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Recent advances in convolutional neural networks have inspired the application of deep learning to other

disciplines. Even though image processing and natural language processing have turned out to be the most

successful, there are many other domains that have also benefited; among them, life sciences in general

and chemistry and drug design in particular. In concordance with this observation, from 2018 the

scientific community has seen a surge of methodologies related to the generation of diverse molecular

libraries using machine learning. However to date, attention mechanisms have not been employed for

the problem of de novo molecular generation. Here we employ a variant of transformers, an architecture

recently developed for natural language processing, for this purpose. Our results indicate that the

adapted Transmol model is indeed applicable for the task of generating molecular libraries and leads to

statistically significant increases in some of the core metrics of the MOSES benchmark. The presented

model can be tuned to either input-guided or diversity-driven generation modes by applying a standard

one-seed and a novel two-seed approach, respectively. Accordingly, the one-seed approach is best

suited for the targeted generation of focused libraries composed of close analogues of the seed

structure, while the two-seeds approach allows us to dive deeper into under-explored regions of the

chemical space by attempting to generate the molecules that resemble both seeds. To gain more

insights about the scope of the one-seed approach, we devised a new validation workflow that involves

the recreation of known ligands for an important biological target vitamin D receptor. To further benefit

the chemical community, the Transmol algorithm has been incorporated into our cheML.io web

database of ML-generated molecules as a second generation on-demand methodology.
1 Introduction

Chemistry is frequently referred to as a “central science” for its
key role in advancing technological progress and human well-
being through the design and synthesis of novel molecules
and materials for energy, environmental, and biomedical
applications.

Medicinal chemistry is a highly interdisciplinary eld of
science that deals with the design, chemical synthesis, and
mechanism of action of biologically active molecules as well as
their development into marketed pharmaceutical agents (i.e.
drugs). The creation of new drugs is an incredibly hard and
arduous process, one of the key reasons being the fact that the
‘chemical space’ of all possible molecules is extremely large and
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intractable. On account of estimates that the chemical space of
molecules with pharmacological properties is in the range of
1023 to 1060 compounds,1 this order of magnitude leaves the
work of nding new drugs outside the reach of manual labor.

To cure a particular disease, medicinal chemists need to
determine molecules that are active and selective towards
specic biological targets while keeping the risks of negative
side effects minimal.2–5 As the number of molecules that require
testing to identify an ideal drug candidate constantly increases,
it raises the overall cost of the drug discovery process.6 There-
fore, the need for algorithms that are able to narrow down and
streamline these efforts has recently emerged. Specically,
computer algorithms can assist with creating new virtual
molecules,7,8 performing molecule conformation analysis9,10 as
well as molecular docking11,12 to determine the affinity of novel
and known molecules towards specic biological targets.

With respect to molecular generation, the conventional non-
neural algorithms heavily rely on external expert knowledge to
design candidate molecules. In this context, expert knowledge
may consist of molecular fragments that can be “mixed and
matched” to produce a set of novel molecules.13–18 However, the
resulting molecules might be difficult to synthesize.
RSC Adv., 2021, 11, 25921–25932 | 25921
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Consequently, another type of expert knowledge i.e. known
chemical reactions can then be added.19,20 In this way the “mix
and match” approach will be constrained with a specic set of
rules tomaximize the chances that anymolecule that is produced
can be synthesized.21 The obvious drawback of relying on external
knowledge is that it may restrict access to unknown and/or not
yet populated regions of chemical space.

An alternative approach to this problem are neural algo-
rithms that are inherently data-driven. This means that such
algorithms do not rely on expert knowledge and hence derive
insights from the data itself. Such approaches can be applied in
supervised and unsupervised settings.22–24 Supervised algo-
rithms use articial neural networks for the prediction of
molecular properties25,26 or reaction outputs.27 Most unsuper-
vised algorithms are aimed at molecular generation and drug
design.8,22,28–48

When automating molecular search, a natural question that
arises is how molecules, a physical collection of atoms that are
arranged in 3D space, can be represented. In the late 1980s, the
simplied molecular input line-entry system (SMILES)
emerged, which aims to create a molecular encoding that is
computationally efficient to use and human readable.49 The
original encoding is based on 2D molecular graphs. Intended
application areas are fast and compact information retrieval
and storage. With the rise of machine learning algorithms in
chemistry, the SMILES representation has been widely adopted
by researchers for chemical space modeling tasks.

