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Neuron tracing, as the essential step for neural circuit building and brain information
flow analyzing, plays an important role in the understanding of brain organization and
function. Though lots of methods have been proposed, automatic and accurate neuron
tracing from optical images remains challenging. Current methods often had trouble in
tracing the complex tree-like distorted structures and broken parts of neurite from a
noisy background. To address these issues, we propose a method for accurate neuron
tracing using content-aware adaptive voxel scooping on a convolutional neural network
(CNN) predicted probability map. First, a 3D residual CNN was applied as preprocessing
to predict the object probability and suppress high noise. Then, instead of tracing on
the binary image produced by maximum classification, an adaptive voxel scooping
method was presented for successive neurite tracing on the probability map, based on
the internal content properties (distance, connectivity, and probability continuity along
direction) of the neurite. Last, the neuron tree graph was built using the length first
criterion. The proposed method was evaluated on the public BigNeuron datasets and
fluorescence micro-optical sectioning tomography (fMOST) datasets and outperformed
current state-of-art methods on images with neurites that had broken parts and complex
structures. The high accuracy tracing proved the potential of the proposed method for
neuron tracing on large-scale.

Keywords: neuronal image, tubular object tracing, content-aware adaptive voxel tracing, 3D CNN, high precision

INTRODUCTION

Digital reconstruction or tracing of neurons, which converts a neuronal image into a digital
representation by obtaining the 3D spatial position of neuron skeletons and building their
topological connections, is one of the major subjects in computational neuroscience (Parekh and
Ascoli, 2013). Neuron tracing is regarded as the basis of the neuronal morphological study, neuron
phenotype identification, and neural circuit building, which is important in understanding the brain
organization and function in diseases like Alzheimer and Schizophrenia (Economo et al., 2016; Lin
et al., 2018). However, current neuron tracing is mainly performed by hand, it could take hours of
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hard work to trace a simple dendritic tree and months of labor for
large-scale neurons (Economo et al., 2016). The lack of automatic
and accurate tracing method has become a critical technical
bottleneck in neuroscience research.

Neuron tracing from optical microscopy images was
challenging. First, the high artifacts and noises in the
neuronal image fuzzy the neurites (see Figure 1), and easily
lead to inaccurate tracing. Second, the neuron structure
is complex and distorted with various direction changes,
even an experienced annotator had to spend hours to trace
these tree-like or mushroom-like structures from the image
(Figures 1B1–E1). Third, the intensity distribution of neurites
is often inhomogeneous and plenty of broken neurite parts exist
due to the sudden intensity changes along the neurites, which
leads to an interruption of neuron tracing (as pointed out by
arrows in Figure 1). These are also common problems of tubular
objects tracing of medical images, including retinal, liver vessel,
and brain vessel tracking.

Currently, numerous semi-automatic or automatic
algorithms have been proposed for neuron tracing. APP2 used
the image intensity and space information for gray-weighted
image distance-tree calculation and applied hierarchical pruning
for refinement (Xiao and Peng, 2013). Open-Snake traced the
neurites by adapting open-curve snake based on the combination
of a gradient vector flow, neurite orientations, and a set of control
rules (Wang et al., 2011). neuTube applied a model-based
algorithm for neuron tracing using the local geometrical and
global structures of neurite (Zhao et al., 2011; Feng et al., 2015).
Tubularity-Flow-Field realized neuron tracing via centerline
extraction on segmentation achieved by applying directional
regional growing based on the direction of neurite tubularity
(Mukherjee et al., 2015). RPCT, NeuroGPS, and SparseTracer
used principal curves tracing, and some used direction constrains
for reconstruction (Bas and Erdogmus, 2011; Quan et al., 2016;
Li et al., 2017b). FMST adopted fast marching and minimum
spanning tree for faster tracing without loss of small branches
(Yang et al., 2019). Some smart machine-learning-based methods
have also been applied for neuron tracing. SmartTracing (Chen
et al., 2015) and ST-LVF (Li et al., 2019b) first extracted different
local features based on the tracing results of existed algorithms
(APP2 and SparseTracer respectively), then applied support
vector machine (SVM) to promote complete neuron tracing
from noisy image. These algorithms combined the advantages
of various image processing methods by considering different
neurite characters for neuron tracing. They were usually sensitive
to parameters setting and hard to trace these complex-structure
and broken neurons. Besides, the self-learning smart algorithms
relied on previous tracing and were computationally complicated
and time-consuming (Chen et al., 2015; Li et al., 2019b).

Deep convolutional neural network (CNN) automatically
extracted more discriminative image features and outperformed
traditional algorithms in image segmentation (Çiçek et al., 2016;
Li et al., 2017a; Chen et al., 2018). The technique was also
employed in neuron tracing. DeepNeuron applied 2D CNN for
neurite detection and connection, and showed low performance
on neurite tracing from 3D noisy image (Zhou et al., 2018). Li
et al. (2017a) applied 3D CNN to suppress the high noise to

improve the tracing performance of the previous tracing method
of APP2. Recently, weakly-supervised learning was developed
to allow automatic training labels’ generation to promote deep
learning usage in neuron tracing (Huang et al., 2020). From these
previous works, we found they still had difficulties in tracing
these neurites with distorted and branches structures or broken
parts. These methods generally use the strong prediction of CNN,
such as the prediction by maximum classification, and some
limited setting rules for neuron tracing and graph tree building.
Thus, their performance decreased when tracing these above
hard neurites.

