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Abstract

Introduction—The baroreflex and central autonomic brain regions together control the 

cardiovascular system. Baroreflex sensitivity (BRS) decreases with age in adults. Age-related 

changes in brain regions for cardiovascular control in children are unknown. We studied age-

related changes in BRS, cardiac autonomic tone, and gray matter volume (GMV) of brain regions 

associated with cardiovascular control.

Methods—Beat-to-beat blood pressure (BP) and heart rate (HR) were recorded in 49 children 

(6–14 years old). Spontaneous BRS was calculated by the sequence method. Cardiac autonomic 

tone was measured by spectral analysis of HR variability. GMV was measured using voxel-based 

morphometry (VBM) in 112 healthy children (5–18 years old).

Results—Age-related changes in BRS were significantly different in children <10 years and ≥10 

years. Age-related changes in GMV in regions of interest (ROI) were also significantly different 

between children <10 and ≥10 years and between children <11 and ≥11 years. However, age-

related changes in cardiac autonomic tone were progressive.

Conclusions—Significant changes in BRS trajectories between <10 and ≥10 years may be 

associated with similar age-related changes of GMV in brain ROI. This new knowledge will guide 

future studies examining whether childhood cardiovascular disruption manifests as deviated 

maturation trajectories of specific brain regions.
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INTRODUCTION

During brain maturation, neural plasticity results in age-related structural and functional 

changes of the brain which include myelination and dendritic pruning of gray matter(1). 

Abnormalities in either maturation or neural plasticity have been linked to human diseases 

(2, 3). In the setting of neurobehavioral disorders, characteristic maturational abnormalities 

of specific brain regions have been identified in association with attention deficit disorders 

and psychiatric conditions (4, 5).

Similar studies of brain maturation in regions responsible for cardiovascular control have not 

been conducted. Thus, the role of brain maturation in autonomic control of the 

cardiovascular system, which evolves as children age, is not clearly understood. 

Furthermore, it remains unknown how deviation from the normal maturation trajectory of 

specific brain regions contributes to cardiovascular dysfunctions and diseases. The 

objectives of this study are to describe the developmental changes of the baroreflex and of 

brain regions linked to autonomic control in normal healthy children spanning the school-

age years.

Baroreflex sensitivity (BRS) is an important indicator of cardiac autonomic regulation. 

Arterial baroreceptors are sensory nerve endings that innervate the walls of the large arteries; 

increases or decreases in arterial pressure and vascular stretch alter the frequency of action 

potential discharge (baroreceptor activity) transmitted along the carotid sinus and aortic 

depressor nerves to the nucleus tractus solitarius in the central nervous system. In addition to 

the afferent input from the primary baroreceptors located on the thoracic arteries, the central 

nervous system also continuously modulates baroreceptor mediated autonomic tone to the 

heart and blood vessels(6, 7). Studies in animals and humans suggest that specific cortical 

and subcortical regions (including insula, amygdala, caudate, and cingulate) are associated 

with central autonomic modulation of cardiovascular function(8–13). Therefore, injuries to 

these brain regions are associated with autonomic dysfunction and abnormalities in BP 

regulation (14–16).

Since structural changes in major thoracic arteries are minimal during early childhood (17) 

when compared to adult life, we anticipate that the BRS maturation in children may 

primarily be associated with development of the brain regions associated with autonomic 

function. Therefore, tracking BRS against norms during development, achievable by a 

simple and non-invasive method, may reflect early childhood maturation of the brain regions 

associated with cardiovascular regulation.

In this study, we characterize the age-related changes of baroreceptor function, measured as 

BRS, in a cohort of healthy children. We then determine, in a separate cohort of healthy 

children, whether the same characteristic maturation trajectory is followed by gray matter 

volume (GMV) within specific anatomical regions known to play essential roles in 

cardiovascular control.
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SUBJECTS AND METHODS

BRS Cohort

A group of 49 children recruited at Cincinnati Children’s Hospital Medical Center 

(CCHMC), with ages evenly distributed between 6.2 and 14.2 years, underwent continuous 

measurements of beat-to-beat BP, electrocardiogram (ECG) and respiration. A medical 

history and physical examination were performed in all subjects. Children were excluded if 

they had an acute or chronic medical disorder, including cardiovascular, cerebrovascular, or 

genetic conditions, or if they used any regular medications. Exclusions also included sleep 

disorders, including sleep-disordered breathing or alveolar hypoventilation, as determined by 

overnight polysomnography. Age- and gender-specific Z-scores for body mass index (BMIz) 

were calculated using reference data available in the Centers for Disease Control and 

Prevention 2000 growth charts for the United States (18). Signed informed consent and 

assent for children over 7 years of age were obtained from each study participant prior to 

study initiation. The study was approved by the Cincinnati Children’s Hospital Medical 

Center Institutional Review Board.