The task of generating more SMILES strings having an input
string can be viewed as a language modelling task. The model
takes an arbitrary length SMILES string (seed molecule) and
returns arbitrary long SMILES strings – the general class of such
models is called Seq2Seq. First used by Google,50 it is currently
one of the most popular approaches for machine translation.
The Seq2Seq architecture can be summarized as follows: an
encoder produces a context vector that is later passed to the
decoder for the generation in auto-regressive fashion.50

As the building blocks of the encoder and decoder could be
neural networks with various architectures, researchers have
experimented with a number of techniques: generative adver-
sarial networks,30,38,44,45,51 variational autoencoders,39,52 and
recurrent neural networks.53,54 However, the use of attention
mechanisms has, to the best of our knowledge, so far been le
unexplored. Here we aim to ll this gap and investigate the
applicability of attention to molecular generation.

One of the distinctive features of attention is that, unlike for
example RNN-type models which have a xed amount of
memory, attention mechanisms allow varying the length of the
latent vector so that the input information does not have to be
compressed into a xed-length vector. In other words, attention
will provide a varying length vector that contains the related
information regarding all input nodes (i.e. SMILES characters,
atoms, rings and branching info, etc.). Thus, in case of the
standard one-seed approach the outcome strives to replicate the
input, which means that upon injecting some variability into
the model the algorithm can be tuned to attain a focused library
of close-seed analogues. In order to switch from this genuinely
input-guided mode to a more diversity-driven mode, we have
25922 | RSC Adv., 2021, 11, 25921–25932
come up with the idea of a two-seed approach. This novel
approach is not only capable of generating diversiedmolecular
libraries by assembling structures that resemble both seeds, but
it also provides a Euclidean navigation framework of the latent
space and can thus lead to further insights during the explo-
ration of chemical space. The resulting Transmol algorithm
comprising the two above described generationmodes has been
incorporated into the cheml.io55 website with the aim to make
these ndings accessible to a wider audience.
2 Dataset

In this paper, we have used the MOSES benchmark56 along with
the molecular datasets it provides. Overall, the MOSES bench-
mark contains three datasets: training set, test set, and scaffold
test set, which consist of 1.6M, 176k, and 176k samples,
respectively.

The rst dataset was used to train the model. During this
stage the model learns to interpolate between each molecule
and constructs a latent space. This latent space acts as a proxy
distribution for molecules, and can be employed to sample new
molecules.

The testing dataset consists of molecules that are not present
in the training data. It is used to evaluate the output of the
generative model.

The scaffold testing set consists of scaffolds that are not
present in the training and testing datasets. This dataset is used
to check if the model is able to generate new scaffolds, i.e.
unique molecular features, or whether the model simply reuses
parts of the previously seen molecules to generate new ones.
2.1 Data augmentation

In order to increase the variability of our data, we have used data
augmentation by means of SMILES enumeration. This simple,
yet effective technique has recently been introduced by Arús-
Pous et al.:57 While a molecule can be mapped to its unique
canonical SMILES string, a whole set of non-unique SMILES
strings can also be produced depending on the starting point
where the algorithm will begin the translation. Such data
augmentation have been reported to improve the generalization
of the latent space and to increase the diversity of the output
molecules.
3 Methods

While the Seq2Seq architecture is successful in a whole range of
applications, the disadvantage of this architecture is that it uses
xed length vectors: it is bound (bottlenecked) by the size of the
vector and sub-optimal for long sequences.

For this work, we have employed a vanilla transformer model
introduced by Vaswani et al.58 (see Fig. 1 for a pictorial repre-
sentation of the architecture). All code for this study has been
written in Python and is publicly available on GitLab.59 The
initial transformer code was adapted from the annotated
version.60 A vanilla transformer consists of two parts: an
encoder and a decoder. The encoder (see le dashed block of
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 A vanilla transformer architecture.
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Fig. 1) maps input to the latent representation z. The decoder
(see dashed block on the right of Fig. 1), accepts z as an input
and produces one symbol at a time. The model is auto-
regressive, i.e. to produce a new symbol it requires previous
output as an additional input.

The notable attribute of this architecture is the use of
attention mechanisms throughout the whole model. While
earlier models have been using attention only as an auxiliary
layer, having some kind of recurrent neural networks (RNN) like
a gated recurrent unit (GRU) or long short-term memory
(LSTM), or a convolutional neural network (CNN), the trans-
former consists primarily of attention layers.

