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Altered fear learning is a strong behavioral component of anxiety disorders such as post-
traumatic stress disorder (PTSD). Recent efforts have attempted to combine exposure
therapies with drugs that target fear memory retrieval and memory reconsolidation,
in order to improve treatment efficacy. The noradrenergic (NA) signaling system is of
particular interest, due to its role in regulating the stress response and its involvement in
fear and learning processes. Importantly, propranolol (P), a non-selective β-adrenergic
antagonist, has shown the potential in decreasing exaggerated fear in both humans
and animal models. In a previous study, we utilized an activity-dependent tagging
murine model to determine the neural mechanisms by which propranolol attenuates
learned fear. We found that propranolol acutely decreased memory trace reactivation
specifically in the dorsal dentate gyrus (dDG), but not in CA3 or CA1. Here, we extended
our previous study by investigating whether propranolol additionally altered activity in
the hilus, a polymorphic layer that consists of neurons, mossy cells, and GABAergic
interneurons. We found that propranolol acutely reduced overall hilar activity in both
the dorsal and ventral hilus. Moreover, we report that propranolol significantly altered
the activity of parvalbumin (PV)+ cells in the ventral (vDG), but not dorsal DG (dDG).
Together, these results suggest that a β-adrenergic blockade may affect the activity of
excitatory and inhibitory cell types in the hilar layer of the DG, and that these alterations
may contribute to manipulating fear memory traces.

Keywords: hippocampus, hilus, Arc, Fos, somatostatin, parvalbumin

INTRODUCTION

Post-traumatic stress disorder (PTSD) and other anxiety disorders such as specific phobias,
often include abnormally strong fear responses that are resistant to therapeutic approaches with
exposure therapies (Rauch et al., 2012; Botella et al., 2017). Numerous efforts have been made to
couple exposure therapies for PTSD with pharmacological manipulations to successfully manage
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exaggerated fear responses (Taylor et al., 2008; Belkin and
Schwartz, 2015; Brunet et al., 2018). While research is still
ongoing, some results suggest that this combinatorial approach
may result in effective, positive clinical outcomes for managing
fear and anxiety disorders.

One of the targets of this approach is the noradrenergic
system, which is known to be involved in vigilance, attention,
threat response, and in learning and memory (Berridge and
Waterhouse, 2003; Berridge, 2005; Avery and Krichmar, 2017).
The main source of noradrenergic innervation in the brain
is the locus coeruleus (LC), a brain nucleus in the pons of
the brain stem, and part of the reticular ascending system
(Berridge and Waterhouse, 2003; Schwarz and Luo, 2015; Aston-
Jones and Waterhouse, 2016). Drugs that manipulate adrenergic
signaling have been used to manipulate either the reactivation,
the reconsolidation, and/or the extinction processes involved
in the weakening of a fearful memory (Taylor et al., 2008;
Lonergan et al., 2013; McGuire et al., 2014; Belkin and Schwartz,
2015). The non-selective β-adrenergic antagonist propranolol
(P), in particular, has been used for several decades in anxiety
disorders including performance anxiety (Tyrer, 1988; Liu et al.,
1991; Soeter and Kindt, 2015) and generalized anxiety disorder
(GAD) (Fagerström et al., 1985; Tyrer, 1988; Grillon et al., 2004).
Propranolol has also been used to aid in the treatment of phobias
and in exposure therapies for PTSD (Grillon et al., 2004; Soeter
and Kindt, 2015; Kroes et al., 2016).

To better understand the mechanism of action of propranolol,
it is critical to test the drug’s effects in different behavioral
situations, with varied conditioned stimuli and administration
timelines, while analyzing the underlying brain activity. Of
particular interest are several regions that are involved in the
learning of fearful associative memories, and that also receive
abundant noradrenergic projections from the LC. These include
the hippocampal formation (HPC), the medial prefrontal cortical
areas prelimbic (PL) and infralimbic areas (ILA), and several
amygdalar nuclei, the most studied of which are the basolateral
(BLA) and the lateral (LA) amygdalar nuclei, all of which have
been shown to be affected by propranolol administration in
humans (Hurlemann et al., 2010; Schwabe et al., 2012; Kroes
et al., 2016) and in animal models (Ji et al., 2003; Chen and Sara,
2007; Do Monte et al., 2008; Qi et al., 2008; Ehrlich et al., 2009;
Rodriguez-Romaguera et al., 2009; Vetere et al., 2013; Fitzgerald
et al., 2015; Hagena et al., 2016; Giustino et al., 2017).

