk

i¼1

jP� aj
a

*100 (12)

MARD¼maxjP� aj
a

*100 (13)

Where a is the actual value, and p is the predicated value.
FIS for different cluster.

Table 4. Specification of GA structure.

GA structure parameters Description values

Population size 50

Maximum number of generation in GA 2000

Crossover % 0.8

Selectin pressure 8

Mutation rate 0.15



Figure 4. Performance of ANFIS PSO (a), and ANFIS GA (b) based on MSE for various population size.

Table 5. Comparison of performance of developed model for test and train data.

Models Training Testing

R2 MSE MAEA% MAAE% R2 MSE MAEA% MAAE%

ANFIS 0.97 0.0025 2.46 26.4 0.98 0.0038 3.41 24.32

ANFIS-GA 0.989 0.0012 1.59 23.02 0.984 0.0032 2.72 26.06

ANFIS-PSO 0.991 0.0010 1.30 23.01 0.987 0.0027 1.98 23.48
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3. Result and discussion

Since the purpose of this study is diffusivity modeling of light hy-
drocarbons in various operational conditions in bitumen, the temper-
ature, pressure, and molecular weight of alkanes were set as input
parameters. Choosing the input parameters for the preparation of the
5

ANFIS is vital as a challenge in the nonlinear system modeling [40]. As
mentioned earlier, the data set are normalized between (0,1) and then
divided randomly into 70% for training and 30% for the test. An
ANFIS approach was proposed to determine the diffusivity of light
n-alkane. To this end, a Gaussian type membership function)MF(was
used to develop the ANFIS model in which contains 12 rules based on



Figure 6. Error histogram of ANFIS-GA for train (a) and test (b).

Figure 5. Error histogram of ANFIS for train (a) and test (b).
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the FCM model. The structure of the prepared model is shown in
Table 2. The ANFIS training was performed with 2000 epochs. The
number of clusters of the ANFIS structures plays an important role in
the efficiency of this model [43]. Therefore, the coefficient determi-
nation of this network was evaluated based on different number of
clusters and is shown in Figure 3. As can be seen, the model with 12
clusters has a suitable performance.

To reach high accuracy, the developed model is coupled with the PSO
and GA optimization methods. PSO and GA were used to train the ANFIS
and specify the optimal values of ANFIS results. In the case of ANFIS-PSO,
the best solution of PSO parameters can be obtained from the parameter
Figure 7. Error histogram of ANFIS
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investigation (i.e., maximum iterations count, maximum particle
numbers, initial inertia weight (Wmin), inertia weight damping ratio
(Winamp), cognitive acceleration (C1) and social acceleration (C2)). The
optimum values of these parameters were obtained based on a trial and
error technique. The Gaussian function was considered as MF. Table 3
shows the best parameter structure of PSO (i.e, particles number ¼ 50,
maximum iterations number ¼ 2000, C1 ¼ 1.05, C2 ¼ 2.05, Win ¼ 0.9
and Wdamp ¼ 0.99).

Also, the GaussianMF was used to develop the ANFIS-GAmodel. Trial
and error techniques were employed to reach the best optimal parame-
ters for the GA structure. The GA parameters are shown in Table 4.
-PSO for train (a) and test (b).



Figure 8. Estimated data versus real data for ANFIS(a)ANFIS-PSO(b), and ANFIS-GA(c).

Figure 9. Relative deviation plot for ANFIS(a), ANFIS-GA(b), and ANFIS-PSO(c).
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Table 6. Effect of outlier on performance of ANFIS-PSO model.

Run numb R2 MSE MAAE% MEAE% Out numb

1(a) 0.989 0.0015 23.6 1.52 3

2(b) 0.993 0.0011 18.99 1.46 2

3(c) 0.973 0.0035 49.8 2.04 3

Table 7. Comparison of developed model with previous work.

Solvent ANFIS-PSO ANFIS-GA ANFIS Richardson et al., (2019)

MAE% MARD% MAE% MARD% MAE% MARD% MAE% MARD%

Methane 3 10.23 3.87 24.2 6.01 26.04 5 11

Ethane 2.5 14.41 8.3 19.42 24.83 54.5 15 45

Propane 5.62 35.78 5.87 74.3 6.52 40.45 18 45

Butane 14.35 27.83 9.75 16.62 9.68 16.63 28 33
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Figure 4 presents the performance of ANFIS-GA and ANFIS-PSO
through the population size. As can be seen for both models, the best
efficiency was attained by 50 particles, with MSE ¼ 0.0018, and MSE ¼
0.0013 respectively.

Table 5 demonstrates the capability of the proposed models based on
statistical parameters. A predictive model is reliable with high perfor-
mance when error values are close to 0 and R2 to 1 [40]. Due to this fact,
statistical parameters in Table 5 for ANFIS-PSO are in high accordance to
real data in comparison with the ANFIS and ANFIS-GAmodels. Figures 5,
6, and 7 illustrate the error histograms of three models for test and train
data. Error histogram plots show that the obtained results have a normal
curve based on the error distribution. As can be seen, most of the error
values of the ANFIS-PSO model are near to zero compared with the
values of the two other models. It indicates the high reliability of the
developed model [44].