The attention mechanism can be seen as a function of query
Q, key K and value V, where the output is a matrix product of Q,
K, V using the following function:

Scaled dot-product Attention ðQ;K ;VÞ ¼ softmax

�
QKTffiffiffiffiffi

dk
p

�
V

(1)

is used to identify the relevant parts of the input with respect to
the input, namely self-attention. The scaled dot-product atten-
tion consists of 3 main matrices Q, K and V. The transformer
computes these 3 matrices in the embedding layers. All 3
matrices are not xed and are learnable. Aer embedding the
layers will receive the output of the previous layers. The dot
product is computed between Q and all keys to compute
a “relevance” score. A higher “relevance” score means that aer

normalizing
�
multiplying by

1ffiffiffiffiffi
dk

p
�

and applying the somax,

the lowest scores will become zeros. The important feature of
© 2021 The Author(s). Published by the Royal Society of Chemistry
the self-attention used in this model is that it does not use xed
length vectors. While Seq2Seq models with RNN54 attempt to
compress all information into a xed-length context, self-
attention mechanisms employed in this model have access to
the whole context and able to selectively focus only on the most
important parts. Vice versa, it allows to disregard less important
parts of the query and to lter the noise. Most importantly,
attention mechanisms are differentiable and hence can be
learned from data as can be seen from eqn (1) for a description
of the scaled dot-product attention layer. The multi-head
attention layer consists of h instances of scaled dot-product
attention layers that are then concatenated and passed to the
dense layer.

The parameter setup of the original paper has been
employed here, i.e. the number of stacked encoder and decoder
layers is N ¼ 6, all sublayers produce an output of dmodel ¼ 512,
with the dimensionality of the inner feed-forward layer being
dff, number of attention heads h ¼ 6, and dropout d ¼ 0.1. The
learning rate is specied by the optimization function of the
original manuscript with the following modied hyper-
parameters: warmup steps are set to 2000, factor is 1, the batch
size is 1200 and the training was performed for 16 epochs. The
rest of the hyperparameters were adopted unchanged from the
original paper, i.e. we have not optimized the other hyper-
parameters leaving them as in the original paper. One of the
reasons are the large number of hyperparameters and limited
computing resources. Please note that further hyperparameter
optimization may thus improve the performance of the model.
3.1 Sampling from the latent space

To sample a novel molecule from the model, a seed SMILES
string is needed in order to provide a context for the decoder.
Then the decoding process is started by supplying a special
starting symbol. Aer that the decoder provides an output and
a rst symbol is generated. In order to obtain the next symbol
the previous characters are provided to the decoder. The
decoding process stops when the decoder either outputs
a special terminal symbol or exceeds the maximum length.
There are several techniques available that specify how the
output of the decoder is converted to the SMILES character such
as a simple greedy search or a beam search, among others.

3.1.1 Greedy search. Since the decoder provides output
probabilities, a näıve approach would be to use a greedy algo-
rithm by always picking the symbol with the highest probability.
However, this is not optimal as picking the most probable
symbol at each step leads for a relatively small library. In
addition, the greedy search does not guarantee that the nal
resulting string has the highest conditional probability. More-
over, unless stochastic sampling is used (here a probability
vector is used as the basis for the distribution and then
sampled), the result of the greedy search is deterministic and
corresponds to the “reconstruction accuracy” based on our
training procedure.

3.1.2 Beam search. To improve upon the greedy search,
a beam search has been employed as an alternative. The beam
search can be seen as an improved greedy search. While the
RSC Adv., 2021, 11, 25921–25932 | 25923



RSC Advances Paper
greedy search picks only one symbol at a time, the beam search
picks the N most probable ones. Fig. 2 illustrates the beam
search with a beam width N ¼ 3; the stroke width indicates the
probability. To guide the selection process of the beam search
we have used the following reward function:P

char ˛ vocab

Pðsjprevious outputÞ
ð1þ jprevious outputjÞa

where char is a possible symbol for the beam search to pick,
vocab is the set of all possible characters, previous output is an
ordered list of symbols picked by the beam search prior to
picking the current one and a is a parameter of the beam search
that regulates the length of the string. Low a discourages long
strings while high a encourages long strings.

3.2 Injecting variability into model

To explore the molecules that are located near the seed mole-
cule in the latent space, we have used two techniques that allow
us to sample from the seed cluster: addition of Gaussian noise
to z and the use of temperature.