In the article, we proposed an automatic and accurate
method for neuron tracing to address the difficulties of neurons
with complex structures and uneven intensity distribution. We
estimated the neurite probability map from a noisy image
by 3D residual CNN. Unlike previous methods, we took full
utilization of the probability characters and proposed a content-
aware adaptive voxel scooping method for continuous tracing of
broken neurites, which is based on the distance, connectivity, and
directional probability continuity. We evaluated the proposed
method on the public BigNeuron datasets (Peng et al., 2015)
from different organizations and fluorescence micro-optical
sectioning tomography (fMOST) datasets (Gong et al., 2013).
Our method achieved comparable results of manual tracing and
was superior to some current algorithms on neuronal images
with complicatedstructure and broken neurites.

MATERIALS AND METHODS

The flowchart of the proposed neuron tracing method is
shown in Figure 2. It includes two steps: (1) Preprocessing:
predicting neurite probability map by 3D deep residual CNN.
(2) Continuous neurite tracing of broken parts on the probability
map by voxel-scooping (VS) based content-aware adaptive
tracing (CAAT).

Preprocessing: Probability Prediction by
3D Residual CNN
In preprocessing, the neurite probability is estimated by 3D
CNN, considering its ability in automatic feature extraction, to
detect the fuzzy neurite from a noisy image. Instead of using
the very complicated network module (more than 200 layers)
in Li et al. (2017a), the 3D deep voxelwise residual network
(VoxResNet, 25 layers; Chen et al., 2018) is employed as our
segmentation model for its simple and elegant structure, deep
supervised mechanism, and outstanding predictive ability. The
detailed network architecture is referred to in Chen et al. (2018).

In the training, randomly cropped image samples with
overlapped regions and size 120× 120× 120 or 64× 64× 64 are
used for training considering the computational power and
accuracy. To avoid serious imbalanced classes between the
foreground (neurite) and background, samples with few
foreground voxels are abandoned. To increase the diversity of
samples and improve network robustness, we apply random
rotation, flip, contrast, brightness adjustment, and Gaussian blur
for data augmentation.
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FIGURE 1 | Examples of 3D optical neuronal images with complex tree-like distorted structures and broken parts of the neurite. (A1,B1) Images from fluorescence
micro-optical sectioning tomography (fMOST) datasets. (C1–E1) Images from BigNeuron datasets. (A2–E2) Corresponding manual tracing results of (A1–E1). Yellow
circles point out some twisted structures with various directions. Red arrows point to some broken neurite parts with the sudden change of intensity.

FIGURE 2 | Flowchart of the proposed neuron tracing method.

To further prevent the prediction bias of imbalanced classes
and improve accuracy, we combined the dice loss and weighted
cross-entropy loss as the hybrid loss (Huang et al., 2020), which
is defined as follows:

losshybird = (1− 2
∑m

i = 1 pigi + ε∑m
i = 1 pi +

∑m
i = 1 gi + 1

)

+ σ
(∑m

i = 1
−

∑m
i = 1 gi

m
· gi log(pi)

)
(1)

Where Pi is the predicted probability of pixel i. gi is the label value
with 1 for foreground and 0 for background. σ is the weighted
parameter and set to 0.5 in the experiment.

Neuron Tracing
With proper training, CNN could achieve expert-level
performance on neurite prediction and even had low predictions
for the fuzzy and broken neurites in a noisy background. Here,
we take full usage of the CNN predicted probability using object’s
internal properties and probability continuity, and propose an
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automatic neuron tracing method. The method includes four
steps: (1) Initial segmentation of probability map; (2) Seed
point selection; (3) Neurite tracing using VS based CAAT; and
(4) Neuron tree graph establishing and branch pruning for
simplicity.

The initial neurite segmentation should remain good neurite
shape meanwhile contain more neurite parts. An initial threshold
estimation method based on the intensity distribution and
heuristic rules of the probability is applied for better performance
than maximum classification.

First, we estimate the adaptive threshold of the neurite
probability predicted by CNN, instead of using the typical
threshold 0.5 to classify the foreground from the background of
the prediction. A Gaussian function is used to fit the background
probability histogram of the prediction, the histogram with
probability <0.5, to estimate the mean µbg and standard
deviation σ bg of the background probability. Then, the adaptive
threshold is set to µbg+λσ bg. Where λ is set to 3 to exclude more
background noise meanwhile keep most foreground signals.