MRI Cohort

Structural imaging data in typically developing children were provided by the National 

Institutes of Health (NIH)-funded Cincinnati MR Imaging of NeuroDevelopment (C-MIND) 

database(19) at CCHMC. We extracted a total of 274 high resolution structural images from 

this source for 112 healthy children, who were awake during scanning, with ages evenly 

distributed in the range spanning 5 to 18 years. A subset of 31 of these subjects participated 

in a longitudinal series, starting between the ages of approximately 7 and 9 years, with an 

interval of approximately one year. Twenty-one of these subjects also underwent scanning 

after two yearly intervals. All but 6 of the 112 subjects participated in 2 separate scanning 

sessions within a given year, each with its own structural image, with a median of 22 days 

between sessions (range 0 to 284 days). Children in the MRI cohort were not screened for 

sleep disordered breathing.

Methods

Spontaneous baroreflex sensitivity (BRS)—Blood pressure wave forms were 

recorded continuously by finger arterial plethysmography (Portapress, TNO-TPD 

Biomedical Instrumentation, Amsterdam, Netherlands). Three-lead surface ECG was 

recorded with Grass Telefactor System (Grass Telefactor). The data were digitized with a 

sampling rate of 500Hz. R-waves on ECG were determined with custom software developed 

in our laboratory using a derivative and peak detection algorithm. The automated detection 

of intervals between 2 R-waves (R-R interval) was visually inspected for errors and 

manually edited to remove artifacts and ectopic beats. The systolic BP (SBP) was calculated 

as the maximum pressure on BP recordings during each cardiac cycle. Spontaneous BRS 

was measured during a 30-minute recording while subjects were awake and laying supine in 

bed, using the sequence method, described in detail in our earlier study (20). In brief, the 

sequence method is based on the spontaneous and concurrent linear relationship between 

changes in SBP and R-R interval on ECG. Open loop computer analysis identified 

spontaneously occurring sequences of three or four heartbeats in which SBP increased by at 
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least 1 mm Hg, and R-wave interval increased by at least 5 milliseconds. Spontaneous 

sequences of heartbeats in which SBP and R-wave interval decreased were also identified 

and analyzed separately (21, 22). The slope of the regression of SBP against R-wave interval 

describes BRS.

Cardiac autonomic tone by power spectral analysis of heart rate variability—
Cardiac autonomic tone was measured by calculating spectral power in low-frequency (LF, 

0.04–0.15 Hz) and high-frequency (HF, 0.15–0.5 Hz) regimes, of beat-to-beat sequences of 

heart rate (HR). Uniformly sampled, 300-second recordings of ECG data were smoothed by 

cubic spline interpolation at 2 Hz, de-trended (using a fifth order polynomial), and Hanning 

filtered. The power spectrum of each data set was calculated as the square of the Fourier 

transformation and integrated for LF and HF contributions and the ratio LF/HF. Details of 

method used for power spectral analysis of HR variability was described in our previous 

study (20).

Imaging Methods—All imaging data were obtained on the same 3-Tesla Philips Achieva 

scanner. The structural data extracted from CMIND were T1-weighted whole brain scans, 

acquired with a 32-channel SENSE head coil, with acquisition parameters: TR 8.1 ms, TE 

3.7 ms, inversion recovery time 941 ms, flip angle 8 degrees, matrix 160 × 224 × 256 voxels, 

voxel size 1 mm isotropic (total time 5 minutes, 16 seconds). Regional GMV was assessed 

using voxel-based morphometry (VBM) analysis (23), a technique that allows for objective 

normalization and segmentation of high-resolution structural MR images resulting in voxel-

wise, whole-brain determination of GM and white matter (WM) tissue volume and density. 