3.2.1 Gaussian noise. To increase the variability of the
model we are adding Gaussian noise with a mean of m and
standard deviation s to the latent vector z before it is fed to the
decoder. In our study, parameters for m and s were 1 and 1.06
respectively.

3.2.2 Temperature. Another technique to improve vari-
ability is to apply temperature to the output vector right before
applying the somax function. Temperature T is a value from
0 to N. As T / N all characters have the same probability of
being the next symbol. For T/ 0 the most probable symbol has
a higher probability of being selected. The resulting smoothed
distribution increases the variability of the sampling. In our
study the parameter for temperature was xed as 0.5.

3.3 MOSES benchmark

MOSES is an established benchmarking system for the evalua-
tion of molecular generation algorithms.56 It contains several
Fig. 2 Overview of the beam search with a beam width of N ¼ 3.
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implemented molecular generation frameworks as well as
a range of metrics to compare molecular outputs. The baseline
models can be roughly divided into two categories: neural and
non-neural. Neural methods use articial neural networks to
learn the distribution of the training set. A whole range of them
are implemented, namely character-level recurrent neural
network (CharRNN),35,61 variation autoencoder (VAE),32,62,63

adversarial autoencoder (AAE),62,64 junction tree VAE (JT-VAE),36

and latent vector based generative adversarial network
(LatentGAN).65 Non-neural baselines include the n-gram
generative model (NGram), the hidden Markov model (HMM),
and a combinatorial generator. Non-neural baselines are
conceptually simpler than neural ones. The NGram model
collects the frequency of the n-grams in the training dataset and
uses the resulting distribution to sample new strings. For
instance, during counting of a 2 gram, the model will inspect
individual SMILES strings and record their statistics. For the
string “C1CCC1C” the following statistics will be gathered C1:2,
CC:2, 1C:2. Later this type of information will be normalized
and used for sampling. HMM uses the Baum–Welch algorithm
for distribution learning. The combinatorial generator uses
BRICS fragments of the training dataset. These fragments are
the substructures of molecules that are cut according to a set of
rules for the breaking of retrosynthetically interesting chemical
substructures (BRICS).66 In order to sample, combinatorial
generator randomly connects several such fragments.

Several metrics are provided by the MOSES benchmark.
Uniqueness shows the proportion of generated molecules that
are within the training dataset. Validity describes the propor-
tion of generated molecules that are chemically sound, as
checked by RDKit.67 Internal diversity measures whether the
model samples from the same region of chemical space, i.e.
producingmolecules that are valid and unique but only differ in
a single atom. Filters measures the proportion of a generated set
that passes a number of medical lters. Since the training set
contains only molecules that pass through these lters, it is an
implicit constraint imposed on the algorithm.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fragment similarity (Frag) measures the similarity of the
BRICS fragments distribution contained in the reference and
generated sets. If the value is 1, then all fragments from the
reference set are present in the generated one. If the value is 0,
then there are no overlapping fragments between the generated
and reference sets. Scaffold similarity (Scaff) is similar to Frag,
but instead of BRICS fragments, Bemis–Murcko scaffolds are
used for comparison. The range of this metric is analogous to
Frag. Similarity to the nearest neighbor (SNN) is a mean Tani-
moto distance between a molecule in the reference set and its
closest neighbor from the generated set. One of the possible
interpretations of this metric is precision; if the value is low, it
means that the algorithm generates molecules that are distant
from themolecules in the reference set. The range of this metric
is [0, 1]. Fréchet ChemNet Distance (FCD) is a metric that
correlates with internal diversity and uniqueness. It is
computed using the penultimate layer of the ChemNet, a deep
neural network that is trained for the prediction of biological
activities. All four aforementioned metrics have also been
compared to the scaffold test dataset.
Fig. 3 Structural representations of the main VDR ligands groups. (A)
the secosteroid 1,25D3 bound to ratVDR (PDBID: 1RK3), (B) steroid acid
e.g. lithocholic acid (LCA) bound to ratVDR (PDBID: 3W5P) and (C)
non-steroidal analogue YR301 bound to ratVDR (PDBID: 2ZFX). All
crystal structure were superimposed to 1RK3, the critical amino acid
contacts are highlighted in all structures.
3.4 A workow for Transmol validation via the recreation of
known vitamin D receptor ligands

In order to demonstrate the viability of our model we have
designed a small retrospective study that is aiming at the
recreation of known ligands of the Vitamin D Receptor (VDR).