The first points of every connected binary region are selected
as seed points for the subsequent automatic tracing. In tracing,
the skeleton points (or tracing nodes) of the neurites and their
connection relationships are built. We trace the neurites from
the predicted probability using VS based CAAT. The VS tracing
approach starts from the seed points inside the object, and
iteratively generates new voxel clusters around the previous
cluster along the object based on the region connectively and
spatial position. The searched clusters are then used to produce
the skeleton node of the object and build the spatial connection
of the nodes. For precise and fast tracing, we apply VS for
normal tracing of the connected neurite regions on initial
segmentation Iseg, and CAAT for continuous tracing of broken
neurite fragments based on the probability image Pimg.

Here, we define the current point set as Cps, and the next
point set as Nps. The center point of Cps and Nps are defined
as the current tracing node TNk and the next tracing node
TNk+1, respectively. For normal tracing, Nps are searched by
VS using Cps as seed point set based on 26-connected domain
and scooping distance. The maximum distance of TNk and
unvisited object voxels in the 26-connected neighborhood of Cps
is calculated as the scooping distance. Any of the unvisited object
voxel that falls into the ball of the scooping distance of TNk is
searched and added into Nps for accurate estimation in case of
directional changes. For discontinuous tracing, if Nps couldn’t
be searched by VS, the new point sets Sps is then searched by
CAAT and used as Nps [detailed process of CAAT is in Section
‘‘Content-Aware Adaptive Tracing (CAAT)’’]. The searched Nps
is used to update Cps iteratively, and the tracing continues until
no new points are searched.

After tracing, the tree graph of the neurites is built based on
the neighborhood connection relationship and spatial position
of the traced skeleton nodes. Three kinds of nodes are defined to
build the tree graph: leaf node, path node, and branch node. Leaf
node exists at the end of a neurite that with only one immediate
neighboring node. Path node exists between the leaf node and
branch node along the neurite path with only two immediate
neighbors. Branch node is the intersect point of crossed branches

with more than two immediate neighbors (Li et al., 2019a). In the
graph tree building, we apply the length first criterion. The nearly
longest neurite path in each individual tree is first chosen out as
the stem, which starts from the seed point and ends at the last
node with nearby nodes linked by line based on their connection
relationship. Other neurite paths that form the branch nodes of
the truck to the leaf nodes are defined as the tree branch. To
remove some spurious end nodes that are caused by neuronal
irregularities such as the expansion of neurite part or bouton,
we prune short branches. If the skeleton point number from a
leaf node to a branch node of a neurite path is less than lnum, the
branch is pruned. lnum can be set between 5 and 10, and is set to
6 in the experiment. Finally, the established neuron tree graph
is saved in SWC file format that records the nodes’ sequence,
position, and connection, and can be accessed by the commercial
software Amira and Neurolucida.

Content-Aware Adaptive Tracing (CAAT)
For expert observers, the distance, region connection attributes,
and probability properties between neurite fragments are
combined to determine their connection relationship. In the
article, we simulate the judging process of the experts and
propose the CAAT method by using three content perception
terms (distance, connectivity, and direction probability
continuity term) for connection. Detailed processing steps
are described in Algorithm 1.

Distance Term
The distance between nearby broken parts of an object should
be in a certain range. A closer distance between current points
Cps and searched points Sps, a higher connection probability. The
term is given by:

dscore =

{
1 ; d ≤ dt

exp(− d−dt
3 ) ; d > dt

(2)

Here, we find the closest point pairs (cp, sp) of Cps and Sps by
traversal search. d =

∣∣∣∣cp − sp
∣∣∣∣
∞

is the Chebyshev distance
between the point pairs. dt is the distance parameter and also
the only parameter of CAAT. It is set to 4–5 pixels based on
experience to prevent over-connection of nearby neurites or
under-connection of discontinuous neurites.

Connectivity Term
To prevent repeated tracing caused by the trace of unvisited
points that belong to the same connected domain of Cps (like
neurite irregularities), Cps and Sps must belong to different
connected domains (region 1 and 2 in Figure 2 S2), and Cps ⊆

Ri, Sps ⊆ Rj. The term is defined:

cscore =

{
0; Ri = Rj
1; Ri 6= Rj

(3)

Where Ri and Rj are the 2- connected domains that contain Cps
and Sps, respectively.

Direction Probability Continuity Term
Various image content and appearance features are combined
into the CNN estimated neurite probability. For broken ones,
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the probabilities along the direction of −→cpsp are higher, the
connection probability is larger. The term is calculated:

dpcscore = exp(−(dps −
∑

CP(Mps)/dps)) (4)

Where CP is a continuity probability function that modifies the
neurite probability. Mps are connected points along the line of
−→cpsp. dps is the voxel number of Mps.