Engrams or memory traces were conceptualized by Richard
Semon in the early twentieth century (Semon, 1921) and refer to
the change in biological matter that occurs with learning, that
is maintained, and whose reactivation leads to retrieval of the
memory. In the past decade, numerous studies have utilized the
expression of immediate early genes (IEGs), which undergo an
increase in transcription when a neuron has increased activity,
as a proxy for engrams (Tonegawa et al., 2015). By utilizing IEG
promoters in inducible, transgenic systems, it became possible to
tag a population of neurons active during an individual memory.
These recent genetic techniques, paired with optogenetics, have
allowed scientists to identify and manipulate engrams (Liu et al.,
2012; Denny et al., 2014; Redondo et al., 2014; Ramirez et al.,
2015; Roy et al., 2016; Perusini et al., 2017; Khalaf et al., 2018;

Chen et al., 2019; Lacagnina et al., 2019), and even may be
modified to improve mood and cognition (Reijmers et al., 2007;
Denny et al., 2017).

One of these IEGs Arc/Arg3.1 has been widely implicated in
synaptic plasticity (Link et al., 1995; Lyford et al., 1995; Pastuzyn
et al., 2018). We previously created the ArcCreERT2 x enhanced
yellow fluorescent protein (eYFP) mice, which allow for the
permanent labeling of activated Arc+ neurons (Denny et al.,
2014). Using this transgenic murine line, we have shown that
the HPC subregions dentate gyrus (DG) and cornus ammonis
3 (CA3) encode memory traces of contextual fear memories
(Denny et al., 2014). This work showed that, for both the DG
and CA3: (1) the number of tagged cells was greater in mice
following CFC compared to mice that underwent exposure to
the context with no shock; (2) that the percentage of reactivated
cells was higher when mice were re-exposed to the CFC context,
compared to mice exposed to a different context; and (3) that
the neuronal ensembles active upon encoding of contextual fear
conditioning (CFC) memories are necessary for memory retrieval
(Denny et al., 2014; Cazzulino et al., 2016; Mastrodonato et al.,
2018; Lacagnina et al., 2019). In a more recent study (Leal
Santos et al., 2021), we utilized the ArcCreERT2 mouse model
to study the effects of propranolol in the DG, CA3, and CA1,
in prefrontal cortical areas, and in several amygdalar nuclei. We
found that propranolol administered immediately before fear
retrieval decreased fear expression, which was paralleled by a
decreased reactivation of the fearful memory trace specifically in
the dorsal DG (dDG).

Here, we sought to further our prior study and to
investigate how propranolol administration impacts activity in
the hilus. The hilus is the layer of the DG that receives
the highest density of afferents of cholinergic, serotoninergic,
and, importantly, noradrenergic fibers (Pickel et al., 1974;
Swanson and Hartman, 1975), suggesting an important role
in mediating how these stimuli affect the activity of the
granule cells. Using the ArcCreERT2 x eYFP mice to tag
fear memory traces, we report that propranolol administration
significantly reduced c-Fos expression in both the dorsal and
ventral hilus. Propranolol did not alter the expression of either
somatostatin (SST) or parvalbumin (PV), markers of inhibitory
interneurons. Propranolol administration increased the activity
of PV-expressing cells in the ventral hilus. Together, these results
suggest that a β-adrenergic blockade may affect the activity of
excitatory and inhibitory cell types in the hilar layer of the DG and
that these alterations may contribute to reducing fear behavior.

MATERIALS AND METHODS

Mice
ArcCreERT2(+) (Denny et al., 2014) × R26R-STOP-floxed-
enhanced yellow fluorescent protein (eYFP) (Srinivas et al.,
2001) homozygous female mice were bred, reared, and tested as
previously described (Leal Santos et al., 2021). Food and water
were provided ad libitum. All experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) at the
New York State Psychiatric Institute (NYSPI).
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Drugs
4-Hydroxytamoxifen
4-Hydroxytamoxifen (4-OHT) (Sigma, St. Louis, MO, H7904)
was used to induce recombination, as previously described
(Cazzulino et al., 2016). 4-OHT was dissolved by sonication in
10% EtOH/90% corn oil at a concentration of 10 mg/ml. One
injection of 200 µl (2 mg) was administered intraperitoneally
(i.p.) into each adult mouse.