VDR is a member of the nuclear receptor superfamily, a zinc-
nger transcriptional factor and a canonical receptor for its
most active secosteroid 1a,25-dihydroxyvitamin D3 (1,25D3)
(Fig. 3A). It has also been established as sensor for steroid acids
such as lithocholic acid (Fig. 3B) predominantly acting as an
activator of the detoxication pathway for them in the human
colon through regulation of cytochrome P450 monooxygenases
e.g. CYP3A4. The classical VDR physiology involves the activa-
tion and regulation of divers processes such as mineral
homeostasis, cellular proliferation and differentiation and the
modulation of native and adaptive immunity.68 Hence, their
dysfunction may be connected to serious maladies making VDR
suitable for effective drug-target development.69 To date more
than 3000 vitamin D (VD) analogues have been synthesized
largely due to the side effects of 1,25D3 such as hypercalcemia
with some of them belonging to a completely new group of
analogues called non-steroidal VD analogues of which an
example is shown in Fig. 3C.70

The dataset for recreating VDR ligands was extracted from
the ZINC database.71 The ZINC database is a reliable curated
database with all compounds available for purchase and
testing. From this database 418 VDR ligands have been selected.
Aer canonicalizing and stripping the stereoisomeric informa-
tion from these molecules, 210 SMILES strings remained. We
further divided these 210 molecules into approximately equal
size training and test sets. The training data was used for model
ne-tuning and subsequently as seed molecules to create
focused libraries of potential VDR ligands. The test set was used
as a reference for the comparison of Transmol-generated
molecules. While the sample size of this dataset is
© 2021 The Author(s). Published by the Royal Society of Chemistry
comparatively small, it is composed of only several subsets of
VDR ligands with each subset containing molecules that are
structurally similar to each other. Therefore, we theorize that
Transmol may be able to extract enough information from the
training data to recreate previously known VDR ligands and
thus mimic the process of creating new ones. To reduce the
impact of randomness we perform this procedure ten times.

A detailed workow for examining the recreation of known
VDR ligands with Transmol can be summarized in the following
way:

(1) Acquire 418 known VDR ligands from the ZINC database.
(2) Bring them into canonical form by discarding the

stereoisomeric information reduced the set to 210 molecules.
(3) Randomly sample 100 structures and use them as

a training set. Remaining 110 constitute the test set.
(4) Use the training set to ne tune Transmol. Fine tuning is

a common technique in deep learning. The idea is that instead
of training a new model from scratch we can use a set of model
RSC Adv., 2021, 11, 25921–25932 | 25925



Fig. 4 The general pipeline of the sampling process for the one-seed approach.
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parameters trained on a large dataset, and then perform addi-
tional training on a smaller dataset.

(5) Use a subset of training molecules as seeds for Transmol
(30 randomly selected ligands from the training set).

(6) Compare Transmol output to test set molecules and
record overlap.

(7) Repeat steps 3 to 6 ten times.
4 Results and discussion

In this section, we describe major results and insights that were
obtained during the implementation of our model and while
disseminating its output. It starts with analyzing the outcome of
a standard one-seed approach with the MOSES benchmark and
medicinal chemistry lters followed by the application of single
seed settings for the regeneration of known VDR ligands. It also
outlines a novel two-seed approach that targets the generation
of diversied molecular libraries. In this regard the two-seed
approach is complementary to the standard one-seed
approach which works best for the acquisition of focused
libraries of close seed's analogues.
4.1 Creating a focused library with one seed molecule

The standard Transmol settings involve the generation of
a focused library using a single seed molecule. Fig. 4 provides
Table 1 Performance metrics for baseline models: fraction of valid mole
internal diversity, fraction of molecules passing filters (MCF, PAINS, ring siz
independent model initializations. Arrows next to the metrics indicate pr
level recurrent neural network, AAE – adversarial autoencoder, VAE – vari
LatentGAN – latent vector based generative adversarial network, Transm

Model Valid ([) Unique@1k ([) Unique@10k ([)