CP(i) =
{

1, Pimg(i) > tl
Pimg(i), Pimg(i) ≤ tl

(5)

Here, tl is a low threshold used to discover more possible neurite
voxels between cp and sp, and excludes at least 50% background
noise. It is estimated based on the background probability
histogram.

min
(∑

k

∣∣∣∣Pimg(k) ≤ tl
∣∣∣∣

0 ≥ 0.5
∑
k

∣∣∣∣Pimg(k) ≤ 0.5
∣∣∣∣

0

)
(6)

And refined as tl =min(0.1, tl). Finally, the adaptive linking score
is built based on the three above content terms.

linkscore = dscore · cscore · dpcscore (7)

When linkscore > 0.5, Sps is used as Nps for continuous tracing of
broken neurites.

Evaluation Metrics
The typical metrics of precision and recall are used for objective
evaluation of the proposed and current novel neuron tracing
methods (Quan et al., 2016; Li et al., 2017b). We first equally
resampled the skeleton points to keep the same distance of
adjacent points (1 pixel). Here, the manual tracing results are
used as the gold standard. If the closest distance of a traced
skeleton point by the algorithm to the gold standard is less than
6 pixels, the point is defined as a true positive (TP) point (Li
et al., 2017b). The parameter was set to 6 in our application,

as we resampled the skeleton points to the same size and the
experiment was mainly performed on neuronal images that
contained axon neurites or dendrite and axon with similar radius
(generally 4–8 pixels). The precision and recall rates kept stable
when the parameter ranged from 6 to 10 pixels (1 µm/pixel;
Quan et al., 2016), and 6 was reasonable in our experiment.
Precision and recall are used to reflect tracing accuracy and
integrity and calculated as the number of TP points to the
number of skeleton points obtained from algorithms and manual
tracing, respectively. FN means false negative skeleton points.

precision = TP/(TP + FP)
recall = TP/(TP + FN) (8)

The morphological parameters including the neuron path
lengths and branch points are also calculated in the study for
evaluation of neuron morphology.

Experimental Setup
The public BigNeuron datasets (Peng et al., 2015) and private
fMOST datasets (Gong et al., 2013) were used for evaluation.
This study focuses on precise tracing on discontinuous neurites
(mainly axons, as the dendrites were generally easy to identify
with brighter and thicker neurites than axons). Therefore, we
selected 38 neuronal images from BigNeuron dataset that had
the same bit depth (0–255), available standard reconstruction,
and contained noises, rich axons with thin, dim, and broken
neurites as our training (30 subjects) and testing datasets
(eight subjects). These neuron images were from different
organizations or projects including the Utokyo, Janeliar Fly
Light, Allen Institute, and Taiwan FlyCircuits. They contained
various species including cells of fly, mice, and humans. They
were generated using different imaging methods including
confocal and 2-photon. Their image resolutions were between
0.1–0.593 µm × 0.1–0.593 µm × 0.3–2 µm, and image
sizes were between 511–2,048 × 511–2,048 × 11–537. The
fMOST image was generated using micro-optical sectioning
tomography imaging (Li et al., 2010) on a C57BL/6J mouse
brain labeled by AAV virus in the cortex. The image resolution
was 0.2 µm × 0.2 µm × 1 µm. We selected 48 image blocks
that contained abundant and discontinuous axon neurites from
the fMOST dataset as training set. Their image sizes were
300 × 300 × 300. We tested the algorithm on 16 image blocks
with sizes between 164–1,000× 214–1,000× 300. These training
and testing image blocks were captured from different brain
areas. We also evaluated the proposed method on a large-scale
neuronal image with image size of 3,630 × 3,630 × 1,080. In the
experiment, the 3D CNN was implemented on Pytorch, and the
tracing method was implemented on Matlab. The CPU was Intel
i7-6850K (64 GB RAM) and GPU was NVIDIA 1080Ti.

RESULTS

In the proposed method, neurite probability is estimated
by 3D residual CNN as preprocessing. Figure 3 shows the
prediction performance on neuronal images that have high
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noises, complicated twisted structures and broken neurite
fragments. As we can see, the trained CNN effectively reduced
the high artifacts and noises of the optical images. These neurons
with unevenly distributed intensities along the neurites and
various twisted structures and branches were generally predicted
by the CNN accurately (Figures 3F–J). Only for these hard parts
that had broken fragments or inhomogeneous areas that with
sudden intensity and direction changes, the predictions seemed
to be discontinuous and there still had some low predictions for
these parts, which was quite similar to the estimated probability
of humans for uncertain objects. The comparison in Figures 5–8
further illustrated the network effectiveness on these images. The
results proved that the presented network was precise and robust
in neurite prediction from noisy images.

To illustrate the effect of the proposed CAAT in neuron
tracing of broken parts and complex structures, we compared
the performance of CAAT and VS using the typical threshold-
based probability classification method (see Figure 4). The
probabilities for broken neurite parts were discontinuous.
A higher classification threshold would lead to a severe
fracture phenomenon. A lower classification threshold
would make the tracing result be interfered with by the
background noise and deviated from normal tracing at
complex neurite structures, such as bifurcation, distortion,
and turning. A proper threshold for probability classification
was hard to be found due to the abundant appearances of
an image with uneven intensities. Using adaptive tracing
strategy, the performance of CAAT was nearly the same
as the manual tracings and outperformed VS tracing
using threshold-based classification method on predicted
probability map.

