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Artificial Intelligence for Predicting HER2 Status of Gastric
Cancer Based on Whole-Slide Histopathology Images: A
Retrospective Multicenter Study

Yuhan Liao, Xinhua Chen, Shupeng Hu, Bing Chen, Xinghua Zhuo, Hao Xu, Xiaojin Wu,
Xiaofeng Zeng, Huimin Zeng, Donghui Zhang, Yunfei Zhi, and Liang Zhao*

Human epidermal growth factor receptor 2 (HER2) positive gastric cancer
(GC) shows a robust response to the combined therapy based HER2-targeted
therapy. The application of these therapies is highly dependent on the
evaluation of tumor HER2 status. However, there are many risks and
challenges in HER2 assessment in GC. Therefore, an economically viable and
readily available instrument is requisite for distinguishing HER2 status among
patients diagnosed with GC. The study has innovatively developed a deep
learning model, HER2Net, which can predict the HER2 status by
quantitatively calculating the proportion of HER2 high-expression regions.
The HER2Net is trained on an internal training set derived from 531
hematoxylin & eosin (H&E) whole slide images (WSI) of 520 patients.
Subsequently, the performance of HER2Net is validated on an internal test set
from 115 H&E WSI of 111 patients and an external multi-center test set from
102 H&E WSI of 101 patients. The HER2Net achieves an accuracy of 0.9043
on the internal test set, and an accuracy of 0.8922 on an external test set from
multiple institutes. This discovery indicates that the HER2Net can potentially
offer a novel methodology for the identification of HER2-positive GC.
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1. Introduction

GC represents a significant global health
concern, predominantly in East Asian
nations.[1, 2] On a global scale, over one
million instances were reported, culmi-
nating in upward of 7 68 000 fatalities
in 2020. This positions GC as the fifth
most prevalent cancer worldwide and
the fourth leading contributor to cancer-
related mortalities.[3, 4] The recombinant
antibody for HER2 represents the sole
targeted pharmaceutical intervention
that has demonstrated efficacy in the
treatment of patients with advanced
GC.[5, 6] The oncogene HER2, also referred
to as ERBB2, undergoes amplification
and the corresponding protein HER2 is
high-expressed in ≈17–20% of patients
diagnosed with GCs. Individuals exhibit-
ing a high-expression of HER2 in GC
derive therapeutic advantages from the
administration of the anti-HER2 antibody,
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Trastuzumab.[7] Trastuzumab represents a humanized mono-
clonal antibody that specifically targets the HER2 receptor, con-
sequently inhibiting the activation of downstream signals and
inducing a phenomenon known as antibody-dependent cellu-
lar toxicity. In clinical practice, the general process for the
histopathological diagnosis of GC is to evaluate the samples ob-
tained by hematoxylin & eosin (H&E) staining, and then, in ac-
cordance with the HER2 testing guidelines proposed by the Col-
lege of American Pathologists, the American Society for Clinical
Pathology, and ASCO,[8] the NCCN Guidelines advocate for the
utilization of immunohistochemistry (IHC) and, if necessitated,
in situ hybridization (ISH) methodologies for the evaluation of
HER2 status in GC.

However, there are many risks and challenges in HER2 assess-
ment in GC. Factors such as inconsistent evaluation methods of
biopsy samples and surgical samples, lax quality control of sam-
ple site and quantity, interobserver agreements and unsatisfac-
tory diagnostic performances of IHC, and low fluorescence in
situ hybridization (FISH) reinspection rate all affect the assess-
ment of HER2 status.[9–11]

An increasing body of evidence suggests that deep learning
can play a significant role in clinical diagnostic and prognos-
tic tasks.[12] Specifically, deep learning has been efficaciously
utilized to distinguish diverse cancer subtypes and molecular
characteristics on tissue pathology slides stained with H&E.[13,14]

However, there have been few published studies in the field of
GC. Deep learning models were used to predict microsatellite in-
stability tumors (MSI) with the highest area under the receiver
operating characteristic curve (AUROC) of 0.81[15] and Epstein-
Barr virus (EBV) GC with the highest AUROC of 0.941,[16] re-
spectively. Both of these studies used over 1000 H&E WSIs from
multiple centers for training and prediction to demonstrate the
credibility of their conclusions. Recently, a study proposed a deep
learning model that can simultaneously predict multiple sub-
types, including EBV+, MSI, tumor mutational burden, and pro-
grammed cell death ligand 1, with the best performance rang-
ing from AUROC 0.8685 to 0.9461.[17] However, this study only
tested on a single-center test set with only 118 H&E WSI. In our
review of related work in the past 5 years, we also found three
other studies that used H&E WSI to predict GC subtypes.[18–20]

To the best of our understanding, this study represents the inau-
gural attempt at employing a deep learning model for the predic-
tion of HER2 status in gastric cancer by utilizing H&E WSI, and
we will also analyze the relationship between the model results
and H&E WSI morphological features.