Propranolol
(+)-Propranolol hydrochloride was dissolved in 0.9% NaCl at
a concentration of 1 mg/ml. A single injection of saline (Sal)
(0.9% NaCl) or propranolol hydrochloride (P) [(+)-Propranolol
hydrochloride, Sigma Aldrich, #PHR1308] (10 mg/kg) was
administered i.p. once immediately before re-exposure to the
CFC context. Dosing was based on previous studies, indicating
that 10 mg/kg of propranolol was effective at decreasing fear
expression acutely or in subsequent re-exposures in mice (Do
Monte et al., 2008; Ehrlich et al., 2009; Do-Monte et al., 2010;
Muravieva and Alberini, 2010; Fitzgerald et al., 2015; Giustino
et al., 2017).

Behavioral Tests
Contextual Fear Conditioning
A 4-shock CFC paradigm and context re-exposure (RE) was
administered as previously described (Leal Santos et al., 2021).

Tissue Processing
Mice were deeply anesthetized, and perfusions with 4%
paraformaldehyde (PFA) and brain processing were performed
as previously described in Denny et al. (2014); Cazzulino et al.
(2016), Pavlova et al. (2018), and Leal Santos et al. (2021).

Immunohistochemistry
An iDISCO-based immunohistochemistry protocol was
performed as previously described (Pavlova et al., 2018;
Leal Santos et al., 2021). All antibodies and corresponding
information are listed in Supplementary Table 1.

Confocal Microscopy
All samples were imaged on a confocal scanning microscope
(Leica TCS SP8, Leica Microsystems Inc., Wetzlar, Germany)
with 2 PMT detectors, as previously described (Leal Santos et al.,
2021). Sections were imaged with a dry Leica 20× objective (NA
0.70, working distance 0.5 mm), with a pixel size of 1.08 × 1.08
µm2, a z step of 3 µm, and z-stack of 27 µm. Fields of view
were stitched together to form tiled images by using an automated
stage and the tiling function and algorithm of the LAS X software.

Cell Quantification
An investigator blind to treatment counted eYFP+, c-Fos+,
SST, or PV immunoreactive cells bilaterally in the hilus (also
called polymorphous layer of the DG) of the hippocampus.
Cells were counted bilaterally using Fiji (Schindelin et al., 2012).
A minimum of 3 hemi-sections were analyzed per mouse per
dorsal or ventral hilus. The limits of the hilus were defined using
the coronal Allen Brain Atlas as a reference. Cell counts were

normalized to the volume of hilus for each mouse. Normalized
levels per mm3 and the reactivation levels (percentage of co-
labeled cells) are presented throughout.

Statistical Analysis
All data were analyzed using Prism 9.0.0. Alpha was set to 0.05 for
all analyses. Normality was tested using the D’Agostino–Pearson
test. As normality was present, the effect of drug on average
levels of immunolabeled cells was analyzed using t-tests. Pearson
correlations between levels of activity in the hilus and freezing
levels were calculated.

RESULTS

Propranolol Administration Decreases
Dorsal Hilar Activity
In our previous study, we reported differences in dDG memory
trace reactivation following propranolol administration (Leal
Santos et al., 2021). Importantly, we quantified cells active during
fear encoding and fear memory retrieval in the granule cell
layer (GCL) of the dDG, but we did not analyze other layers
of the DG, such as the polymorphous layer (PML), which
has also been referred to as CA4 or the hilus (De Nó, 1934).
Although most excitatory cells in the DG are localized in the
GCL, the hilus harbors important excitatory cells (Scharfman
and Myers, 2012; Scharfman, 2016) and several populations of
inhibitory interneurons (Amaral et al., 2007; Scharfman, 2016).
Most notably, the hilus receives the highest density of afferents
of cholinergic, serotoninergic, and, importantly, noradrenergic
fibers (Pickel et al., 1974; Swanson and Hartman, 1975) and is
the layer with the highest expression of β-adrenergic receptors
(Cox et al., 2008).