We further performed an ablation study to illustrate the
effectiveness of CNN prediction and CAAT of the proposed
method. For validation of CNN prediction effectiveness, current
typical and novel enhancement methods [Jerman (Jerman et al.,
2015) and CAEFI (Jeelani et al., 2019)] were applied to replace
CNN prediction for the next tracing by CAAT. Jerman filter
was an improved multiscale vesselness filter for objects with
different radii and could be used for neurite enhancement
considering their tubular structures (Wang et al., 2011; Basu
et al., 2013; Zhou et al., 2015). CAEFI (Jeelani et al., 2019) was
a novel enhancement method for image containing filamentous
structures, by combining the characteristics of gradient sparsity
and filamentous structure constraint for effective removal of
high noises. The comparisons were performed on both the
BigNeuron and fMOST images that contained high noises,
complex neuron structures, and discontinuous neurites with
different radius (see Figures 5, 6B). For good enhancement
performances, the parameters of Jerman and CAEFI were
manually adjusted. The scale parameters of Jerman were set to
1–3 or 1–4, and the cutoff threshold was set to 0.75 or 0.6,
respectively. The window size of CAEFI was set to 9, and the
smooth parameter was set to 0.002 and 0.0001 for BigNeuron
and fMOST images, respectively. As seen in Figures 5, 6B,C,
the Jerman, CAEFI and CNN prediction all suppressed high
noises of neuronal images. Jerman filter enhanced neurites
with different radii. The filter would thicken the neurites and

overlapped nearby neurites, and led to the missing tracing
of close neurites (Figure 5B). Jerman filter also showed low
performances on discontinuous neurites for the weak estimation
at uneven objects, and large fragments existed (Figure 6B).
CAEFI effectively removed cluster and noise and obtained a
clear background. The boundary of the neuron showed hairy
structures and led to over-tracing of close neurites (Figure 5B).
The gradient smooth constraint strategy wiped up the thin
or unobvious objects due to their indistinctive gradients and
caused the discontinuous tracing of uneven neurites (Figure 6B).
CNN showed a clear prediction of complex structures and
discontinuous neurites, promoted proper neurite tracing by
CAAT method, and outperformed the Jerman and CAEFI
enhancement methods in these cases.

For validation of CAAT effectiveness, automatic and state-of-
art tracing methods [FMST (Yang et al., 2019) and OpenSnake
(Wang et al., 2011)] were applied to replace CAAT after CNN
prediction. To deal with discontinuous neurites, FMST first
adapted the over-reconstruction strategy of neurons, and merged
broken neurites after the pruning step (Yang et al., 2019),
OpenSnake realized automatic snake merging after branching
point detection (Wang et al., 2011). These methods proved good
performance on discontinuous neurite tracing, while over-traced
or over-connected to some nearby noises or neurites in some
cases (Figures 5, 6B). CAAT made a more proper judgment
than the two tracing methods to decide whether two broken
fragments should connect or not, and achieved fine tracing of
the neuron with no connection to nearby neurites. As marked
out in Figure 5, CAAT could more accurately trace close
neurites than FMST, and get the correct connection relationship
of nearby or branching neurites. These performances proved
that the CNN prediction and CAAT both achieved similar
or better performances than current novel enhancement or
tracing methods, respectively. The proposed method combined
the advantages of CNN prediction and CAAT, and obtained
identical tracings of manual tracing results, especially for neurons
with complex structures or uneven intensity distribution along
neurites.

We compared the performances of the proposed method
and current novel algorithms on the public BigNeuron
datasets, including the typical APP2 (Xiao and Peng, 2013),
neuTube (Feng et al., 2015), machine-learning based ST-LVF
(Li et al., 2019b), and CNN+APP2 algorithm similar to Li
et al. (2017a), which was realized by applying APP2 on the
adjusted neuronal image using CNN predictions. As shown
in Figure 7, the neuronal morphologies were complicated in
BigNeuron datasets, which had mushroom-like structures, lots
of twisted neurites, and uneven intensity distributions. On high
noisy images, APP2 and ST-LVF algorithms, which achieved
the initial segmentation by using threshold-based methods,
misidentified the background noise as the signals and lead to
large tracing errors of the noises. On images with complex
neuronal structures, APP2 was hard to reconstruct the precise
morphologies, it missed a lot of neurite branches and went
in the wrong direction of the twisted structures. neuTube
missed some neurite branches and wrongly connected some
separated nearby neurites. ST-LVF tended to over-reconstruct
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FIGURE 3 | Examples of 3D CNN prediction (F–J) on noisy optical images (A–E) with complex-structures and broken neurites. Red arrows point to the broken
neurite parts on the original image and corresponding probability.