2. Results

2.1. Patients Cohorts

This study used both internal datasets and external multi-center
datasets as shown in Figure 1 and Table 1. The Internal-Stomach
Adenocarcinoma (STAD) dataset served as the internal dataset
and was divided into a training set for developing HER2Net
and a testing set for evaluation. The training set consists of 531
H&E WSI from 63 HER2-positive patients (63 slides) and 457
HER2-negative patients (468 slides), accounting for 82.2% of the
Internal-STAD dataset. The testing set consists of 115 H&E WSI
from 17 HER2-positive patients (18 slides) and 94 HER2-negative

Table 1. Clinical information of study participants.

Clinicopathological features Internal-STAD Multicenter-STAD

Patients 632 101

Slides 646 102

HER2 status HER2 positive slides 81 (12.5%) 21 (20.6%)

HER2 negative slides 565 (87.5%) 81 (79.4%)

Age (Mean age ± SD) 57.647 ± 11.950 56.843 ± 12.020

Gender Male 418 (64.7%) 70 (68.6%)

Female 228 (35.3%) 32 (31.4%)

Differentiation Poor differentiation 509 (78.8%) 78 (76.5%)

Middle and well
differentiation

137 (21.2%) 24 (23.5%)

patients (97 slides), accounting for 17.8% of the Internal-STAD
dataset. To ensure better generalization of the trained model, we
employed stratified 5-fold cross-validation at WSI-level on the
training set to ensure consistent proportions of HER2-positive
samples in each fold. Furthermore, the Internal-STAD testing
set has a similar proportion of positive samples (15.38%) to
the Internal-STAD training set (11.86%). The Multi-Center-STAD
dataset served as the external dataset and is solely used for test-
ing. It includes 102 H&E WSI from 20 HER2-positive patients
(21 slides) and 81 HER2-negative patients (81 slides). In all the
aforementioned datasets, each H&E WSI is paired with a corre-
sponding IHC WSI.

2.2. Performances of Pixel-Level Tumor Detector

In clinical pathological diagnosis, the determination of HER2
status is only related to the histopathologic features of the tu-
mor portion of the H&E WSI, and is unrelated to non-tumor
and background areas. Therefore, we need to train a pixel-level
tumor detector to identify the tumor pixels in the H&E WSI,
and non-tumor and background regions will not be used for
model training and inference. Based on the experiment results,
our pixel-level tumor detector achieved the best average perfor-
mance with an Mean Intersection over Union(MIoU) of 0.8606
on the Internal-STAD test set and an MIoU of 0.8207 on the
Multi-Center-STAD test set.

2.3. Performance of HER2Net

HER2Net consists of three parts shown in Figure 2: tile-level clas-
sifier, integrated classifier, and high-expression percent calcula-
tor. The tile-level classifier was divided into five sub-classifiers
based on stratified 5-fold cross-validation, and each sub-classifier
predicted the classification of the same H&E tile. Therefore, a
single H&E tile can yield five prediction results from five sub-
classifiers. In the stratified 5-fold cross-validation of the internal
training set, the best average performance of the tile-level classi-
fier was an AUROC of 0.9379 displayed in Table S2 (Supporting
Information). The integrated classifier was trained to learn the
final classification prediction by combining the classification re-
sults obtained from the previous five tile-level sub-classifiers. The
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Figure 1. Brief usage summary of the internal set and the external set. The Internal-STAD set was divided into an Internal-STAD training set and an
Internal-STAD test set in a ratio of 82% to 18%. The Internal-STAD training set was used for training the model using a stratified fivefold cross-validation
approach, while the internal testing set was solely used for testing. The proportion of positive samples in the internal training set was 11.86%, while in
the internal testing set it was 15.65%. The Multi-Center-STAD test set, on the other hand, was an external test set used exclusively for testing, with a
proportion of positive samples of 20.59%.

best performance of the integrated classifier on Multi-Center-
STAD test set was an AUROC of 0.9769 and the sensitivity was
0.9373 displayed in Table S3 (Supporting Information). The high-
expression proportion calculator was used to calculate the propor-
tion of high-expression that could distinguish the HER2 status
of H&E WSI. Basically, the best performance of HER2Net, com-
posed of a combination of SegNet, ResNet50, and RF models, was
an accuracy of 0.9043 on the Internal-STAD test set and 0.8922
on the Multi-Center-STAD test set. All metric data is presented
in Table S4 (Supporting Information) and the confusion matrix
is shown in Figure S2 (Supporting Information).

