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Abstract: Distributed array radar can improve radar detection capability and measurement accuracy.
However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist
sampling theorem since the large sparse array is undersampling. Consequently, the state estimation
accuracy and track validity probability degrades when the ambiguous angles are directly used for
target tracking. This paper proposes a second probability data association filter (SePDAF)-based
tracking method for distributed array radar. Firstly, the target motion model and radar measurement
model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended
Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge,
and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish
the second filtering, and then achieving a high accuracy and stable trajectory with relatively low
computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically
and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness
of the proposed method.

Keywords: distributed array radar; direction-of-arrival (DOA) estimation; ambiguous angles;
tracking; probability data association filter (PDAF)

1. Introduction

Distributed array radar has been widely concerned with its superiority in many aspects since
it has been put forward [1]. For instance, owing to the waveform diversity and spatial diversity of
the target’s radar cross-section (RCS), multi-input multi-output (MIMO) radar can obtain a diversity
gain for target detection and for estimation of various parameters [2–4]. In addition, the distributed
coherent aperture radar has been proposed in order to obtain the N3 times signal-to-noise ratio (SNR)
promotion, where N is the number of sub-radars and, meanwhile, avoid the difficult transportability,
high cost, and other drawbacks of large aperture radar [5,6].

For the traditional radar, target tracking is employed after achieving the target’s direction-of-
arrival (DOA) estimation, which has been widely studied [7–9]. The Kalman filter (KF), extended
Kalman filter (EKF), and other more complicated filters, can be utilized for tracking [10]. However,
the distributed array radar will suffer cyclic ambiguity in its angle estimates according to the spatial
Nyquist sampling theorem since the large sparse array is undersampling. In results, the state estimation
accuracy and track validity probability will be very poor when the ambiguous angles are directly used
for target tracking.
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In order to resolve this problem, distributed array radar currently applies the traditional radar’s
tracking mode which, firstly, estimates the high accuracy angle without ambiguity, then tracks
the target. There are three kinds of methods to achieve the high accuracy DOA estimation for
a distributed array. The first kind is designing a low sidelobe sparse array, thus avoiding the ambiguous
angles coming from the grating lobes. For instance, the array interelement spacing is optimized to
achieve an objective function with a narrow peak around the true target parameters and the lowest
possible sidelobes at all other parameter combinations, thus achieving the combined range and angle
estimation for frequency modulated continuous wave (FMCW) radar sensors [11]. A new method of
estimating the DOA for multiple signals using minimum redundancy linear sparse subarrays (MRLSS)
is proposed [12,13].

The second kind uses two different arrays to obtain the unambiguous, but high-variance, direction
estimate and low-variance, but cyclically ambiguous, estimates, respectively, then the unambiguous
estimate serves as a coarse reference to disambiguate the set of low variance ambiguous estimates.
The dual-size spatial invariance sparse array concept for estimation of signal parameters via a rotational
invariance techniques (ESPRIT)-based algorithm, which is capable of extending the array aperture
without any cyclic ambiguity in the final DOA estimates is introduced [14]. A multiple signal
classification (MUSIC) or method of direction estimation (MODE)-based algorithm which improves
and generalizes disambiguation schemes that populate the thin array grid with identical subarrays
is proposed [15]. A new total least squares ESPRIT (TLS-ESPRIT)-based DOA estimator is obtained
for the sparse sensor arrays with multiple identical subarrays [16]. A resultant algorithm which is
the combination of the ESPRIT algorithm with MUSIC (or conventional beamformer) and permits
the identification of the true direction cosine estimates from a set of ambiguous candidate estimates
is presented [17]. The coarse estimates are used to disambiguate the fine, but ambiguous, estimates
of direction cosines which are achieved by utilizing the inter-sensor spacing phase-factors in the
sparse array [18]. A method which divided the linear sparse arrays into two overlapping subarrays,
then exploited the ESPRIT-like algorithm to get DOA estimates is contrived [19].