FIGURE 4 | Comparison of the proposed content-aware adaptive tracing (CAAT) (H) and typical threshold-based classification method (B–D,F,G) on neuron tracing
with the same initial seed point. Optical image (A); gold standard (E). Inaccurate traced areas were amplified in the white box.

the twisted structures and generated lots of wrong branches.
CNN+APP2 also missed lots of twisted neurites as a result of
APP2 algorithm. On images with uneven neurites and broken
parts, APP2, neuTube, and CNN+APP2 algorithms failed in the
tracing of some broken parts which caused large incomplete
neurite tracings. The proposed method can trace the precise
neuron morphology even in noisy images with discontinuous
neurites and complex neuronal structures. As proved in Table 1,
the average precision of our method was 98.2%, which was
similar to the results of CNN+APP2, and better than that of
APP2, neuTube, and ST-LVF. The average recall of our method
was 95.1%, which was vastly better than that of APP2, neuTube,
and CNN+APP2. The compared average high precision and
recall values proved that our method can more effectively reduce

high noise interferences and achieve more complete and accurate
tracings of complex neurons than current methods.

We also compared the performances of our method and
the above methods (Xiao and Peng, 2013; Feng et al., 2015; Li
et al., 2017a, 2019b) on fMOST datasets. As shown in Figure 8,
the datasets contained a huge amount of unevenly distributed
signals with broken parts and high noises. APP2 showed
poor performance on these datasets, either over-reconstructed
large background noises or hardly traced the broken neurites.
neuTube and ST-LVF algorithms wrongly reconstructed some
background noises, and led to a number of neurite fragments.
The algorithm of CNN+APP2 can prevent the noise interference,
while the performances for broken neurites were not good. The
proposed method accurately traced these neurites and avoided
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FIGURE 5 | Comparative performances of ablation studies on a complex and noisy big neuron image to illustrate the role of CNN prediction and CAAT of the
proposed method, by applying current novel enhancement methods [Jerman filter (Jerman et al., 2015) and CAEFI (Jeelani et al., 2019)] to replace CNN prediction
(B) and tracing methods [FMST (Yang et al., 2019) and OpenSnake (Wang et al., 2011)] to replace CAAT (C) alternatively. Comparative tracing results of gold
standard and our method (A). Inaccurate traced areas were marked by white ellipses.

FIGURE 6 | Comparative performances of ablation studies on a discontinuous and noisy fMOST image to illustrate the role of CNN prediction and CAAT of the
proposed method, by applying current novel enhancement methods [Jerman filter (Jerman et al., 2015) and CAEFI (Jeelani et al., 2019)] to replace CNN prediction
(B) and tracing methods [FMST (Yang et al., 2019) and OpenSnake (Wang et al., 2011)] to replace CAAT (C) alternatively. Comparative tracing results of gold
standard and our method (A). Inaccurate traced areas were marked by white ellipses.
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FIGURE 7 | Comparative performances of the proposed method and current novel algorithms on the public BigNeuron datasets. (A1–F4) Corresponding tracing
results of different novel methods, our method and gold standard. Inaccurate traced areas were highlighted with yellow.

TABLE 1 | Quantitative evaluation of the proposed and state-of-art methods on public BigNeuron datasets.

Method Precision [%] Recall [%]

Data Ours APP2 neuTube ST-LVF CNN+APP2 Ours APP2 neuTube STL-VF CNN+APP2

1 98.9 99.9 98.9 87.2 99.4 94.2 74.0 91.5 92.5 72.3
2 99.2 50.0 99.9 92.0 98.8 97.9 90.4 94.3 94.0 85.6
3 98.3 99.6 99.3 92.6 100 90.7 61.0 82.0 84.4 53.1
4 93.9 98.7 92.6 49.9 100 92.5 44.6 76.6 95.0 29.8
5 98.1 98.8 98.7 44.0 99.6 96.3 79.4 89.7 90.1 69.2
6 99.7 100 97.3 87.7 100 96.0 83.6 95.5 94.8 84.7
7 99.4 79.0 52.2 92.7 95.9 98.0 94.7 99.7 99.1 93.0
8 98.3 100 99.2 87.7 100 95.5 80.3 91.2 87.7 72.9
Average 98.2 90.8 92.3 79.2 99.2 95.1 76.0 90.1 92.2 70.1
Std 1.8 18.0 16.4 20.1 1.4 2.6 16.3 7.5 4.6 20.4

Bold values represent best achieved evaluations and gold standard.

broken neurites. As shown in Table 2, the average precision and
recall were 99.1% and 99.6% respectively for our method, which
achieved approximately the same performance as the manual
tracing and outperformed current novel algorithms (Xiao and
Peng, 2013; Feng et al., 2015; Li et al., 2017a, 2019b) on broken
neuron tracing from noisy background.