To determine how propranolol alters neural activity in the
hilus, ArcCreERT2 x eYFP mice (Figure 1A) were injected with 4-
OHT 5 h prior to 4-shock CFC (Figure 1B) to tag cells with eYFP.
Five days later, mice were administered an injection of saline or
propranolol prior to context re-exposure (RE) and euthanized
1 h following context RE to capture cells expressing c-Fos or
Arc protein. As previously reported, propranolol administration
significantly decreased fear expression during context RE when
compared with saline administration (Leal Santos et al., 2021).
The transgenic model allowed for brain-wide labeling of eYFP+
cells active during fear encoding (Figures 1C–F).

We first sought to determine whether administration of
propranolol alters activity in the dorsal hilus. We found that
expression of hilar eYFP+ cells did not differ between the saline
and propranolol mice [t(16) = 0.06094, p = 0.9522] (Figure 1G),
as expected since eYFP+ cells were tagged during CFC and before
drug administration. Interestingly, the number of hilar c-Fos+
cells was significantly less in propranolol-injected mice when
compared with saline-injected mice [t(16) = 2.311, p = 0.0345]
(Figure 1H). Notably, this difference was not previously observed
in the GCL of the dDG (Leal Santos et al., 2021).

When analyzing hilar memory trace reactivation, propranolol-
injected mice administered had a trending, but not significant
decrease in co-labeled/eYFP+ (%) of cells when compared with
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FIGURE 1 | Propranolol administration decreases hilar neural activity in the dorsal hippocampus. (A) Genetic design. (B) Experimental design. 4-OHT was
administered 5 h before CFC for neural tagging. Five days later, mice were given an injection of saline or propranolol. Immediately following the injection, mice were
re-exposed the fear context and euthanized 1 h later. (C) Representative section showing eYFP (green) and c-Fos (red) expression throughout the brain in the
ArcCreERT2

× eYFP mice. (D) eYFP+, (E) c-Fos+, and (F) co-labeled cells in the dorsal hilus. Representative hilar sections are outlined in white. (G) eYFP+, (H)
c-Fos+, (I) co-labeled/eYFP (%), and (J) co-labeled/c-Fos+ (%) hilar cell counts. Correlation plots of average freezing vs. (K) c-Fos+ cells, (L) co-labeled/eYFP+ (%),
and (M) co-labeled/c-Fos+ (%). Error bars indicate ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001. eYFP, enhanced yellow fluorescent protein; 4-OHT,
4-hydroxytamoxifen; CFC, contextual fear conditioning; RE, context re-exposure; sac, sacrifice; Sal, saline; P, propranolol.
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saline-injected mice [t(15) = 2.076, p = 0.0555] (Figure 1I). No
difference was observed between the groups in the percentage of
co-labeled/c-Fos+ cells [t(16) = 1.654, p = 0.1175] (Figure 1J).
The lack of an effect in this metric may be due to the c-Fos+ cells
being more variable than the eYFP+ population, encompassing
not only excitatory cells but also inhibitory interneurons (Staiger
et al., 2002; Tyssowski et al., 2018).

Next, we performed correlation analyses between the levels
of hilar c-Fos expression and freezing levels, and between the
percentage of hilar memory trace reactivation and freezing
(Figures 1K–M). No correlation was found between the numbers
of c-Fos+ cells and freezing levels for both groups (Figure 1K).
When analyzing the correlation between hilar memory trace
reactivation and freezing, we found no correlation between the
percentage of co-labeled cells and freezing for both groups
(Figures 1L,M). These data indicate that hilar memory trace
activity does not directly reflect the behavioral levels of
fear expression.

Propranolol Administration Decreases
Ventral Hilar Activity
We next sought to determine whether administration of
propranolol alters activity in the ventral hilus (Figures 2A–D).
We found that expression of hilar eYFP+ cells did not differ
between the groups [t(16) = 1.965, p = 0.067] (Figure 2E).
Interestingly, the number of hilar c-Fos+ cells was significantly
lower in propranolol-injected mice when compared with saline-
injected mice [t(16) = 4.336, p = 0.0005] (Figure 2F), as was seen
in the dorsal hilus.