The third kind firstly uses compressed sensing to recover the filled array data from thin array
data, then applies the angle estimation method to achieve the unambiguous estimate. Two sparse
recovery methods based on different optimization problems are proposed to solve the DOA estimation
problem in the sparse array [20]. The problem of joint DOA estimation with distributed sparse linear
arrays is presented and an off-grid synchronous approach based on distributed compressed sensing
is proposed [21]. A two-dimensional (2D) DOA estimation algorithm is proposed with the co-prime
array based on the sparse representation framework [22]. An off-grid DOA estimation method using
sparse Bayesian learning (SBL) based on an array covariance matrix is presented [23]. Without the
knowledge of the number of sources, these methods yield superior performances.

However, although the grating lobes can be suppressed effectively, the mainlobe will widen and
the sidelobes will rise inevitably for the first method. Consequently, the angle estimation accuracy
will decrease. The second method will produce a failure result if the unambiguous angle fails to
disambiguate the ambiguous angles, leading to a bias from the true angle. The third method may
become invalid when the inter-arrays spacing is large, and the computational burden is expensive due
to the compressed sensing. Therefore, using these results directly for the tracking filter may result in
a reduction of the state estimation accuracy, or even stable tracking.

Inspired by the DOA tracking method [24] and the multiple sensors tracking method [25–30],
this paper proposes a second probability data association filter (SePDAF)-based tracking method.
It uses the unambiguous angle and ambiguous angles as measurements, then twice applying filtering,
i.e., EKF and SePDAF, to achieve the high accuracy unambiguous filtering estimate and stable trajectory
simultaneously. This method produces a novel tracking mode with relatively low computational
complexity for distributed array radar in order to replace the traditional one. This paper is organized
as follows: Section 1 introduces the distributed array radar and its tracking under ambiguous angles;
Section 2 is the signal model, and it builds the target motion model and distributed array radar
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measurement model; Section 3 firstly analyzes the probability model, then proposes the SePDAF
method to achieve the high accuracy trajectory, after that investigates the computational complexity;
Section 4 carries out the simulations to validate the effectiveness of the proposed method; and, finally,
Section 5 draws the conclusion.

2. Signal Model

In radar tracking, the measurements of a target’s position are generally expressed in
three-dimensional (3D) polar coordinates, while the target motion is usually precisely modeled in
Cartesian coordinates.

2.1. Target Motion Model

According to the target motion, different kinds of motion models can be utilized. For instance,
a constant velocity motion model can be employed when the target velocity is constant [10,26];
constant acceleration motion model can be used when the target has a uniformly variable velocity [10];
ellipsoidal Earth model is generally utilized to precisely describe the gravity of the Earth for space
target tracking [31], etc.

For simplicity, the constant velocity target motion model is assumed in this paper. The proposed
algorithm here is suitable for other target motion models. The state equation of constant velocity
motion is:

x (k + 1) = F (k) x (k) + v (k) (1)

where, k is sampling time, and it is also called slow time, the state vector at time k is

x(k) = [ x(k)
.
x(k) y(k)

.
y(k) z(k)

.
z(k) ]

T
, x(k), y(k), z(k) denotes the target position,

.
x(k),

.
y(k),

.
z(k) denotes the target velocity, and the superscript T means transpose. F(k) is the state

transition matrix, v(k) is zero-mean white Gaussian process noise vector with non-singular covariance
matrix Q(k). If Γ(k)ṽ(k) is used to replace v(k), then Q(k) becomes Γ(k)qΓ(k)T , where q means the
variance of process noise σ2

v , and Γ(k) is the process noise distribution matrix. The state transition
matrix and process noise distribution matrix are:

F (k) =



1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1


Γ (k) =



0.5T2 0 0
T 0 0
0 0.5T2 0
0 T 0
0 0 0.5T2

0 0 T


(2)

where T is the sampling time interval.