Train 1 1 1
HMM 0.076 � 0.0322 0.623 � 0.1224 0.5671 � 0.1424
NGram 0.2376 � 0.0025 0.974 � 0.0108 0.9217 � 0.0019
Combinatorial 1.0 � 0.0 0.9983 � 0.0015 0.9909 � 0.0009
CharRNN 0.9748 � 0.0264 1.0 � 0.0 0.9994 � 0.0003
AAE 0.9368 � 0.0341 1.0 � 0.0 0.9973 � 0.002
VAE 0.9767 � 0.0012 1.0 � 0.0 0.9984 � 0.0005
JTN-VAE 1.0 � 0.0 1.0 � 0.0 0.9996 � 0.0003
LatentGAN 0.8966 � 0.0029 1.0 � 0.0 0.9968 � 0.0002
Transmol 0.0694 � 0.0004 0.9360 � 0.0036 0.9043 � 0.0036

25926 | RSC Adv., 2021, 11, 25921–25932
the graphical overview of this process indicating that upon
optimizing the sampling hyperparameters (see ESI† for details)
the single-seed approach yields the molecular library of close
structural analogues of the seed. Overall, we have fed Transmol
with 8000 seed molecules gathered from the MOSES test set
resulting in the generation of 8000 focused libraries. The
combined outcome has then been bench-marked with MOSES56

and analyzed using various medicinal chemistry lters in order
to compare Transmol with other generative algorithms.

4.1.1 Bench-marking Transmol with MOSES. According to
Table 1, Transmol has demonstrates the greatest internal
diversity (IntDiv1 and IntDiv1) across all other baseline methods
within MOSES. It can be also observed that among the neural
algorithms Transmol demonstrates the greatest proportion of
novel molecules, that are not present in the training dataset.
Another important observation is that Transmol's internal
diversity score exceeds that of the training dataset. This obser-
vation might indicate the ability of Transmol to generalize well
on the previously unseen data.

As can be seen from Table 1, Transmol has a low validity
score. One of the possible reasons is the architecture of the
network. In architectures like autoencoders, or GANs the model
is evaluated on how well it replicates the input during the
training. However, in this case the model was learning the
molecular space, by maximizing the likelihood of the next
cules, fraction of unique molecules from 1000 and 10 000 molecules,
es, charge, atom types), and novelty. Reported (mean� std) over three
eferable metric values (higher is better for all). CharRNN – character-
ational autoencoder, JTN-VAE – junction tree variational autoencoder,
ol – transformer for molecules

IntDiv ([) IntDiv2 ([) Filters ([) Novelty ([)

0.8567 0.8508 1 1
0.8466 � 0.0403 0.8104 � 0.0507 0.9024 � 0.0489 0.9994 � 0.001
0.8738 � 0.0002 0.8644 � 0.0002 0.9582 � 0.001 0.9694 � 0.001
0.8732 � 0.0002 0.8666 � 0.0002 0.9557 � 0.0018 0.9878 � 0.0008
0.8562 � 0.0005 0.8503 � 0.0005 0.9943 � 0.0034 0.8419 � 0.0509
0.8557 � 0.0031 0.8499 � 0.003 0.996 � 0.0006 0.7931 � 0.0285
0.8558 � 0.0004 0.8498 � 0.0004 0.997 � 0.0002 0.6949 � 0.0069
0.8551 � 0.0034 0.8493 � 0.0035 0.976 � 0.0016 0.9143 � 0.0058
0.8565 � 0.0007 0.8505 � 0.0006 0.9735 � 0.0006 0.9498 � 0.0006
0.8819 � 0.0003 0.8708 � 0.0002 0.8437 � 0.0015 0.9815 � 0.0004

© 2021 The Author(s). Published by the Royal Society of Chemistry
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symbol. The aim of this work was to explore the molecular space
through SMILES representations, and our model is successful
in this task. It is natural that some areas of this space are
uninhabited, i.e. contain only invalid SMILES. One of the
possible solutions to amend the low validity would be the
integration of autoencoders, or GAN parts into the model, since
for these methods the accurate replication of the input is
explicit. Another potential solution would be to optimize the
model towards high validity.

Table 2 shows more sophisticated metrics that require the
comparison of two molecular sets, reference and generated:
Fréchet ChemNet Distance (FCD), similarity to the nearest
neighbor (SNN), fragment similarity (Frag), and scaffold simi-
larity (Scaff). In this table, we observe that Transmol has
a relatively high FCD score compared to neural methods and
a comparable or lower score in relation to non-neural algo-
rithms. This is a surprising result that we have not anticipated
considering the high scores of Transmol for internal diversity
and relatively high scores for uniqueness. One of the probable
reasons is that in our work we have used 8000 molecules as
seeds out of z170000 molecules in the MOSES test set. As
a result, we created 8000 focused libraries. The individual
outputs exhibit high internal diversity, since each focused set
results in unique molecules. In addition, these focused sets are
diverse with respect to each other. The high FCD score indicates
dissimilarity between our generated set and the MOSES test set.
The reason for this is given by the fact that we are generating
very focused libraries and therefore cannot (and do not need to)
capture the whole variability of the MOSES test set. If the
number of seed molecules would be increased substantially, the
FCD value would decrease.