2.4. Misdiagnosis from HER2Net

In order to better analyze the relationship between the per-
formance of HER2Net and histopathological features, we col-
lected the morphological features of all H&E WSI, and em-
ployed the Chi-square test to analyze the significance of the differ-
ences between the samples diagnosed correctly and incorrectly
by HER2Net. The number of morphological features on differ-

ent datasets were shown in Table 2. In order to scrutinize the
morphological features of the erroneously diagnosed cases by
HER2Net, a comparative analysis in was conducted between the
attributes of false positive instances and true negative instances,
as well as between the attributes of false-negative instances and
true-positive instances. On the Internal-STAD test set compris-
ing 115 slides, HER2Net misdiagnosed 11 slides, with 9 HER2-
negative cases erroneously predicted as HER2-positive and 2
HER2-positive cases inaccurately predicted as HER2-negative.
In Table 3, compared to true negative cases, false positive cases
were more likely to have the presence of adenoid differentia-
tion (P = 0.014). On the Multi-Center-STAD test set consisting
of 102 slides, HER2Net misdiagnosed 11 slides, where 8 HER2-
negative cases were incorrectly predicted as HER2-positive and 3
HER2-positive cases were wrongly predicted as HER2-negative.
In Table 4, compared to true negative cases, false positive cases
were more likely to have the presence of papillary differentiation
(P = 0.018). Figures 3 and 4 presented some WSIs of success-
ful and unsuccessful cases predicted by HER2Net respectively.
In the heatmaps misdiagnosed as HER2-negative by HER2Net,
the primary morphological characteristics of the brown areas that
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Figure 2. The workflow of HER2Net. Every H&E WSI was cropped into non-overlapping 512-by-512 resolution H&E tiles of ×4 magnification. Afterward,
data augmentation strategies were applied to the H&E tiles. Only tumor files where the percentage of tumor pixels predicted by the pixel-level tumor
detector is more than 10%, and the saturation is >10, were fed to HER2Net to achieve the WSI-level high-expression percentage. The H&E WSI was
determined as HER2 positive by HER2Net when high-expression percentage was greater than or equal to 10%.

Table 2. Number of morphological features on different datasets.

Morphological features Internal-STAD training
set (n = 531)

Internal-STAD test set (n = 115) Multi-Center-STAD test
set (n = 102)

Tertiary lymphoid structure Presence 388 (73.07%) 82 (71.30%) 65 (63.73%)

Absence 143 (26.93%) 33 (28.70%) 37 (36.27%)

Mucinous differentiation Presence 110 (20.72%) 26 (22.61%) 12 (11.76%)

Absence 421 (79.28%) 89 (77.39%) 90 (88.24%)

Adenoid differentiation Presence 312 (58.76%) 60 (52.17%) 65 (63.73%)

Absence 219 (41.24%) 55 (47.83%) 37 (36.27%)

Papillary differentiation Presence 47 (8.85%) 7 (6.09%) 11 (10.78%)

Absence 484 (91.15%) 108 (93.91%) 91 (89.12%)

Signet-ring cell Presence 185 (34.84%) 37 (32.17%) 28 (27.45%)

Absence 346 (65.16%) 78 (67.83%) 74 (72.55%)

Poor differentiation Presence 408 (76.84%) 89 (77.39%) 71 (69.61%)

Absence 123 (23.16%) 26 (22.61%) 31 (30.39%)
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Table 3. The comparison of HER2Net misdiagnosed and correctly diagnosed cases on Internal-STAD test set.

Clinicopathological features HER2-positive (n = 18) HER2-negative (n = 97)

False negative
(n = 2)

True positive
(n = 16)

P False positive
(n = 9)

True negative
(n = 88)

P

Gender Mean age 55 59 – 58.22 55.24 –

Male 2 (100%) 12 (75%) 1 7 (77.78%) 50 (56.82%) 0.389

Female 0 (0%) 4 (25%) 2 (22.22%) 38 (43.18%)

Tertiary lymphoid structure Presence 1 (50%) 8 (50%) 1 8 (88.89%) 65 (73.86%) 0.556

Absence 1 (50%) 8 (50%) 1 (11.11%) 23 (26.14%)

Mucinous differentiation Presence 1 (50%) 1 (6.25%) 0.507 2 (22.22%) 22 (25%) 1

Absence 1 (50%) 15 (93.75%) 7 (77.78%) 66 (75%)

