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The psychrophilic bacterium Pseudomonas syringae strain Lz4W was isolated from soil samples from Antarctica to decipher the
mechanisms of low-temperature adaptation. We report here the 4.982-Mb draft genome sequence of P. syringae Lz4W. This se-
quence will provide insights into the genomic basis of the psychrophilicity of this bacterium.
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Antarctic psychrophilic bacteria grow at and around 0°C (1, 2).
The molecular mechanisms by which these bacteria over-

come barriers for growth at low temperatures are not well under-
stood. To investigate these mechanisms, we have been using Pseu-
domonas syringae strain Lz4W as a model system (3, 4, 5). This
Gram-negative nonfluorescent pseudomonad was isolated from
soil samples from the Schirmacher Oasis and Antarctica (6). Our
studies have yielded novel insights into various mechanisms of
psychrophilic adaptation that include modifications in lipopoly-
saccharides (7, 8), the RecBCD complex (9, 10, 11), RNA poly-
merase (12, 13), and a novel RNA degradosome with exoribonu-
clease RNase R (14, 15, 16). We and others have generated a
transposon-mutagenized library of cold-sensitive mutants which
do not grow at 4°C but grow at 22°C, and their suppressors, for
characterization of essential genes for growth at low temperatures
(9, 17; M. K. Ray, unpublished results). In further explorations we
have determined the genome sequence of the bacterium.

We sequenced the genomes of the wild type (WT) and a sup-
pressor of the recBCD mutant (LCBD) of P. syringae Lz4W (11).
Genomic DNAs were sequenced using the Illumina GAIIx se-
quencing system. Two genomic data sets produced about 63.9 and
79.6 million paired-end reads of 76 nucleotides (nt) in an ~350-bp
insert library of the WT and the mutant, respectively. All the reads
were assembled using Velvet v1.2.03 (18), employing a hash
length (k-mer) of 57 nt. The assembly produced �80-fold genome
coverage. For the WT, the assembly generated 441 contigs with an
N50 length of 82,141 bp (maximum contig length, 272,987 bp). On
the other hand, the genome assembly for the mutant contained
291 contigs with an N50 of 149,002 bp (maximum length,
455,988 bp). The tetracycline-cassette-disrupted recCBD operon
and the Tn5 transposon were identified within the sequences of
the LCBD suppressor mutant. Contigs of the two genomes were
aligned using CodonCode Aligner v4.0.3 (CodonCode, Deadham,
MA) to fill gaps and expand the assembly. This led to the genera-
tion of 72 scaffolds representing the whole genome. Subsequently,
nonspecific nucleotides (N) in the scaffolds were replaced by cor-
rect nucleotides, which were determined by PCR amplification
and sequencing. Additionally, two kinds of rRNA operons were

characterized by the presence and absence of two tRNA genes
(tRNAIle and tRNAAla) in the intergenic spacer between the 16S
and 23S rRNA genes by PCR amplification and sequencing. Alto-
gether, the final assembly of the wild-type genome produced
4,982,906 bp in 42 contigs, with an N50 contig length of 236,678 bp
(maximum, 804,687 bp) and a 58.67% G�C content.

The genome sequence was annotated using RAST (19) and the
NCBI Prokaryotic Genomes Automatic Annotation Pipeline
(PGAAP) (20). The annotation predicted 4,450 protein-encoding
genes, 62 tRNA-encoding genes, and 6 genes for three rRNAs
(16S, 23S, and 5S) on two separate contigs. The sequence analysis
suggests that P. syringae Lz4W is more closely related to P. fluore-
scens than to plant-pathogenic P. syringae species and therefore
should be classified as a distinct new species under the genus Pseu-
domonas, which will be reported separately.

Nucleotide sequence accession numbers. This Whole-Genome
Shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number AOGS00000000. The version described
in this paper is the first version, number AOGS01000000.
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