Another observation is that Transmol demonstrates superi-
ority for SNN/Test and Scaf/Test compared to non-neural
baselines and is comparable to other neural algorithms. Test
stands for random test set and TestSF for scaffold split test set.
For SNN/Test Transmol is a top-2 algorithm. Another thing to
note is the TestSF column. The original authors of the bench-
mark recommend a comparison of the TestSF columns when
the goal is to generate molecules with scaffolds that are not
present in the training set. However, the comparison should be
used with caution since the test scaffold set is not all-
encompassing. It does not contain any scaffolds that are
absent in the training dataset. Taking into consideration that
metrics in Table 2 compute overlaps in the two sets, the TestSF
part of the metrics should not be over-interpreted.

Fig. 5 demonstrates distribution plots of the baselines and
Transmol output compared to the test set. The distribution
plots are similar to the histograms, but instead of showing
discrete bins, the distribution plot smoothes the observations
using a Gaussian kernel. The distribution plots compare four
molecular properties: molecular weight (MW), octanol–water
partition coefficient (logP), quantitative estimation of drug-
likeness (QED), and synthetic accessibility score (SA). To
quantify the distance between the test set and the generated set
the Wasserstein-1 distance was used (value in brackets). The
results show that Transmol has a matching SA score, or better
than the original distribution while having a higher variance in
© 2021 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2021, 11, 25921–25932 | 25927



Fig. 5 Plots of Wasserstein-1 distance between distributions of
molecules in the generated and test sets.

Fig. 6 Proportions of molecules that satisfy five different medicinal
chemistry filters.
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other metrics. It shows that Transmol is not as close to the
testing set distribution as other neural algorithms, implying
a higher diversity, but it is not as far from it as some simpler,
combinatorial baselines.

4.1.2 Analyzing Transmol with medicinal chemistry lters.
To provide more comparisons we also have ltered molecules
by using some heuristics that are commonly employed in drug
25928 | RSC Adv., 2021, 11, 25921–25932
development. These types of lters have been empirically
devised using a database of drug suitable compounds. For this
comparison, we have used the Lipinski rule of 5,72 Ghose,73

Veber,74 rule of 3,75 and REOS76 lters (see ESI† for specic
constrains of each lter). All properties for constraint testing
were computed using the RDKit library.67 Fig. 6 demonstrates
proportions of molecules that satisfy each rule.

As can be seen in Fig. 6 Transmol has the highest proportion
of molecules that satisfy the rule of 3 among the neural base-
lines. In addition, among non-neural algorithms, Transmol has
the highest proportion of molecules that satisfy the Ghose lter
and REOS.
4.2 Transmol validation via the recreation of known vitamin
D receptor ligands

In order to show the applicability of our model to a real protein
target, VDR has been chosen due to its importance in various
physiological processes and the fact that there are many known
VDR ligands that can be readily retrieved from established
databases. For this purpose a small subset of known VDR
ligands have been chosen from the ZINC database to ne tune
our model and then use Transmol to recover as many known
ligands as possible.

Across the 10 sampling cycles our algorithm was able to
recover 27 known VDR ligands from the employed ZINC dataset.
Given that the ZINC database allowed us to extract the struc-
tures of 210 VDR ligands with stripped stereoisomeric infor-
mation, we have recovered 12.9% of all structures within this
dataset.

The recovery process was performed 10 times where VDR
ligands were re-sampled into the training and test set randomly.
The minimum and maximum number of recovered molecules
per cycle were 1 and 9, respectively. On average the algorithm
generated 4.1 molecules per sampling cycle.