When analyzing hilar memory trace reactivation, propranolol-
injected mice administered had comparable percentages of co-
labeled/eYFP+ [t(16) = 1.911, p = 0.0742] (Figure 2G) and
co-labeled/c-Fos+ [t(16) = 0.1253, p = 0.9019] (Figure 2H) when
compared with saline-injected mice. Overall, these data suggest
that ventral memory trace reactivation in the hilus is not altered
following propranolol administration.

Finally, we performed correlation analyses between the levels
of hilar c-Fos expression and freezing levels, and between the
percentage of hilar memory trace reactivation and freezing
(Figures 2I–K). No correlation was found between the numbers
of c-Fos+ cells and freezing levels for mice administered either
saline or propranolol (Figure 2I). When analyzing the correlation
between hilar memory trace reactivation and freezing, we found
no correlation between the percentage of co-labeled cells and
freezing, for either the saline- or propranolol-injected mice
(Figures 2J,K). These data indicate that hilar activity does not
directly reflect the behavioral levels of fear expression, and this
is not altered by propranolol administration.

Propranolol Administration Does Not
Alter Somatostatin Expression in the
Hilus
We then hypothesized that propranolol could reduce dorsal hilar
activity by enhancing the activity or expression of inhibitory
interneurons. We next quantified the expression of somatostatin
(SST) in the dorsal and ventral hilus (Supplementary
Figures 1A,B). SST was chosen due to its demonstrated role

in regulating long-term plasticity and hippocampal-dependent
learning and memory, as well as its high co-expression with
β-adrenergic receptors (Cox et al., 2008; Honoré et al., 2021). SST
density was comparable between both groups in both the dorsal
[t(16) = 1.223, p = 0.2389] (Supplementary Figure 1C) and
ventral [t(16) = 0.0189, p = 0.9852] (Supplementary Figure 1E)
hilus, indicating that propranolol administration does not
significantly affect hilar SST expression.

We next performed correlation analyses between the levels
of hilar SST expression and freezing levels (Supplementary
Figures 1D,F). In the dorsal hilus, there was a positive correlation
between freezing during RE and SST expression in propranolol-,
but not saline-administered mice (Supplementary Figure 1C).
Similarly, in the ventral hilus, there was a positive correlation
between freezing during RE and SST in propranolol-, but not
saline-injected mice (Supplementary Figure 1F). Together, these
results suggest that although propranolol does not alter hilar
SST expression, levels of SST+ interneurons may positively
reflect the behavioral levels of fear expression in propranolol-
administered mice.

Propranolol Administration Increases the
Activity of Parvalbumin-Expressing
Inhibitory Cells in the Ventral, but Not
Dorsal Hilus
Next, we quantified hilar expression of parvalbumin (PV),
another marker of inhibitory interneurons (Figures 3A–H).
PV-expressing interneurons are GABAergic cells that mediate
synchronous neural activity to promote memory consolidation,
and their expression and activity can be significantly altered
by stress or mood disorders (Ognjanovski et al., 2017; Chen
et al., 2018; Perlman et al., 2021). PV is also co-expressed
with β-adrenergic receptors in the hilus (Cox et al., 2008). As
we previously demonstrated, in the dorsal hilus, propranolol
significantly reduced c-Fos expression [t(16) = 3.179, p = 0.0058],
but did not alter the expression of eYFP [t(16) = 0.3359,
p = 0.7413] (Figures 3I,J). PV expression was comparable
between both groups [t(16) = 0.0587, p = 0.9539] (Figure 3K).
There was no significant difference in eYFP+PV+/PV+
(%) [t(16) = 0.597, p = 0.5589] or c-Fos+PV+/PV+ (%)
[t(16) = 0.045, p = 0.9647] of cells between both groups
(Figures 3L,M). These data suggest that propranolol reduces
cellular activity in the dorsal hilus during re-exposure in a
PV-independent manner.