Adenoid differentiation Presence 2 (100%) 14 (87.5%) 1 7 (77.78%) 27 (30.68%) 0.014

Absence 0 (0%) 2 (12.5%) 2 (22.22%) 61 (69.32%)

Papillary differentiation Presence 0 (0%) 3 (18.75%) 1 1 (11.11%) 3 (3.41%) 0.821

Absence 2 (100%) 13 (81.25%) 8 (88.89%) 85 (96.59%)

Signet-ring cell Presence 0 (0%) 2 (12.5%) 1 2 (22.22%) 33 (37.5%) 0.586

Absence 2 (100%) 14 (87.5%) 7 (77.78%) 55 (62.5%)

Poor differentiation Presence 0 (0%) 6 (37.5%) 0.791 7 (77.78%) 76 (86.36%) 0.841

Absence 2 (100%) 10 (62.5%) 2 (22.22%) 12 (13.64%)

Note: The features of misdiagnosed cases were compared with those of correctly diagnosed cases with the Chi-square test with 95% confidence level.

Table 4. The comparison of HER2Net misdiagnosed and correctly diagnosed cases on Multi-Center-STAD test set.

Clinicopathological features HER2-positive (n = 21) HER2-negative (n = 81)

False negative
(n = 3)

True positive
(n = 18)

P False positive
(n = 8)

True negative
(n = 73)

P

Gender Mean age 55 66.5 – 59.875 54.21 –

Male 2 (66.67%) 14 (77.78%) 1 5 (62.5%) 49 (67.12%) 1

Female 1 (33.33%) 4 (12.22%) 3 (37.5%) 24 (22.88%)

Tertiary lymphoid structure Presence 1 (33.33%) 6 (33.33%) 1 4 (50%) 54 (73.97%) 0.310

Absence 2 (66.67%) 12 (66.67%) 4 (50%) 19 (26.03%)

Mucinous differentiation Presence 1 (33.33%) 0 (0%) 0.296 2 (25%) 9 (12.33%) 0.653

Absence 2 (66.67%) 18 (100%) 6 (75%) 64 (87.67%)

Adenoid differentiation Presence 2 (66.67%) 17 (94.44%) 0.649 6 (75%) 40 (54.79%) 0.472

Absence 1 (33.33%) 1 (5.56%) 2 (25%) 33 (45.21%)

Papillary differentiation Presence 0 (0%) 8 (44.44%) 0.409 2 (25%) 1 (1.37%) 0.018

Absence 3 (100%) 10 (55.56%) 6 (75%) 72 (98.63%)

Signet-ring cell Presence 0 (0%) 0 (0%) NA 1 (12.5%) 27 (37.00%) 0.321

Absence 3 (100%) 18 (100%) 7 (87.5%) 46 (63.00%)

Poor differentiation Presence 1 (33.33%) 6 (33.33%) 1 4 (50%) 60 (82.19%) 0.096

Absence 2 (100%) 10 (62.5%) 2 (22.22%) 12 (13.64%)

Note: The features of misdiagnosed cases were compared with those of correctly diagnosed cases with the Chi-square test with 95% confidence level. NA, in the input
observations, if any set of data is entirely zero, it is impossible to conduct a Chi-square test.

were not correctly identified, include poor differentiation of can-
cerous glandular ducts presenting as tubular, sieve-like, cord-like,
or scattered infiltration, an increased nucleocytoplasmic ratio,
deeply stained nuclei, fibrosis of the interstitium and scattered
lymphocytic infiltration. In the heatmaps misdiagnosed as HER2
positive by HER2Net, the primary morphological characteristics
of the erroneously identified brown regions are that the cancer
cells are arranged in a linear pattern or focally clustered, with

a significant increase in the nucleocytoplasmic ratio, scant cyto-
plasm, and deeply stained nuclei.

3. Discussion

In the field of deep learning research on tumors based on H&E
WSI pathology, no pixel-level models suitable for clinical diagno-
sis have been developed for tumor detection.[21] Existing research
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Figure 3. Successful cases predicted by HER2Net. Patients A, B, C, and D were all from the Multi-Center-STAD test set. Among them, A, B, and C were
HER2-positive, while D was HER2-negative. The left column in the figure showed the H&E WSI of the patients, the right column showed the IHC WSI,
and the middle column showed the heatmap predicted by HER2Net, which overlaid on the H&E WSI. The brown regions in the heatmap represented
high-expression areas consisting of tumor regions of H&E tiles classified as strong by HER2Net.

typically employs two methods: one is manual annotation of tu-
mor regions on each H&E WSI by pathologists,[18] a method that,
while accurate, is labor-intensive and difficult to adapt to clini-
cal needs; the other is training a binary model at the H&E tile-
level,[16] marking tiles with over 50% tumor tissue area as tumor
images, and the rest as non-tumor images. However, this method
overlooks the variation in tumor area across different tiles, and its

accuracy can be affected by the complexity of the tissue space and
background in the tiles. Therefore, our research innovatively pro-
poses the use of a pixel-level tumor detection model for AI tumor
research based on H&E WSI, with the aim of improving model
accuracy and achieving better AI clinical application results.