We exhibited the performance of the proposed method and
neuTube method, an automatic tracing algorithm that supports
multi-neurite tracing, on some dense and challenging cases that
contained dozens of neurites and various branch structures
(Figure 9). The experiment was performed on six fMOST image

stacks of size 1000 × 1000 × 300. Figure 9 showed two
tracing examples, and some tracing results of separate neurites
were magnified (Figures 9G–I). neuTube achieved good results
on the image with high neurite signals and only missed few
inhomogeneous neurites (Figure 9B), while it under-traced lots
of dim and discontinuous neurites (Figure 9C). The proposed
method nearly traced all these neurites in these neuronal images
with both high or dim or uneven neurite signals, and only missed
one branch neurite (as pointed out in Figures 9C,H). It could
capture most of these complex branch structures. Table 3 shows
that the average precision was 96.4% and recall was 99.0% of the
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FIGURE 8 | Comparative performances of the proposed method and current novel algorithms on fMOST datasets. (A1–F4) Corresponding tracing results of
different novel methods, our method and gold standard. Inaccurate traced areas were highlighted with yellow.

TABLE 2 | Quantitative evaluation of the proposed and state-of-art methods on fMOST datasets.

Method Precision [%] Recall [%]

Data Ours APP2 neuTube ST-LVF CNN+APP2 Ours APP2 neuTube ST-LVF CNN+APP2

1 99.6 100 96.8 99.5 100 99.6 51.1 93.7 99.4 99.6
2 100 0 73.0 93.6 100 99.4 0 87.2 100 96.3
3 98.9 2.8 83.2 84.0 99.1 100 89.1 87.8 91.6 55.4
4 100 5.5 13.4 17.2 100 100 86.1 61.4 65.9 42.9
5 98.9 93.3 81.7 94.5 100 100 62.8 97.5 85.5 52.9
6 100 0.4 75.9 100 100 100 68.7 86.6 89.2 100
7 93.9 0.4 94.8 100 95.6 97.4 22.3 86.4 62.8 96.4
8 100 100 99.7 99.8 100 100 49.5 91.1 97.2 98.6
9 99.7 5.2 42.0 100 100 99.8 100 97.7 100 100
10 99.8 67.7 78.3 88.4 99.7 100 100 99.7 99.6 99.9
Average 99.1 37.5 73.9 87.7 99.4 99.6 63.0 88.9 89.1 84.2
Std 1.9 46.3 26.8 25.4 1.4 0.8 33.2 10.9 14.0 23.6

Bold values represent best achieved evaluations and gold standard.

proposed method, much better than that of neuTube (precision:
94.1% and recall 79.6%). We also compared the morphological
parameter of the two methods. The average path length of the
proposed method was 2.58 mm, which was quite similar to
that of the gold standard (2.65 mm) and longer than that of
neuTube (2.07 mm). The branch point numbers of the proposed
method were also similar to the manual tracing result. The
neuTube algorithm would trace some neuronal irregularities,
and generated too many short and useless branches. For some
neurites that were fully overlapped on each other, the proposed
method could not separate them and treated them as one neurite.
The method is mainly designed for discontinuous neurite tracing,
and its continuous tracing results of the dense neuronal image
could be used for the subsequent interweaving neurite separation

using some novel methods such as NeuroGPS-Tree (Quan et al.,
2016) and G-Cut (Li et al., 2019a).

We further tested the proposed method on a large-scale
fMOST neuronal image. The volume of the dataset was
approximate 48 GB and the image size was 3,630× 3,630× 1,080.
To trace the large data, we first divided the huge volume into
image blocks of size 512 × 512 × 512 with overlapped gap
of 15 pixels along X, Y, Z direction in sequence, then traced
these image blocks, and assembled every two tracing results
if they had overlapped skeletons. Figure 10 shows the tracing
performance of our method on this challenging image that
contained uneven signals along neurite or at neurite intersections
and highly branched axons. The proposed method could capture
nearly all the neurites and branches of the large data and achieved
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FIGURE 9 | Comparative performances of the proposed method and neuTube algorithms on dense and challenging neuron datasets that contained multiple
neurites and various branch structures. Panels (B,C,E,F) show the fusion results of automatic algorithms (blue, green) and gold standard (red). Panels (G–I) are
examples of the traced results that are marked in images (A,D). Inaccurate traced areas were pointed our by arrows.

TABLE 3 | Quantitative evaluation of the proposed and neuTube methods on some dense neuronal images.

Method Precision [%] Recall [%] Path length [mm] Branch point number

Data Ours neuTube Ours neuTube Gold standard Ours neuTube Gold standard Ours neuTube

1 99.8 98.8 99.3 75.1 2.53 2.46 1.89 19 22 53
2 98.8 95.1 99.3 95.3 2.11 2.03 2.12 25 29 151
3 98.5 95.3 98.3 84.0 2.11 2.02 1.84 22 22 120
4 89.0 85.3 98.5 37.0 3.87 3.80 1.66 45 41 74
5 99.4 98.5 99.2 86.6 3.83 3.75 3.42 51 51 121
6 92.8 91.4 99.4 99.5 1.42 1.43 1.48 8 11 19
Average 96.4 94.1 99.0 79.6 2.65 2.58 2.07 28 29 90
Std 4.4 5.1 0.5 22.6 1.00 0.98 0.70 16 14 49

Bold values represent best achieved evaluations and gold standard.

result similar to manual tracing. The precision and recall of our
method on the image were 99.4% and 99.8%. The traced neurite
length by manual tracing was 19.4 mm, and by our method
was 20.0 mm. As we preserved some short branches of the
neuron which were ignored by manual tracing, the path length
by our method was a litter longer than that of manual tracing.
The accurate performance indicated that our method could be
applicable to large-scale neuronal image tracing automatically.