This analysis was carried out using the VBM8 toolbox (24) that works in conjunction with 

Statistical Parametric Mapping software SPM8 under the Matlab computing environment 

[The Mathworks, Natick, MA]. The high-resolution structural images were first bias 

corrected for intensity homogeneities followed by iterative normalization to a standard MNI 

(Montreal Neurological Institute) template space and segmentation into GM, WM, and 

cerebrospinal fluid (CSF) maps employing affine and nonlinear transformations using 

established priors for the three tissue classes (25). Normalization was refined under the 

DARTEL (26) high-dimensional warping routine employing the IXI550 template. A 

spatially adaptive nonlocal means filter (27) and a Markov random field model (28) provided 

further denoising. After completion of these steps, the GM segmented maps correspond to 

tissue density. The Jacobian of the normalization transformation, characterizing the 

distortions caused by the normalization process, was applied to modulate the GM density 

maps resulting in a voxel-wise representation of tissue volume. We modulated the nonlinear 

component of the transformation, resulting in volume maps that effectively account for 

differences in brain volume. Finally, tissue maps were spatially smoothed via an 8mm 

isotropic Gaussian kernel to further reduce noise and to make voxel values more normally 

distributed.

Statistical Analysis—Age-related changes in BRS and cardiac autonomic tone were first 

characterized using spline fits of various orders, selecting representative curves based on 

statistical significance. The best fitting curve had a single peak in BRS occurring at 

intermediate ages. To find an age defining a change point in BRS trajectory, a broken-stick 
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model (29) was employed. In brief, the broken-stick model appears as: BRS _ outcome = β0 

+ β1age + β2 (age − C)+ + ε, where C is the change point, the term (age − C)+ is zero if (age 
− C) is negative and the value of (age − C) if it is positive, β0 is the intercept, β1 is the slope 

prior to the change point, and β2 the change in slope after the change point. The goal is to 

estimate C in addition to the other parameters as a nonlinear regression fit. In addition to the 

broken-stick model, we also considered the random forest method for finding the age change 

point using the ‘rpart’ package available in R statistical software. All the statistical analyses 

were performed using SAS software, version 9.3 (SAS Institute, Cary, NC), and R version 

3.2.3. The level of significance for statistical inference was set a priori at α=0.05.

Once the age change-point was determined for the BRS data, clusters of voxels in the brain 

were sought with piecewise linear behavior with age with the same change-point. Since 

structural MRI acquisition was repeated for most subjects and for a variety of times, we 

calculated a mean GMV map and corresponding mean age for each of the 112 subjects. The 

series of mean GMV maps extracted from CMIND were fitted, voxel-wise, to a multivariate 

model for linear age dependence with terms for slope and intercept included separately for 

ages less than and greater than the change-point age, as identified for the BRS. Contrast in 

slope between the two age regimes was determined per voxel and a nominal threshold of T > 

2.85 was imposed. This threshold was a compromise, chosen to form clusters of voxels no 

larger than the typical anatomical ROI, yet large enough to reach significance at the cluster 

level. Supra-threshold clusters of voxels, restricted to specific anatomical regions of interest 

(ROI), were assessed for statistical significance at p<0.05, family-wise error corrected for 

multiple comparisons within each ROI. Cortical and subcortical ROI associated with 

autonomic and cardiovascular functions were selected based on previous studies in animal 

models and humans. A complete list of the 40 ROIs considered in our analysis is provided in 

Table 1. Anatomical ROI masks were extracted from the Automatic Anatomical Labeling 

(AAL) atlas stored in the WFU Pick Atlas toolbox under SPM8.

RESULTS

Characteristics of study population

Age-related changes in BRS were measured in 49 healthy children with average age of 

10.1±2.1 years with an age range from 6.2 to 14.2 years. Among these subjects, 47% were 

girls and 75% were Caucasians. Average BMI and BMI-z scores were 18.1±3.6 kg/m2 and 

0.2±1 respectively. Average systolic and diastolic BP were 93±19 and 47±15 mmHg 

respectively.

In the CMIND population, among 112 healthy children, 49% were girls. Average age was 

10.9±3.8 years with an age range from 5.2 to 18.5 years. Average BMI and BMI-z scores 

were 18.9±3.4 kg/m2 and 0.3±0.9 respectively. Among these children, 67% were Caucasian. 