2.2. Radar Measurement Model

2.2.1. Radar Receiving Signal

Assume the distributed array radar consists of N sub-radars which are arranged in a uniform
linear array (ULA), the sub-radar spacing is d, thus the baseline of the distributed array is (N−1)d.
Each sub-radar is also a ULA which consists of M antenna elements. Suppose the complex envelope of
the signal reflected from the target is p(t), where t is fast time, then the complex envelope of the signal
arriving at the nth radar becomes p[t− τn(k)], where τn(k) is the time delay between the target and
the nth radar at time k, and n = 1,2, . . . ,N. Therefore, the signal can be written as a vector:

s (k) =
[

s1 (k) s2 (k) · · · sN (k)
]T

(3)

where, sn(k) is the baseband signal after digital down converter of the nth radar, which is:
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sn (k) = exp [−j2π fc (k) τn (k)] p [t− τn (k)]
≈ exp

[
−j2π fc (k)

r1(k)+(n−1)dsinθ(k)
c

]
p
[
t− r1(k)

c

] (4)

where, j =
√
−1 and fc(k) is the carrier frequency at time k. It means that the carrier frequency can

be staggered at a different time. r1(k) is the distance between the target and the first radar at time k,
θ(k) is the target direction at time k, c is the speed of light. Considering the receiver noise, we have the
receiving signal vector:

y (k) = s (k) + n (k) (5)

where, n(k) is the noise vector at time k, and each sub-radars’ noise are all zero-mean white
Gaussian noise.

2.2.2. Radar Measurement Accuracy

For distributed array radar, the range, azimuth, and elevation angle measurements of each
radar can be fused to achieve higher accuracy estimates. Moreover, the high accuracy, but cyclically
ambiguous, azimuth estimates can be obtained by using the large baseline sparse array. The accuracies
of these radar measurements are discussed here.

Firstly, the range estimation accuracy is analyzed. Applying the traditional range estimation
method to each sub-radar, we can get the range estimate r̂n (k) of the nth radar at time k, and its
variance, i.e., accuracy, is:

σ2
rn (k) =

[
c

4B (L (S/N)n)
1/2

]2

(6)

where, B is the signal bandwidth, L is the snapshot number, (S/N)n is the SNR of the nth radar. Then the
range estimates can be averaged by variable weight, the range fusion result and its corresponding
accuracy are:

r̂ (k) =

[
N

∑
n=1

1
σ2

rn (k)

]−1 [ N

∑
n=1

1
σ2

rn (k)
r̂n (k)

]
(7)

σ2
r (k) =

[
N

∑
n=1

1
σ2

rn (k)

]−1

(8)

Secondly, the azimuth and elevation angle estimation fusion accuracies are analyzed. Since their
analysis processes are the same, we take the azimuth as an example. Applying the traditional angle
estimation method to each sub-radar, we can get the azimuth estimate θ̂s

n(k) of the nth radar at time k,
and its variance is:

σ2
θs

n
(k) =

[
c

Km fc (k) D (L (S/N)n)
1/2

]2

(9)

where, Km is the slope of the angle error, D is the aperture of sub-radar. Averaging these estimates by
different weight, the azimuth fusion result and its corresponding accuracy can be obtained, which can
be expressed as:

θ̂s (k) =

[
N

∑
n=1

1
σ2

θs
n
(k)

]−1 [ N

∑
n=1

1
σ2

θs
n
(k)

θ̂s
n (k)

]
(10)

σ2
θs (k) =

[
N

∑
n=1

1
σ2

θs
n
(k)

]−1

(11)
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Thirdly, taking advantage of the large baseline of distributed array radar, the high accuracy
azimuth estimation can be achieved. Suppose there is no ambiguity in the estimation, thus the azimuth
estimation can be written as:

θ̂u (k) = θ (k) + wθ (k) (12)

where, wθ(k) is the zero-mean white Gaussian noise at time k, i.e., wθu(k) ∼ N(0, σ2
θu(k)). The accuracy

of the array processed azimuth estimation is approximate to:

σ2
θu (k) =

[
c

Km fc (k) (N − 1) d (LN (S/N)n)
1/2

]2

(13)

It can be seen that this accuracy is very high since the distributed array has a large baseline
(N−1)d. Unfortunately, the array processed azimuth estimation has numerous ambiguous estimates
due to the thin array. Assume there are mk ambiguous azimuth angles, and these ambiguous ones are
symmetrical about the true estimate. Then the array processed azimuth estimation can be modified as:

θ̂u
i (k) =

arcsin
[
sinθ̂u (k) + c

fc(k)d
·
(
i− mk

2
)]

, mk is even

arcsin
[
sinθ̂u (k) + c

fc(k)d
·
(

i− mk+1
2

)]
, mk is odd

(14)

where i = 1,2, . . . ,mk.

2.2.3. Radar Measurement Model

The measurement equation can then be expressed as:

z (k) = h [x (k)] + w (k) (15)

where, the measurement vector is z(k) = [ r̂(k) θ̂(k) ϕ̂(k) ]
T

, and r̂(k), θ̂(k), ϕ̂(k) are the
measurements of the range, azimuth, and elevation angle. w(k) is a zero-mean white Gaussian
measurement noise vector which is independent with the process noise v(k). Its covariance matrix is:

R (k) = diag
(

σ2
r , σ2

θ , σ2
ϕ

)
(16)

where diag(·) stands for a diagnose matrix, σ2
r , σ2

θ , σ2
ϕ are the variances of the range, azimuth,

and elevation angle measurements. In addition, the measurement function is given as:

h [x (k)] =


√

x2 (k) + y2 (k) + z2 (k)
tan−1 [y (k)/x (k)]

tan−1
[
z (k)/

√
x2 (k) + y2 (k)

]
 (17)

where the Jacobian matrix can be written as:

Hx (k) =


x(k)
ρ(k) 0 y(k)

ρ(k) 0 z(k)
ρ(k) 0

−y(k)
ρxy2(k) 0 x(k)

ρxy2(k) 0 0 0
−x(k)z(k)

ρxy(k)·ρ2(k) 0 −y(k)z(k)
ρxy(k)·ρ2(k) 0 ρxy(k)

ρ2(k) 0

 (18)

and:
ρ (k) =

√
x2 (k) + y2 (k) + z2 (k) (19)

ρxy (k) =
√

x2 (k) + y2 (k) (20)
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When the azimuth fusion result θ̂s(k) is used as the azimuth measurement, the measurement
vector becomes zs(k) = [ r̂(k) θ̂s(k) ϕ̂(k) ]

T
, and the covariance matrix of the measurement noise

becomes Rs(k) = diag(σ2
r , σ2

θs , σ2
ϕ), where σ2

θs denotes the azimuth fusion accuracy.
On the other hand, when the array processed azimuth estimation θ̂u

i (k) is used, the measurement

vector changes to zu
i (k) = [ r̂(k) θ̂u

i (k) ϕ̂(k) ]
T

, where i denotes the ith measurement vector out of
mk. The corresponding measurement noise covariance matrix changes to Ru(k) = diag(σ2

r , σ2
θu , σ2

ϕ),
where σ2

θu means the array processed azimuth accuracy.

3. Second Probability Data Association Filter-Based Tracking

3.1. Probability Model

Assume the state vector estimation at time k− 1 is x̂(k− 1|k− 1) , the corresponding covariance
matrix is P(k− 1|k− 1) . Suppose the real state vector is x(k− 1|k− 1) , then the probability density
function is:

p
(

x̂ (k− 1|k− 1)
∣∣∣Θk−1

)
= 1√

|2πP(k−1|k−1)|

×exp

{
− 1

2 [x̂ (k− 1|k− 1)− x (k− 1|k− 1)]T

×P−1 (k− 1|k− 1) [x̂ (k− 1|k− 1)− x (k− 1|k− 1)]

}
(21)

where, Θk−1 denotes the observation set from the beginning to time k− 1. The observation set at time
k can be written as Θ(k) = {Θu(k), Θs(k)}, where Θu(k) represent the array processed measurement
set and Θs(k) represents the fusion measurement set.