DISCUSSION

This article presented a fully automatic optical neuronal image
tracing method. The proposed method estimated the neurite
probability using 3D residual CNN as preprocessing and
presented a CAAT algorithm for continuous tracing of complex
structures and broken neurites. The main contributions of the
article are summarized as follows: (1) an automatic neuron
tracing method is presented for precise and complete neuron
tracing. (2) A CAAT method is designed to address the difficulty
of tracing these complicated and twisted structures and broken
neurites that had uneven predicted probability. (3) The proposed
method is superior to current novel tracing methods on both
public BigNeuron and private fMOST datasets with various
structures, distorted and discontinuous neurites.

The tracing of fuzzy and broken neurites with diverse
structures from noisy background is common in an optical
neuronal image and becomes one of the leading challenges
of neuron tracing. Despite numerous previous methods,
over-tracing of noises, incomplete tracing of broken neurites
and inaccurate tracing of complex neurons are commonplace
in neuronal images. We presented an effective neuron tracing
method to address these issues, which is achieved by the
following aspects: (1) the neurite probability map is robustly
and accurately estimated by 3D residual CNN with hybrid loss
function and a series of training skills, including various data
augmentation. The prediction outperforms current traditional
methods in preventing high noise disturbance and estimating
neurites (see Figures 3, 7, 8), using more abundant and
discriminative features without limitation of a specially designed
model or feature. (2) A CAAT method is proposed for
continuous tracing of broken neurites with complex structure.
The method is based on VS tracing (Rodriguez et al., 2009),
which uses the physical spatial location and connectivity
property, and can follow the natural structure of object
skeleton among various topological structure changes without
direction or shape restriction. Thus, the proposed CAAT method
showed better performances in neuron tracing at branches
and distorted neurites than some novel tracing methods (see
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FIGURE 10 | Performances of the proposed method on large-scale neuron data (A) with uneven signal and highly branched axons. Panels (B–E) are the traced
result (green, B,C) by the proposed method and gold standard (red, D,E) in different 3D views.

Figures 7, 8). The method makes full use of the strong and
low probability information for uneven intensity distributed
neurite tracing without re-estimating. The prediction of the
thin and broken object is an admitted difficult problem in
segmentation, the estimation of these objects by 3D CNN was
discontinuous as annotators do in uncertain cases. Experiments
including repeatedly adjusting network parameters, choosing
one best-trained network, and some network modifications
might improve the prediction slightly. While these difficult
neurites were still hard to be predicted, and a large amount of
time and effort was needed for the attempts considering the
randomness in network training. The proposed method uses
the strong probability information for the accurate position of
the main structure of objects, and discontinuous probability
information for the continuous tracing in the hard cases. It
builds an adaptive tracing term, by combing the characters of
distance, region connectivity, and probability continuity along
the direction, to determine the connection of discontinuous
probability of the difficult tracing. Figures 5, 6 both validated
that the CNN prediction and CAAT of the proposed method
achieved similar or better performances than current novel
enhancement or tracing methods for neuron tracing with quite
uneven intensity distribution and close neurites. Figures 7, 8
proved that the performances of the proposed method were
more complete and precise than the CNN based VS and
CNN+APP2 methods, and better than current tracing algorithms
on neuronal image with broken fragments and very complicated
structures. Figures 9, 10 further proved that the proposed
method could achieve continuous neurite tracing on some
challenging cases with dense and large neuronal images. These
results indicated the potential of the proposed method for
continuous tracing of large–scale neurons with varieties of
direction trends and discontinuous neurites.

Though the proposed method showed high performance on
neurite tracing, it has some limitations. The tracing would not
separate some crossed objects due to the dense distribution

and low resolution. In the future, we will test the proposed
method on more neuronal datasets for robustness evaluation. We
will further improve the prediction result for individual object
segmentation and study the logical criteria for overlapped objects
to promote the tracing in a dense area.

CONCLUSION

We propose a fully automatic and precise neuron tracing method
for optical images. A 3D deep residual CNN with a series
of training skills was applied for accurate neurite probability
estimation as preprocessing. A CAAT method was proposed for
continuous tracing of complicated and discontinuous neurites,
using the distance, connectivity, probability, intensity, and
continuity properties of the broken fragments. The performances
on the public BigNeuron datasets and private fMOST datasets
proved our method can accurately trace these broken neurites
with complex structures. Our method achieved similar results
as manual performance and was superior to current novel
tracing methods. The precise tracing of optical images proved
the potential of our method for continuous neuron tracing on
a large-scale.
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