In the ventral hilus, propranolol administration did not
significantly alter eYFP expression [t(16) = 0.5123, p = 0.6154]
(Figure 3N). As we previously demonstrated, propranolol
significantly decreased c-Fos expression [t(16) = 0.3.247,
p = 0.0051], but not PV expression [t(16) = 0.9995, p = 0.3324]
(Figures 3O,P). eYFP+PV+/PV+ (%) [t(16) = 0.835, p = 0.416]
of cells was comparable between saline- and propranolol-
injected mice (Figure 3Q). Surprisingly, propranolol significantly
increased the percentage of c-Fos+PV+/PV+ cells in the ventral
hilus [t(16) = 3.418, p = 0.0035] (Figure 3R). Together, these
data suggest that in the ventral hilus, propranolol increases
the proportion of PV-expressing cells that are active during
re-exposure. These findings are in line with previous data
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FIGURE 2 | Propranolol administration decreases hilar neural activity in the ventral hippocampus. (A) Representative section showing eYFP (green) and c-Fos (red)
expression throughout the brain in the ArcCreERT2

× eYFP mice. (B) eYFP+, (C) c-Fos+, and (D) co-labeled cells in the ventral hilus. Representative hilar sections
are outlined in white. (E) eYFP+, (F) c-Fos+, (G) co-labeled/eYFP (%), and (H) co-labeled/c-Fos+ (%) hilar cell counts in the ventral hilus. Correlation plots of average
freezing versus (I) c-Fos+ cells, (J) co-labeled/eYFP+ (%), and (K) co-labeled/c-Fos+ (%). Error bars indicate ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001. eYFP,
enhanced yellow fluorescent protein; Sal, saline; P, propranolol; ns, non significant.

suggesting that increased inhibitory activity in vDG reduces
stress-induced anxiety-like behaviors (Anacker et al., 2018).

Finally, we performed correlation analyses as described above
(Figures 3S–V). c-Fos expression was not significantly correlated

with freezing during RE in both the dorsal and ventral hilus,
as previously demonstrated (Figures 3S,T). In the dorsal hilus,
fear behavior was not correlated with c-Fos+PV+/PV+ (%) of
cells (Figure 3U). In the ventral hilus, freezing was negatively
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FIGURE 3 | Propranolol administration increases the activity of parvalbumin-expressing cells in the ventral, but not dorsal hilus. (A) Representative section showing
eYFP (green), c-Fos (red), and PV (blue) expression in the dorsal hippocampus. A representative hilar section is outlined in white. (B) eYFP+, (C) c-Fos+, and
(D) PV+ cells in the dorsal hilus. (E) Representative section showing eYFP (green), c-Fos (red), and PV (blue) expression in the ventral hippocampus. A representative
hilar section is outlined in white. (F) eYFP+, (G) c-Fos+, (H) PV+ cells in the ventral hilus. (I) eYFP+, (J) c-Fos+, (K) PV+, (L) eYFP+PV+/PV+ (%), and (M)
c-Fos+PV+/PV+ (%) cells in the dorsal hilus. (N) eYFP+, (O) c-Fos+, (P) PV+, (Q) eYFP+PV+/PV+ (%), and (R) c-Fos+PV+/PV+ (%) cells in the ventral hilus.
Correlation plots of average freezing vs. (S) c-Fos+ cells in the dorsal hilus, (T) c-Fos+ cells in the ventral hilus, (U) c-Fos+PV+/PV+ cells (%) in the dorsal hilus, and
(V) c-Fos+PV+/PV+ cells (%) in the ventral hilus. Error bars indicate ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001. eYFP, enhanced yellow fluorescent protein; PV,
parvalbumin; Sal, saline; P, propranolol.

correlated with the percentage of activated PV+ cells in saline-,
but not propranolol-administered mice (Figure 3V). Together,
these results suggest that the percentage of activated PV+ cells in
the ventral hilus is negatively correlated with freezing behavior in
controls, but that propranolol alters this behavioral correlation.

DISCUSSION

Here, we investigated how propranolol impacts activity in the
hilus when administered prior to re-exposure to an aversive

CFC context. We utilized the ArcCreERT2 x eYFP mice to allow
tagging of the CFC encoding cells and to quantify reactivated
cells following fear retrieval. We then examined the effect of
acute administration of propranolol on SST and PV, two markers
of inhibitory interneurons. We show that propranolol acutely:
(1) decreases neural activity in the dorsal and ventral hilus,
(2) alters the correlation between the activity of PV-expressing
interneurons and freezing behavior, and (3) increases the activity
of PV-expressing interneurons in the ventral, but not dorsal hilus.