The interpretation of HER2 status in the clinic depends on
its intensity and proportion. To date, there are no deep learn-
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Figure 4. Unsuccessful cases predicted by HER2Net. Patients A, B, C, and D were all patients from the Multi-Center-STAD test set. Among them, A, B,
and C were HER2-positive but were incorrectly predicted as negative by HER2Net, while D was HER2-negative but was incorrectly predicted as positive
by HER2Net. The first column (counted from left to right) in the figure showed the H&E WSI of the patients, the third column showed the IHC WSI, and
the second column showed the heatmap of HER2 high-expression regions predicted by HER2Net, which overlaid on the H&E WSI. The brown areas in
the heatmap represented high-expression regions consisting of regions of H&E tiles classified as strong by HER2Net. In the heatmaps misdiagnosed as
HER2-negative by HER2Net (A, B, and C), the primary morphological characteristics of the brown areas that were not correctly identified, include poor
differentiation of cancerous glandular ducts presenting as tubular, sieve-like, cord-like or scattered infiltration, an increased nucleocytoplasmic ratio,
deeply stained nuclei, fibrosis of the interstitium, and scattered lymphocytic infiltration. In the heatmaps misdiagnosed as HER2 positive by HER2Net,
the primary morphological characteristics of the erroneously identified brown regions are that the cancer cells are arranged in a linear pattern or focally
clustered, with a significant increase in the nucleocytoplasmic ratio, scant cytoplasm, and deeply stained nuclei. The morphological features of the
misdiagnosed regions by HER2Net are presented in the tiles with a magnification of ×4 in the fourth column.
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ing methods that can be referenced, so we propose an innova-
tive semi-quantitative model—HER2Net. HER2Net can quantita-
tively calculate the proportion of high-expression areas of HER2,
and determine the HER2 status of patients based on the propor-
tion threshold in clinical diagnosis. In contrast, previous related
studies’ deep learning methods mainly focused on the binary
classification prediction of cancer subtypes qualitatively,[15–20] the
main limitation of which is the inability to provide the specific
proportion of high-expression areas, making it difficult to meet
the need for precise quantitative information in clinical diagno-
sis. The deep learning method proposed in our study not only
overcomes this limitation, but also provides a reference for semi-
quantitative analysis of other immunohistochemical indicators,
and can be broadly extended to the interpretation of other indica-
tors.

The contributions of this study to clinical practice primarily
encompass two aspects. First, the high cost of HER2 assessment
and the accessibility of FISH hinder the clinical testing of many
patients.[9–11] Our proposed HER2Net, which directly diagnoses
the HER2 status based on H&E WSI, has the potential to re-
place current clinical HER2 assessment methods, or serve as sup-
portive evidence prior to clinical HER2 evaluation. Second, the
challenging interpretation of IHC WSI leads to poor consistency
in pathologists’ reading results. Our proposed HER2Net can as-
sist pathologists in clinical interpretation by predicting the high-
expression areas of HER2 and calculating its area ratio at the pixel
level.

A sufficient volume of data can significantly mitigate the po-
tential generalization issues of deep learning models. To the best
of our knowledge, the number of HER2 patients and their corre-
sponding H&E WSIs collected in this study, particularly the num-
ber of HER2-positive cases, may be the largest to date in gastric
cancer HER2 deep learning research based on H&E WSIs. More
experimental data can assist us in training models with enhanced
generalization capabilities and robustness. We were inspired and
employed a 5-fold cross-validation approach to further enhance
the generalization capability of the model.[16] However, in clinical
diagnosis, the number of HER2-positive patients is significantly
less than that of HER2-negative patients, leading to an imbal-
ance in the proportion of HER2-positive and negative samples
in the collected HER2 case sections. Therefore, we additionally
employed a stratified sampling method to ensure that the pro-
portion of HER2-positive samples in each fold is as consistent
as possible. The results indicated that this approach can further
enhance the model’s generalization ability based on 5-fold cross-
validation.