Demographically, the BRS and CMIND groups of children did not differ significantly with 

respect to age (p=0.1), BMI (p=0.2), BMIz (p=0.3), gender (p=0.8), or race (p=0.3).
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Age-related changes in BRS

Spline curves providing the best fit of the BRS data showed that around the age of 10 years 

there was a change of BRS maturation trajectory for both increasing and decreasing BP. 

Broken-stick modeling applied to BRS data for increasing and decreasing BP resulted in 

change-points at 9.7 years (95% CI: 7.7, 11.6) and 10.0 years (95% CI: 8.3, 11.8), 

respectively. The random forest method yielded change-point values of 10.7 years and 10.9 

years, respectively. Consequently, we considered both 10 and 11 years as change-point ages 

in subsequent statistical analyses.

Age-related changes in spontaneous BRS for increasing (p=0.03) and decreasing BP 

(p=0.02) were significantly different between children <10 and ≥10 years of age (Figure 1). 

Spontaneous BRS for increasing and decreasing BP progressively increased with age in 

children <10 years of age and decreased with age beyond 10 years. For the change-point at 

age 11, the results are not significant: age-related changes in spontaneous BRS for 

increasing (p=0.09) and decreasing BP (p=0.06) were not significantly different between 

children <11 and ≥11 years of age.

Age-related changes in cardiac autonomic tone

The spline curves of age-related changes in cardiac autonomic tone did not show any 

significant difference in maturation trajectories around the age of 10 years or at any other 

age. HF and LF power of heart rate variability progressively decreased with age (Figure 2) 

with no significant change in slope. LF/HF ratios progressively increased with age with no 

significant change in rate at any age. Unlike spontaneous BRS, no change-points could be 

identified for the trajectories of age-related changes in HF power, LF power, or the LF/HF 

ratio.

Age-related changes in GMV in brain regions associated with cardiovascular function

Based on the regression analyses of spontaneous BRS, both 10 and 11 years of age were 

identified as change-points for analyzing age-related changes in GMV. The extension of the 

age range to 18.5 years, compared to the BRS cohort, was considered justifiable given the 

mid-range BRS age change-points and the aim of comparing age-related trends rather than 

population means between cohorts. Age-related changes in GMV in specific regions of 

interest (ROI) of the brain associated with autonomic and cardiovascular regulation were 

significantly different between children <10 and ≥10 years of age (Table 2) as well as for 

children <11 and ≥11 years of age (Table 3). Brain images showing regional clusters of 

voxels within these ROI with significant age-related changes in GMV trajectories are shown 

in Figures 3 and 4 for the 10-year and 11-year change-points, respectively. Significant 

clusters were found in a number of the select brain ROIs, including the cingulate, amygdala, 

hypothalamus, mid-brain and putamen (Table 2 and Table 3). Several areas of the brain, 

including the caudate, left posterior insula, right hippocampus, and medial orbital frontal 

gyrus had significant age-related changes in GMV only for the 11-year change-point (Table 

3), while the pons was found significant only for the 10-year change-point. Examples of the 

maturation trajectories of GMV with significant slope changes in the left posterior insula, 

left putamen, right amygdala, and right hippocampus are displayed in Figure 5, A–D, 

respectively. GMV monotonically decreased with age in the insula, amygdala and 
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hippocampus despite the change in slope. Conversely, in the putamen (Figure 5B), the GMV 

undergoes a change in slope with age from positive to negative at the change-point.

DISCUSSION

In this study, we demonstrated in two different cohorts that the age-related changes of the 

baroreflex and the structure of brain regions which control autonomic functions follow 

similar trajectories with a point of inflection occurring around the age of 10 to 11 years. 

These observations provide important baseline knowledge regarding normal development of 

central cardiovascular autonomic control and set the stage for future investigation of the 

developmental impact of disease states on GMV and autonomic control.

The trajectory of age-related changes in BRS parameters for children between the ages of 6 

to 14 years, increases until the age of 10 or 11 years, depending on model, at which point 

BRS begins to decline with increasing age. Piecewise regression provided the age at which 

the BRS trajectory changed significantly. The spectral measures, describing sympathovagal 

balance, changed monotonically with age with no statistically significant change in slope for 

LF, HF, or LF/HF. A progressive reduction in HF variability (a measure of cardiovagal tone), 

and a corresponding increase in LF/HF ratio (a measure of sympathovagal balance) suggest 

a progressive increase in the ratio of sympathetic to parasympathetic tone. Furthermore, as 

shown in Figure 2, there is a change in the trajectory of the slope at the age of 10 years 

whereby HF continues to decline with age while LF remains at a plateau. Although not 

statistically significant, it is likely that the decrease in HF, a measure reflecting 

parasympathetic tone, contributes in part to the change in BRS observed at age 10 years.