We previously showed that propranolol decreased fear
expression and decreased memory trace reactivation specifically
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in the dDG (Leal Santos et al., 2021). Studies of hippocampal
connectivity have shown that information in the hippocampus
flows mostly unidirectionally (Amaral et al., 2007; Bienkowski
et al., 2018), with the DG being the entryway, and the hilus
is the layer of the DG that receives the highest noradrenergic
input (Pickel et al., 1974; Swanson and Hartman, 1975) and has
discrete populations of cells expressing β-adrenergic receptors
(Cox et al., 2008). These characteristics place the hilus as
the layer most likely to be directly altered by propranolol,
possibly relaying these effects to the GCL. Both β1- and β2-
adrenoreceptors in the HPC have been extensively implicated
in the modulation of memory formation (Qi et al., 2008). In
rodents, β1- and β2-adrenoreceptors are expressed throughout
the HPC, with higher levels of expression in the DG and
lower levels of both receptor subtypes in CA3. These receptors
are also expressed in interneurons and, to a lesser extent,
in glial cells (Booze et al., 1993; Milner et al., 2000; Guo
and Li, 2007; Cox et al., 2008). Here, we provide another
layer of evidence of preferential noradrenergic modulation of
the dDG upon retrieval of a contextual fear memory and
show that β-adrenergic inhibition can decrease overall cellular
activity in the hilus.

We explored the relation between either hilar activity and
freezing during re-exposure, and found no correlation between
these measures, suggesting that hilar activity alone cannot
explain the behavioral effect of propranolol. In our paradigm, we
previously reported a correlation between freezing and memory
trace reactivation in the anterior cingulate area and in the
lateral amygdala, but not in the GCL of the DG (Leal Santos
et al., 2021). Memory trace reactivation in the DG has been
shown to correlate with fear expression (Khalaf et al., 2018);
however, the tagging systems and timelines differed between
these studies, which might explain differences in engagement
of the DG memory trace. Future analyses that encompass
alterations across several regions and timepoints may yield a
better understanding of network wide changes and of nodes that
can more crucially impact the behavioral outcome (Vetere et al.,
2017; Khalaf et al., 2018; Khalaf and Gräff, 2019; Leal Santos et al.,
2021).

Here, we also combined our activity-based analysis with
labeling for interneuron types (Houser, 2007; Cox et al., 2008),
which can also be components of the memory trace (Trouche
et al., 2013), in order to determine: (1) whether the change in
overall activity was due to the excitatory or the inhibitory cell
populations, or both, and (2) whether there is an inhibitory
component of the memory trace in the hilus. Indeed, previous
data indicate that modulation of noradrenergic inputs to the DG,
resulting in altered contextual fear discrimination, can modulate
the signaling of local interneuron populations (Seo et al., 2021).
Here, we report that in propranolol-, but not saline-administered
mice, there was a significant positive correlation between SST
expression and freezing behavior, suggesting that the expression
of SST interneurons could reflect behavioral output during
fear memory retrieval. It has previously been demonstrated
that SST is an important neuromodulator of hippocampal
function at the behavioral level and that local hippocampal
injections of SST can exert anxiolytic effects (Honoré et al.,

2021). Additionally, we showed that propranolol administration
can alter PV-expressing interneuron activity in the ventral, but
not dorsal hilus. PV+ interneurons, particularly those localized
in the hilar layer of the DG, exert fast-spiking inhibitory
connections that are speculated to provide rapid suppression
and to enable efficient higher-order network functions (Espinoza
et al., 2018). Thus, by increasing the activity of inhibitory
PV+ cellular input in the ventral hilus, propranolol may enable
more efficient and powerful suppression of neuronal activity
in the DG, thereby reducing the negative valence of the fear
memory engram and suppressing freezing behavior. However,
further study is necessary to fully characterize how propranolol
alters the inhibitory component of a memory engram during
memory retrieval.