Processing methods for H&E WSI in gastric cancer deep learn-
ing research primarily include: 1) cropping; 2) resizing; 3) color
normalization; and 4) data augmentation. H&E WSIs are often
high-resolution images that cannot be directly used in deep learn-
ing models. Therefore, it is a common data processing practice
to crop H&E WSIs into a certain number of H&E tiles and train
models at the tile level. When cropping H&E tiles, we ensure that
they do not overlap, as HER2Net’s pixel-level predictions and cal-
culations do not allow for pixel overlap. The dimensions of the
cropped H&E tiles are often inconsistent. A common approach
is to resize all H&E tiles to a uniform size; however, this can
lead to pixel distortion, which is detrimental to the training of
our pixel-level tumor detector. Therefore, we adopted an alterna-

tive method by padding background pixels to adjust H&E tiles
that do not meet the resolution requirements. Classical data aug-
mentation methods involve rotating and mirroring the original
H&E tiles to generate more tiles. The morphological features of
these augmented tiles remain unchanged compared to the orig-
inal tiles, and they do not affect clinical diagnosis, making them
suitable for model training. Additionally, we employed a recently
popular pixel-level masking method for data augmentation. This
method involves randomly masking 1%-5% of the pixels in the
original H&E tile, introducing some artificial noise to simulate
local image issues that do not affect the overall interpretation in
the clinical diagnosis of H&E WSIs.[22]

Despite the satisfactory performance of HER2Net, there are
still limitations. First, more clinical samples are needed to val-
idate the reliability of HER2Net. Second, due to the constraints
of Graphics Processing Unit (GPU) resources and sample size,
the most advanced achievements in the field of deep learning
have not been applied in this study. For instance, models based
on Vision Transformer[23] have not been attempted for tile-level
classifiers. The semantic segmentation model Segment Any-
thing Model (SAM),[24] which can be prompted, has also not
been attempted for pixel-level tumor detectors. In the future,
more attention should be paid to the application of mature
multimodal large language models on histopathological image
data.

4. Experimental Section
Study Participants: This study received approval from the Institutional

Review Board of Southern Medical University (NFEC-2023-056). For the
development of HER2Net, two pathological image datasets were utilized,
namely the internal dataset from a single medical center, named Internal-
STAD, and the external dataset from multiple medical centers (Multi-
Center-STAD). The selection criteria for this study included the following:
1) patients diagnosed with GC, who underwent primary gastrectomy at
the respective hospitals within the period from January 1, 2012, to De-
cember 31, 2021; 2) patients possessing identified HER2 status; 3) ac-
cessibility to the clinical data and Hematoxylin and Eosin-stained tumor
slides. The criteria for exclusion encompassed the subsequent conditions:
1) patients who underwent preoperative treatments, for instance, neoadju-
vant radiotherapy or chemotherapy; 2) patients whose clinical data was in-
complete; 3) instances of inadequate slide scanning, such as out-of-focus
slides or apparent tissue folds. The requirement for informed consent was
exempted due to the fact that patients were not directly enlisted for this
study.

Slide Scanning and Annotations: Each patient from Internal-STAD and
the Multi-Center-STAD has at least one representative H&E tumor slide
and its corresponding IHC slide. The slides were scanned using Motic
EasyScanner at 4× magnification to obtain a TIFF format WSI file. Then,
the Tag Image File Format (TIFF) format files were converted to Portable
Network Graphics(PNG) format image files without loss using a computer
vision open-source library in Python to fit the deep learning framework. The
annotation process consisted of two stages: first, two senior pathologists
with at least five years of experience used a pathology image annotation
tool to annotate and verify the tumor regions in each H&E WSI; then, the
H&E tiles were further classified based on the IHC WSI for annotation.
H&E tiles that cannot be accurately annotated due to reasons such as im-
age blurriness, contamination, and insufficient clarity were documented
and have not been used for model training.

Interpretation of HER2 IHC and IHS Assays: IHC assesses the membra-
nous immunostaining of neoplastic cells, utilizing a threshold of ≥10%
immunoreactive tumor cells. A subsequent validation study confirmed
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the reproducibility of this scoring protocol among diverse pathologists. A
score of 0, indicating membranous reactivity in <10% of neoplastic cells,
or 1+, signifying faint membranous reactivity in at least 10% of neoplastic
cells, is deemed to be HER2-negative. Conversely, a score of 2+, represent-
ing weak to moderate membranous reactivity in at least 10% of neoplastic
cells, is deemed equivocal, necessitating further examination via FISH or
alternative ISH methods. The outcomes of FISH/ISH are presented as a
ratio of the ERBB2 gene copy number to the count of centromeres on chro-
mosome 17 (CEP17) within the nucleus, as observed in a minimum of 20
cancer cells (ERBB2:CEP17). Alternatively, FISH/ISH results can be rep-
resented as the mean ERBB2 copy number per cell. Cases demonstrating
an IHC score of 3+ (indicating strong membranous reactivity in 10% or
more cancer cells) or an IHC score of 2+ that are also FISH/ISH positive
are classified as exhibiting HER2 high-expression. HER2 IHC results that
are either positive (3+) or negative (0 or 1+) do not necessitate further
ISH testing.[10]