The arterial baroreflex is a critical mechanism for BP regulation and reduced baroreflex 

sensitivity is associated with increased risk for cardiovascular morbidity and mortality (30–

32). Previous adult studies have reported progressive reductions of the BRS with age (33, 

34). Age-related reductions of BRS in adults are primarily associated with progressive 

changes in vessel wall thickness that alter arterial distensibility and thus pressure 

transduction to baroreceptors located in the wall of major thoracic arteries(35, 36). Although 

we did not examine the stiffness of thoracic arteries, it is unlikely that there is enough 

change in arterial wall thickness occurring at around 10 years of age to explain the marked 

decline in BRS seen in our study.

In adults, age-related increase in sympathetic drive has been measured by non-invasive 

power spectral analysis of heart rate variability and by direct recording of sympathetic nerve 

traffic from peripheral nerves (37–40). One acknowledged contributing factor to the 

progressive increase in sympathetic tone with age is the known reduction of the inhibitory 

effect of arterial baroreceptors on sympathetic neurons located in the brain stem as the BRS 

decreases with age (35, 36, 41). However, a similar mechanism in children for progressive 

increases in sympathetic tone with age has yet to be investigated. We postulate that 

maturation and neural plasticity of the central autonomic brain regions may play a critical 

mechanistic role in age-related changes in cardiac autonomic tone in children.
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In a separate cohort of typically-developing children who had undergone structural brain 

imaging, we used a similar piecewise regression approach to determine whether gray matter 

structures within select ROI associated with autonomic cardiovascular control have age-

related changes similar to those observed for BRS. We found that for many of the select 

brain ROI, the trajectory of age-related changes in GMV changed at the ages of 10 and 11 

years. These collective results demonstrate that in two different populations of healthy 

children, the baroreflex and cardiovascular brain regions respectively undergo similar 

functional and structural changes within overlapping age ranges.

During childhood there is major structural and functional maturation of the brain (1), 

progressing by ongoing myelination and dendritic pruning. Age related neuronal 

proliferation, rewiring, and dendritic pruning are all critical for the development of neuronal 

plasticity for both motor skills and cognitive function development (42), but may also be 

critical for the regulation of autonomic function. Our study is the first to demonstrate that 

changes in GMV trajectories with age in regions of the brain associated with autonomic and 

cardiovascular functions mimic maturational changes in BRS. Rates of GMV changes with 

age differed significantly between children older and younger than change-points at 10 or 11 

years in a number of brain regions associated with cardiovascular functions including insula, 

cingulate, caudate, amygdala, hypothalamus, midbrain and pons.

A strength of the current study is the statistical exploratory approach that we adopted for two 

independent cohorts of healthy children; in one population we described a change-point of 

age-related functional changes of autonomic control and then sought, within the other group, 

age-related structural changes within critical brain regions with the same change-point. 

Another important strength is the large sample size from the CMIND database to measure 

age-related changes in GMV of the brain regions associated with autonomic and 

cardiovascular function. Additionally, the BRS was measured in a population of healthy 

control subjects who were studied with clinical assessment, personal and family medical 

history, physical examination, and routine investigation for diagnosis of common diseases 

including diabetes, cardiovascular and renal disorders.

While this study of two different populations has its advantages, it also represents a 

limitation since we were unable to establish a direct relationship between the BRS and 

structural changes in the brain. We anticipate that the age-related maturation trajectories for 

BRS and brain GMV reported in the current study will be similar in both populations of 

healthy control subjects; this is not yet proven. An additional limitation is the lack of 

information about the pubertal status of the children evaluated for the BRS and the imaging 

studies. Therefore, this study could not determine the effects of puberty onset on changes in 

maturation trajectories for BRS and brain volume. It is not known whether the early onset of 

puberty in girls affects maturation trajectories for BRS and/or brain structure. However, we 

did perform the appropriate statistical adjustments to investigate the effect of gender on the 

BRS measures. An additional limitation includes the cross-sectional study design for both 

the BRS and imaging studies. A longitudinal and long-term follow up study will provide a 

better understanding of BRS and brain maturation in children.
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In conclusion, we found that maturation trajectories for spontaneous BRS significantly 

changed in children for a change-point of 10 years and had changes of trending significance 

for a change-point at 11 years. Regionally, GMV trajectories changed significantly for 

change-points at both 10 and 11 years. However, progressive age-related changes in cardiac 

autonomic tone were not found to undergo a significant change in slope up to the age of 14. 