Because PV+ interneurons express β-adrenergic receptors,
it was unexpected that administration of propranolol, a
β-adrenergic antagonist, would increase the percentage of
cFos+PV+/PV+ cells during fear retrieval. It is known
that within the hilus, different interneuron subtypes are
interconnected and regulate each other’s activity (Sik et al.,
1997). Therefore, whichever subpopulation of interneurons
is more susceptible to propranolol may have a decrease in
firing and subsequently disinhibit downstream interneurons,
and this effect may predominate over the direct effect of
the β-adrenergic antagonist to the latter interneurons. As
quantified in Cox et al. (2008), PV+ interneurons are third
to SOM+ neurons and then to NYP neurons in expression
of β-adrenergic receptors. It is possible, therefore, that other
populations of hilar interneurons undergo stronger inhibition
by propranolol and disinhibit PV+ interneurons. Alternatively,
although propranolol is a potent non-selective β-adrenergic
antagonist, previous studies have shown that it may have
partial agonist activity, leading to the activation of ERK
pathways in β-adrenergic receptor-expressing cells (Azzi
et al., 2003; Baker et al., 2003; Galandrin and Bouvier, 2006).
Thus, although propranolol broadly acts to suppress the
activity of β-adrenergic cells, in some cases, it may lead to
cellular excitation due to activation of distinct GPCR signaling
effectors. We speculate that this paradoxical upregulation of an
intracellular signaling cascade may lead to increased activity
of β-adrenergic receptor-expressing PV+ interneurons in
the ventral hilus.

Another major cell type in the hilus is the mossy cell,
which has unique structural and physiological properties. Mossy
cells are glutamatergic neurons that have intrinsic and circuit
properties that are thought to make them modulators of the
activity of granule cells. Deletion of mossy cells leads to
a transient increase in excitability and impaired contextual
discrimination, and optogenetic activation of mossy cells
primarily inhibits granule cells, suggesting that mossy cells
primarily activate GABAergic interneurons that inhibit granule
cells (as reviewed in Scharfman and Myers, 2012; Scharfman,
2016). c-Fos expression has been shown in mossy cells at
baseline and under acute restraint stress (Duffy et al., 2013;
Moretto et al., 2017). Although here we have initially focused on
dissecting the activity of interneuron subtypes in the hilus, for
a more complete understanding of how DG activity is affected
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by β-adrenergic modulation during fear retrieval, further studies
will address how mossy cell activity is affected during β-
adrenergic blockade and how the balance of inhibition and
excitation between mossy cells and hilar interneurons modulate
granule cell activity.

The hippocampal subfields display heterogeneity along their
dorso-ventral axis in terms of gene expression, connectivity,
and function (Moser and Moser, 1998; Bannerman et al.,
2004; Fanselow and Dong, 2010; Kheirbek et al., 2013;
Bienkowski et al., 2018). The dorsal HPC is necessary for
learning and memory associated with spatial navigation (Moser
et al., 1995; Bannerman et al., 1999; Leal Santos et al.,
2021), whereas the ventral HPC is associated with innate fear
and anxiety (Richmond et al., 1999; Kjelstrup et al., 2002).
The dorsal HPC receives projections from sensory cortical
areas and projects to associational cortical areas, while the
vHPC is bidirectionally connected to regions such as the
prefrontal cortex, amygdala and hypothalamus, implicated in
the processing of emotional stimuli (Fanselow and Dong, 2010;
Bienkowski et al., 2018). Interestingly, earlier we only reported
an effect of propranolol in the dDG. However, here we report
similar effects observed in the dorsal and ventral hilus for
c-Fos, suggesting that propranolol may differentially impact
hippocampal subregions and ultimately, fear behavior. However,
in the ventral hilus, increased activity of a PV-expressing
inhibitory population of interneurons could suppress the
emotional valence of fear, perhaps by suppressing downstream
excitatory projections to regions such as the basolateral amygdala
(BLA) and prefrontal cortex (PFC). These combined effects
could contribute to a significant overall reduction in freezing
behavior in propranolol-administered mice at the time of
memory retrieval.

In both human and animal studies that investigate how
to improve propranolol’s efficacy and the neural mechanisms
that mediate it (Fitzgerald et al., 2015; Giustino et al., 2016;
Giustino and Maren, 2018), there has been difficulty establishing
the boundary conditions in terms of timing, dosing, and
stimulation that lead to a successful therapeutic outcome
(Schroyens et al., 2017). Here, we show that, under certain
conditions, propranolol’s effect on fear behavior is correlated with
changes not only in the dDG, but now throughout the hilus.
These data favor the use of propranolol for acute symptomatic
relief. Where reconsolidation therapies are concerned, a greater
understanding of the stimulation and dose parameters that suit
this purpose is warranted. In this study, we have expanded
the knowledge of the neurobiology underlying propranolol’s
effect on fear behavior and identified the hilus as a target of
noradrenergic modulation that may alter the recruitment of DG
fear memory traces.
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