Figure 8 represents the forecasted values versus the normalized actual
amounts for test and train values. The agglomeration of the estimated
amount close to the Y ¼ X line exhibits the appropriate capability of the
models [45]. The R2 value for ANFIS, ANFIS-GA, and ANFIS-PSO models
were 0.979, 0.987, and 0.989, respectively; This expresses that the
forecasting of diffusivity by three established models are in good
agreement with experimental values but the ANFIS-PSO technique is
more suitable than the ANFIS and ANFIS-GA structures.

As a matter of fact, the determined coefficient can't be the only way to
show the reliability of the developed model, thus, a relative deviation
plot has been used to investigate the capability of developed models to
make the best decision. Therefore, the relative deviation for train, and
test has been calculated by Eq. (9):

IE¼Pi � Ri

Ri
(14)

The IE shows the relative deviation, Pi is output amount, and Ri is the
real one. The agglomeration of IE values beside zero of horizontal line
axes demonstrates the high ability of the models [38, 46]. Figure 9 shows
the relative deviation of ANFIS, ANFIS-GA, and ANFIS-PSO. As can be
seen, ANFIS-PSO has a suitable performance in comparison to the ANFIS
and ANFIS-GA models.

The assessment of the developed model by statistical and relative
deviation values shows the high accuracy of the ANFIS-PSO model to
predict the diffusivity of light hydrocarbon in the bitumen. Therefore,
ANFIS-PSO model was selected as the best model for predicting the
diffusivity value.
8

Additionally, to get over any hesitancy on experimental data that can
affect the validation of the proposed model, the sensitivity analysis
should be considered. This hesitancy on experimental values may occur
because of human error or device error [47]. In data processing, some of
these samples reduce the performance of the proposed model called
outlier [24]. In this study, William's plot is applied to the detection of
Outliers for the ANFIS-PSO model as the selected model based on the
Leverage approach method (Figure 10). In this case, standardized re-
sidual and Hat values are plotted in horizontal and vertical axes,
respectively. HAT values are obtained as follow:

H¼XðXTXÞ�1
XT (15)

H* ¼ 3ðNþ 1Þ=P (16)

H presents an (m*m) matrix, and X shows an (n*m) matrix where m
and n are parameter number and data point number, respectively. H* is
the critical leverage value, where N is the count of parameters, and P is
related to the count of data points [24, 48]. Based on William's plot, the
detected outlier is eliminated from the data set for each Run. The pro-
ficiency of ANFIS-PSO model was investigated by statistical parameters.
Table 6 indicates that the performance of the proposed model was
improved based on R2 ¼ 0.993, MSE ¼ 0.0011, MAAE ¼ 18.99, and
MEAE ¼ 1.46.

Another advantage of ANFIS is that it can estimate a specific
parameter for different inputs in the training data [40]. As mentioned
earlier, the ANFIS-PSO algorithm has the best performance for the pre-
diction of diffusivity of light hydrocarbons in the bitumen system.
Figure 11 shows the distribution of diffusivity of light n-alkanes based on
operational conditions. Figure 11 a,b and c show the diffusivity of CH4,
C2H6, and C3H10 versus temperature and pressure. As can be seen, the
diffusivity of hydrocarbons are increased by increasing the pressure, and
it's because of the mass transfer controlled by the molecular diffusion
mechanism [15, 49], while the temperature does not have a significant
effect on the diffusivity of C1–C3 in bitumen. Figure 11-d demonstrates
the C4H10 diffusivity versus temperature and pressure. The C4H10 diffu-
sivity is increased by rising temperature and pressure.

The comparison between the proposed models and previous corre-
lation is shown in Table 7. Table 7 clearly indicates that the hybrid
intelligent models have improved the MAE and MARD values. Results
show the high capability of the hybrid model of ANFIS–PSO model to
estimate the diffusivity with high accuracy and reliability. Therefore the



Figure 10. Detection of outliers for: (a) first run, (b) second run, (c) third run, (d).
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Figure 11. Effect of diffiusivity of CH4 (a),C2H6 (b),C3H8 (c),andC4H10 (d)for different conditions.
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ANFIS-PSO model establishes a relation between inputs and outputs
without any consideration of difficult thermodynamic concepts [50].

4. Conclusion

In this work, the diffusivity of light hydrocarbons in the bitumen
system was evaluated in operational conditions. The results show the
capability of ANFIS model to predict diffusivity. Also, the application of
hybrid intelligent methods such as PSO and GA for the optimization of
ANFIS performance was evaluated. The comparison of three proposed
models (based on statistical parameters and graphical method) shows
that the ANFIS-PSO model with R2 ¼ 0.993 was more suitable than
ANFIS-GA and ANFIS models with R2 ¼ 0.987 and R2 ¼ 0.979,
respectively.
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