Additionally, non-invasive and simple measures of spontaneous BRS and cardiac autonomic 

functions in children may provide critical information on the structural and functional 

maturation of the brain autonomic regions. These cardiovascular measurements can be used 

as simple and inexpensive markers for assessment of childhood development of the brain 

and autonomic neural plasticity. Future studies will determine whether diseases suffered 

during childhood with potential impact on brain health, such as obstructive sleep apnea or 

type 2 diabetes, have significant impact on the maturation of BP regulatory mechanisms and 

development of cardiovascular morbidity and mortality.
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Figure 1. 
Age-related changes in baroreflex sensitivity (BRS) for increasing (A) and decreasing (B) 

blood pressure with 95% confidence intervals. Age-related changes in BRS were 

significantly different between children <10 and ≥10 years. BRS progressively increased 

with age in children <10 years and reduced in children ≥10 years.
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Figure 2. 
Age-related changes in cardiac autonomic tone for low frequency (LF) (A) and high 

frequency (HF) (B) regimes and the LF/HF ratio (C). LF and HF outcomes progressively 

decreased with age, while LF/HF increased with age, without significant change in slope at 

10 years.
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Figure 3. 
Clusters of voxels with significant change in gray matter volume with age in children <10 

and ≥10 years of age. Hot colors indicate increased and cool colors indicate decreased age-

related changes in children ≥10 years. Clusters are restricted to regions of the brain 

associated with autonomic and cardiovascular functions including posterior cingulate (A), 

amygdala (B), midbrain (C), pons (D), putamen (E), and hypothalamus (F). Montreal 

Neurological Institute (MNI) coordinate for each brain slice is shown above each image and 

slice locations are indicated in the sagittal view. Axial slices are shown in neurological 
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convention (right side of brain=right side of image). Clusters are significant at p<0.1, 

family-wise error corrected, after thresholding at nominal T > 2.85.
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Figure 4. 
Clusters of voxels with significant change in gray matter volume with age in children <11 

and ≥11 years. Hot colors indicate increased and cool colors indicate decreased age-related 

changes in children ≥11 years. Clusters are significant at p<0.1, family-wise error corrected, 

after thresholding at nominal T > 2.85, restricted to ROI known for essential role in 

cardiovascular regulation. Clusters are labeled as follows: caudate (A), posterior cingulate 

(B), amygdala (C), inferior orbital frontal (D), midbrain (E), putamen (F), hypothalamus 

(G), right hippocampus (H), and left posterior insula (I). Montreal Neurological Institute 

(MNI) coordinate for each brain slice is shown above each image and slice locations are 
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indicated in the sagittal view. Axial slices are shown in neurological convention (right side 

of brain=right side of image).
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Figure 5. 
Age-related changes in gray matter volume (GMV) in left posterior insula (A), left putamen 

(B), right amygdala (C), and right hippocampus (D). Note that age-related changes in GMV 

shown are for the voxel of peak significance in each region for the difference between 

children <11 and ≥11 years.
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Table 1

Brain regions of interest related to cardiovascular control

Brain region of interest

midbrain, bilateral1–3

pons, bilateral1, 3, 4

medulla, bilateral1, 4

thalamus2, 3

hypothalamus, bilateral3, 5

cerebellum, anterior, bilateral2, 3, 5, 6

cerebellum, posterior, bilateral2, 3, 5, 6

amygdala1, 2, 4

hippocampus3

caudate3

putamen7, 8

insula, entire2, 4–6

insula, anterior half1

insula, posterior half3, 6

cingulate gyrus, anterior1, 2, 4, 6

cingulate gyrus, posterior5

frontal gyrus, middle2, 6

frontal gyrus, medial orbital6

frontal gyrus, inferior orbital4

frontal gyrus, inferior opercular2

precentral gyrus2, 6

postcentral gyrus2

precuneus2, 5

All brain areas listed are split into separate left and right hemisphere regions, unless otherwise indicated.
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