Determination of HER2 Status: The HER2 IHC review was re-
conducted for this study to ensure consistency. The determination of the
ground-truth HER2 status from the Internal-STAD and Multi-Center-STAD
datasets was achieved through the utilization of HER2 IHC (HER2 IHC 2+
in conjunction with FISH) in histopathologic samples at their respective
institutions (Figure S1, Supporting Information).

WSI Processing: All H&E WSIs were cropped into non-overlapping
512-by-512 resolution H&E tiles. H&E tiles with insufficient resolution af-
ter cropping were filled with white pixels considered as the background
color to meet the 512-by-512 resolution. To improve the robustness and
generalization ability of the model, data augmentation strategies were ap-
plied to the H&E tiles. Specifically, three strategies were used: 1) rotating
the original H&E tile by 90 degrees, 180 degrees, and 270 degrees to obtain
three new H&E tiles; 2) mirroring the original image horizontally and verti-
cally to obtain two new H&E tiles; 3) randomly masking 1–5% of the pixels
in the original H&E tile, which introduces some artificial noise to simulate
the local image problems that do not affect the overall interpretation in
clinical diagnosis of H&E WSI.[22] The study calculated the saturation of
each H&E tile and ultimately determined that tiles with a saturation less
than or equal to ten were considered pure background tiles. Pure back-
ground tiles were not used for the subsequent training of tumor detector
and HER2Net.

Similar data processing was applied to IHC WSI as did for H&E WSI,
specifically cropping and background padding. Subsequently, it was man-
ually ensured that the cropped images from the H&E WSI and IHC WSI of
the same case were aligned on a one-to-one basis. Consequently, the anno-
tation labels for the IHC tiles could also be applied to their corresponding
H&E tiles. It is important to note that IHC tiles were used solely for data
annotation in the tile-level classifier of HER2Net and were not directly uti-
lized for model training.

Development of Pixel-Level Tumor Detector: In clinical pathological
diagnosis, the determination of HER2 status is only related to the
histopathologic features of the tumor portion of the H&E WSI, and is un-
related to non-tumor and background areas. Therefore, the study needs to
train a tumor detector to identify the tumor regions in the H&E WSI, and
non-tumor and background regions will not be used for HER2Net training
and inference. The method proposed in this paper required a quantitative
calculation of the proportion of HER2 high-expression regions. To meet
this requirement, the study expected to achieve pixel-level precision of tu-
mor boundaries by performing a binary classification of whether each pixel
in the H&E WSI is a tumor. Tumor detectors were trained for pixel-level tu-
mor detection in H&E WSI using three classic deep learning models in
the field of image semantic segmentation:[21] U-Net,[25] SegNet,[26] and
DeepLabv3+.[27] The study used the Adam[28] optimizer on two NVIDIA
RTX A6000 48G GPUs for parallel training, with a starting learning rate of
10−5, weight decay of 0.001, and a mini batch size of 32. The loss function
was cross-entropy, and the evaluation metric was MIoU. Table S1 (Sup-
porting Information) records the performance of the three models on both
the Internal-STAD test set and the Multi-Center-STAD test set. Based on
the results, SegNet achieved the best performance with an MIoU of 0.8606
on the Internal-STAD test set and an MIoU of 0.8207 on the Multi-Center-
STAD test set. Therefore, SegNet was selected as the final tumor detector.

Examples of heatmap of tumor regions annotated by pathology experts
and predicted by tumor detector are shown in Figure S3 (Supporting In-
formation) respectively.

Non-Tumor Tiles Filter: The study defines non-tumor tiles as tiles
where the percentage of tumor pixels predicted by the tumor detector is
less than or equal to 10%, or the saturation is less than 10. Non-tumor
tiles have not been used for training and inference of HER2Net.