As for the observation set at time k, suppose zu(k) is the true estimate of target from the ambiguous
measurements zu

i (k), x(k) is the true state vector. Then the probability density function can be
expressed as:

p (zu (k)|h [x (k)]) =
1√

|2πRu (k)|
exp

{
− 1

2 [z
u (k)− h [x (k)]]T

×Ru (k)−1 [zu (k)− h [x (k)]]

}
(22)

As is known, there are mk cyclic ambiguous azimuths in the array processed measurement, then
let the ith measurement producing from the true target be the event A(k) = i. Therefore, the probability
density function becomes:

p (A (k) = i|h [x (k)]) =
1

mk
(23)

p (zu
i (k)|A (k) = i, h [x (k)]) =

1√
|2πRu (k)|

exp

{
− 1

2
[
zu

i (k)− h [x (k)]
]T

×Ru (k)−1 [zu
i (k)− h [x (k)]

] } (24)

However, the target true state usually cannot be obtained in practice. We can only focus on
the conditional probability based on predicted values. Thus, the probability density function can be
expressed as:

p
(

A (k) = i
∣∣∣Θk−1

)
=

1
mk

(25)

p
(

Θu (k)
∣∣∣A (k) = i, Θk−1

)
= p

(
zu

i (k)
∣∣∣A (k) = i, Θk−1

)
= 1√

|2πSu(k)|
exp

{
− 1

2
[
zu

i (k)− h [x̂u (k|k− 1)]
]T

×Su (k)−1 [zu
i (k)− h [x̂u (k|k− 1)]

] } (26)

where, x̂u(k|k− 1) is the predicted state vector and Su(k) is the covariance matrix of innovation.
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3.2. Second Probability Data Association Filter

In order to achieve target tracking under ambiguous angles for distributed array radar, the second
probability data association filter-based tracking method is proposed. The fusion measurement is firstly
used to accomplish the first filtering, then taking this result as prior knowledge, the array processed
ambiguous measurement is utilized to complete the second filtering. The recursive processes from
time k− 1 to k are derived as follows:

3.2.1. First Filtering

Assume that the state vector estimate and covariance matrix at time k− 1 are x̂u(k− 1|k− 1) and
Pu(k− 1|k− 1) , respectively. With the EKF method, the state vector and the covariance matrix are
predicted as:

x̂u (k|k− 1) = F (k− 1) x̂u (k− 1|k− 1) (27)

Pu (k|k− 1) = F (k− 1)Pu (k− 1|k− 1) FT (k− 1) + Q (k) (28)

The measurement vector prediction and its corresponding covariance matrix, and the gain matrix
of EKF are given as:

ẑu (k|k− 1) = h [x̂u (k|k− 1)] (29)

Ss (k) = Hx [k, x̂u (k|k− 1)]Pu (k|k− 1)Hx
T [k, x̂u (k|k− 1)] + Rs (k) (30)

Ws (k) = Pu (k|k− 1)Hx
T [k, x̂u (k|k− 1)] [Ss (k)]−1 (31)

The updated state vector estimate and the corresponding covariance matrix of the first filtering
are then calculated using the fusion measurement zs(k) as:

x̂s (k|k) = x̂u (k|k− 1) + Ws (k) [zs (k)− ẑu (k|k− 1)] (32)

Ps (k|k) = Pu (k|k− 1)−Ws (k)Ss (k) [Ws (k)]T (33)

The probability density function of the first filtering state estimate is:

p
(

x̂s (k|k)
∣∣∣Θs(k), Θk−1

)
=

1√
|2πPs (k|k)|

exp

{
− 1

2 [x̂
s (k|k)− x (k|k)]T

×Ps (k|k)−1 [x̂s (k|k)− x (k|k)]

}
(34)

where x(k|k) is the target true state vector at time k. After the above process, the first filtering
is accomplished.