Of the 27 recovered molecules 56% were secosteroid back-
bone (Fig. 3A) and the rest non-steroidal VD analogues (Fig. 3C).
The algorithm did not recover any steroid backbone based
analogs (Fig. 3B). It is remarkable that the algorithm was able to
recover the natural ligand 1,25D3 (Fig. 3A), as well as the rst
© 2021 The Author(s). Published by the Royal Society of Chemistry
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non-steroidal 3,3-diphenylpentane analog YR301 (Fig. 3C). It
should be noted that the group of non-steroidal ligand contains
two subgroups, the rst are cannonical ligands that bind to the
ligand-binding pocket of VDR as secosteroid and steroid acids.
The second group contains possible coactivator mimetics that
irreversible compete with coactivator interaction on the surface
of VDR. Thus, the above described approach constitutes a newly
established benchmark for validation of generative algorithms,
which examines how well the model can recreate the known
ligands to a particular biological target.
Fig. 8 Expanding scaffold diversity with the two-seeds approach.
4.3 Exploring chemical space using two-seeds approach

In this section, we discuss the generation of diverse libraries
using two seed molecules. Fig. 7 gives a pictorial overview of the
sampling procedure. Using the Transmol encoder network we
encode two molecules, thus obtaining their latent representa-
tion. Then, we average them to get a latent vector z12 that is
located between the two latent vectors z1 and z2. Then, we
sample the decoder using vector z12. To increase the chance of
sampling from the populated latent space we enumerate the
SMILES representations of the seed molecules and construct
pairs. This twist increases the chances of obtaining valid
SMILES strings when sampling the middle point.

While the basic case of getting vector z12 through averaging
the individual vectors, a more general approach would be
computation of weighted sum. In the default case the weights of
the vectors z1 and z2 are chosen to be 0.5. However, other valid
weight combinations can also be used to navigate the latent
space. We have noticed that when the weights of both vectors
are close to 0.5 the algorithm tends to return only very simple
molecules with low molecular weight. The above is especially
true when both seed molecules have a molecular weight of more
than 250 and contain more than 15 atoms (except hydrogen)
meaning that their SMILES strings are relatively long. There-
fore, we have varied the a parameter of the reward function of
Fig. 7 The general pipeline of the sampling process for the two-seeds a

© 2021 The Author(s). Published by the Royal Society of Chemistry
the beam search to adjust the length of the decoded SMILES
strings and as a result the complexity of the resulting molecule.
On the other hand when the a parameter is set too big the
algorithm may return only a limited number of molecules.
Thus, to create enough molecules of larger size and increased
complexity, different combinations of weight distribution and
the sampling reward parameter a can be tested. Overall, the
possibility to vary the seeds' weight distributions along with the
sampling reward parameter a provides a viable mean of
traversal across molecular space (see SI for specic compari-
sons). Of course, not all the generated structures are stable and/
or synthesizable. Nonetheless, they may still be used as inspi-
rational ligands for molecular docking.

Fig. 8 illustrates how molecular sampling from the latent
distribution using two seed molecules can help with expanding
the scaffold diversity. The resulting molecular library demon-
strates a diversity of structural features that would be unat-
tainable through simple fragment substitution or through the
application of the alternative one-seed approach.
pproach.

RSC Adv., 2021, 11, 25921–25932 | 25929
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Both one-seed and two-seeds modes of Transmol are incor-
porated into the cheml.io55 website as one of the methods that
allows the generation of molecules on demand. For the two-
seed approach, the user can specify both seeds, a weighting
distribution between them and the sampling reward parameter
a that inuences the length of the decoded SMILES string.
5 Conclusion

In summary, we have successfully adopted a recent deep
learning framework to the task of molecular generation using
attention mechanisms. Upon implementation, we have bench-
marked the resulting Transmol method utilizing MOSES,
a benchmark introduced for the comparison of generative
algorithms. Our approach outperformed state-of-the-art gener-
ative machine learning frameworks for the internal diversity
(IntDiv1 and InDiv2) core MOSESmetric. Besides, we were able to
incorporate two distinct modes of molecular generation within
a single generative model. The rst one-seed input-guided
approach appears to be instrumental for the cases that
require targeted generation of focused libraries composed of
close analogues of the seed structure. The second two-seed
diversity-driven approach succeeds to generate molecules that
resemble both seeds and is thus attractive for the tasks that
require chemical space exploration. In addition, we have vali-
dated the Transmol algorithm through the recreation of known
VDR ligands. This type of bench-marking represents a viable
option for expanding current validation tools for in silico
molecular generation and propose it to be performed for all new
generative algorithms. Furthermore, an analogous workow
can be utilized in drug discovery & development to obtain
potential novel biologically active hit compounds and we are
currently working in this direction. Finally, we have incorpo-
rated the Transmol algorithm into our recently launched
cheML.io web database of ML-generated molecules as a second
generation on-demand method.
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