Development of HER2Net: Tile-Level Classifier. The workflow of
HER2Net is depicted in Figure 2. The HER2Net first comprises a tile-
level classifier, which performs binary classification on H&E tiles. When
classifying the H&E tile, it was defined that if the high-expression area of
the corresponding IHC tile is greater than or equal to 50% of the tumor
area, it is classified as strong. Conversely, if the high-expression area of
the corresponding IHC tile is <50% of the tumor area, it is classified as
weak. During the training process, the study adopted a strategy of five-
fold cross-validation and stratified sampling on WSI-level, resulting in five
tile-level sub-classifiers. Fivefold cross-validation involved dividing the in-
ternal training set evenly into five subsets, with four subsets for training
and the remaining subset for validation. The training was terminated when
the tile-level sub-classifier’s performance has no longer improvement on
the validation set. Stratified sampling is utilized to ensure the proportion
of HER2 positive samples within each fold of the fivefold cross-validation
is as consistent as possible, with the aim of enhancing the robustness
of the model. During the process of model inference, each sub-classifier
makes a prediction for the classification of the H&E tile. Therefore, a
single H&E tile can yield five prediction results from five sub-classifiers.
Tile-level classifier was trained using the ResNet series models[29] and
DenseNet series models,[30] including ResNet152, ResNet101, ResNet50,
ResNet34, ResNet18 and DenseNet121. The Adam optimizer was used
on two NVIDIA RTX A6000 48G GPUs for parallel training, with a starting
learning rate of 10−5, weight decay of 0.001, and a mini batch size of 64.
The loss function is cross-entropy, and two evaluation metrics AUROC and
sensitivity were used for comprehensive evaluation. Table S2 (Supporting
Information) shows the best average performance of those models in mul-
tiple stratified fivefold cross-validation experiments on the internal training
set. According to the results, ResNet50 achieved the best average perfor-
mance with an AUROC of 0.9379. Therefore, ResNet50 was selected as the
final tile-level classifier.

Integrated Classifier. HER2Net second included an integrated classifier
to learn the final classification prediction by combining the classification
results obtained from the previous five tile-level sub-classifiers. For train-
ing the integrated classifier, three linear classification models were tested
including Logistic Regression (LR),[31] Decision Tree (DT),[32] and Support
Vector Machine (SVM),[33] as well as five ensemble learning models[34]

including Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient
Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost),
and Soft Voting (SV). The study trained the above eight models using the
grid search to find the best combinations of model parameters on a sin-
gle CPU. Two evaluation metrics AUROC and sensitivity were used for
comprehensive evaluation. All test results on the MultiCenter-STAD test
set are recorded in Table S3 (Supporting Information). According to the
results, the AUROC of all models on Multi-Center-STAD test set ranges
from 0.9769 to 0.9898, with little difference. However, the sensitivity of RF
is 0.9373, significantly higher than other models. Considering that classi-
fying as strong is a minority class sample and has a significant impact on
HER2 status determination compared to classifying as weak, the study has
chosen RF as the final integrated classifier.

High-Expression Percent Calculator. HER2Net third included a high-
expression percent calculator, which was used to calculate the proportion
of HER2 high-expression regions in H&E WSI. For a given H&E WSI, it is
assumed to be divided into a set of non-overlapping H&E tiles, and those
H&E tiles containing tumors are selected using a tumor detector. More-
over, the pixel-level tumor detector can also provide the number of tumor
pixels for each H&E tile. The classification of each H&E tile is obtained us-
ing an integrated classifier. Afterward, it was defined that all tumor pixels
in H&E tiles classified as strong are considered as HER2 high-expression
pixels, while all tumor pixels in H&E tiles classified as weak are considered
as HER2 non-high-expression pixels. By accumulating the high-expression
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and non-high-expression pixels of each H&E tile, the proportion of high-
expression P in the H&E can be calculated WSI using the following for-
mula:

P =
∑N

i=1 Ki
∑N

i=1 Ki +
∑M

j=1 Lj

(1)

where N and M represent the number of strong H&E tiles and weak H&E
tiles, respectively, in one H&E WSI. Ki represents the number of high-
expression pixels in the i-th strong tile, while Lj represents the number
of non-high-expression pixels in the j-th weak tile. When P is greater than
or equal to 10% (the threshold used in clinical immunohistochemistry as-
sessment), the H&E WSI will be determined as HER2 positive. Conversely,
when P is less than 10%, the H&E WSI will be determined as HER2 nega-
tive.

All models involved in the experiments of this paper, along with their
corresponding literature and code links, are comprehensively documented
in Table S5 (Supporting Information). The mathematical principles of the
models are thoroughly explained in their respective literature. The code
implementations provided in the links are open-source and freely available
for use.
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Supporting Information is available from the Wiley Online Library or from
the author.
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