3.2.2. Second Filtering

The above state estimate and the corresponding covariance matrix are taken as prior knowledge.
The array processed measurement is then utilized to complete the second filtering. The predicted
measurement vector, innovation covariance matrix, and gain matrix after the first filtering are
calculated as:

ẑs (k|k) = h [x̂s (k|k)] (35)

Su (k) = Hx [k, x̂s (k|k)]Ps (k|k)Hx
T [k, x̂s (k|k)] + Ru (k) (36)

Wu (k) = Ps (k|k)Hx
T [k, x̂s (k|k)] [Su (k)]−1 (37)

The association probability of each ambiguous estimate is calculated. Let the ith measurement
zu

i (k) producing from the true target be the event A(k) = i, then the conditional probability of this
event is:
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βi (k) = Pr
{

A (k) = i
∣∣∣Θk
}
= Pr

{
A (k) = i

∣∣∣Θu (k) , Θs (k) , Θk−1
}

=
p(A(k)=i,Θu(k)|Θs(k),Θk−1)

p(Θu(k)|Θs(k),Θk−1)

=
p(A(k)=i|Θs(k),Θk−1)p(Θu(k)|A(k)=i,Θs(k),Θk−1)

mk
∑

j=1
[p(A(k)=j|Θs(k),Θk−1)p(Θu(k)|A(k)=j,Θs(k),Θk−1)]

(38)

where:
p
(

A (k) = i
∣∣∣Θs (k) , Θk−1

)
= p

(
A (k) = i

∣∣∣Θk−1
)
=

1
mk

(39)

p (Θu (k)|A (k) = i, Θs (k) , Θk−1
)
= p

(
zu

i (k)
∣∣∣A (k) = i, Θs (k) , Θk−1

)
= 1√

|2πSu(k)|
exp

{
− 1

2
[
zu

i (k)− ẑs (k|k)
]T

×Su (k)−1 [zu
i (k)− ẑs (k|k)

] } (40)

The updated state vector estimate and the corresponding covariance matrix of the second filtering
can be acquired as:

x̂u (k|k) = x̂s (k|k) + Wu (k)
mk
∑

i=1
βi (k) vu

i (k)

= x̂s (k|k) + Wu (k) vu (k)
(41)

Pu (k|k) = Ps (k|k)−Wu (k)Su (k) [Wu (k)]T

+Wu (k)
{mk

∑
i=1

βi (k) vu
i (k)

[
vu

i (k)
]T − vu (k) [vu (k)]T

}
[Wu (k)]T

(42)

where the innovation vector can be computed as:

vu
i (k) = zu

i (k)− ẑs (k|k) , i = 1, 2, ..., mk (43)

The stable target tracking under ambiguous azimuth angles for distributed array radar can be
successfully completed after employing the aforementioned steps. As a result, the azimuth filtering
accuracy will be promoted significantly and the position filtering accuracy will also improve.

3.3. Computational Complexity

In this section, the computational complexity of the proposed method is investigated and
compared with the EKF method. Since these algorithms can be decomposed into basic mathematical
operations whose computational complexities are well known, such as matrix multiplication, matrix
inversion, etc., the computational complexity analysis based on these operations can be shown in
Table 1.

The first column lists the mathematical operations, here A and B are matrices or vectors whose
size are denoted by the subscript, N is the order of state vector, α is a constant value, βn and γn

are two numbers where n refers to the number of digits. In our paper, the constant velocity motion
model is used, thus N = 6. If the constant acceleration motion model is used, then N = 9. It can
be seen that N is a small value. The size of measurement vector is three, which is less than N; for
simplicity, we treat it as N in order to reduce the number of operations. The second column lists
the computational complexities of these operations. Then each operation has been counted for the
two algorithms, i.e., EKF and SePDAF, and their numbers are listed in the third and fourth columns.
The fifth column is the counting number of SePDAF divided by the counting number of EKF under
different complexity operations.

It can be found that compared with EKF, SePDAF almost has the same number of O(N3)

operations whose complexity is the highest; while for the other lower complexity operations, SePDAF
have no more than 3mk times the counting number over EKF. Since mk is a finite number and it
can be sharply reduced by introducing the fusion estimation as prior knowledge, the computational
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complexity of the lower complexity operations can also be greatly decreased. To sum up, since O(N3)

operations have the highest computational complexity, we can conclude that our proposed SePDAF
will almost have the same computation time compared with EKF. Furthermore, the proposed two step
filtering will double the computation time. Fortunately, this is an acceptable cost in reality in order to
achieve higher accuracy azimuth estimation. Therefore, we can conclude that our proposed method
has relatively low computational complexity.

Table 1. Computational complexity of EKF and SePDAF.

Operation Complexity EKF SePDAF SePDAF/EKF

AN×N × BN×N O(N3) 8 8

1.1A−1
N×N O(N3) 1 1

|A| O(N3) 0 1

AN×N × BN×1 O(N2) 2 mk + 1

0.4mk + 0.9
AN×1 × B1×N O(N2) 0 mk + 1

AN×N + BN×N O(N2) 3 mk + 3

AT
N×N O(N2) 3 2

A1×N × BN×1 O(N) 0 mk

2.5mk + 0.5
AN×1 + BN×1 O(N) 2 2mk

α×AN×1 O(N) 0 mk

AT
N×1 O(N) 0 mk + 1

exp(βn) O(n2logn) 0 mk 0.5mk + 1
tan−1(βn) O(n2logn) 2 2

βn × γn O(n2) 31 2mk + 32
0.1mk + 1.1√

βn O(n2) 4 5

βn + γn O(n) 6 mk + 5 0.2mk + 0.8

4. Simulations

The diagram of the simulation scenario is shown in Figure 1 and the simulation parameters are
shown in Table 2. The distributed array radar works in the C-band, it consists of eight identical
sub-radars and it arranges in ULA whose sub-radar spacing is 2 m, so the baseline is 14 m.
The sub-radar is also ULA with 20 antenna elements, and its antenna aperture is 0.5 m. The reference
radar is positioned at the origin of the Cartesian coordinate system, the initial target position in 3D
Cartesian coordinate is (100 km, 100 km, 100 km), the target constant velocity in 3D Cartesian coordinate
is (−200 m/s, −150 m/s, −120 m/s), where each part of the 3D Cartesian coordinate denotes the
projection in the x-axis, y-axis, and z-axis. The carrier frequency of the transmitting signal is 6 GHz,
the bandwidth is 10 MHz, and the snapshot number is 10. The variance of the process noise is 1.
Assuming the SNR is 20 dB, the fusion measurement noise and array processed measurement noise are
Rs(k) = diag[(0.0838m)2, (0.0408

◦
)

2, (0.0408
◦
)

2
] and Ru(k) = diag[(0.0838m)2, (0.0013

◦
)

2, (0.0408
◦
)

2
],

respectively. It can be seen that the azimuth accuracy of Ru(k) is far higher than the one of Rs(k),
but it will have numerous ambiguous estimates. The total tracking time is 10 s, with a sampling time
interval 0.01 s.
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Table 2. Simulation parameters.

Parameter Value Parameter Value

Frequency band C-band Carrier frequency (MHz) 6000
Sub-radar number 8 Bandwidth (MHz) 10

Sub-radar spacing (m) 2 Snapshot number 10
Baseline (m) 14 Process noise variance 1

Antenna elements number 20 Tracking time (s) 10
Antenna aperture (m) 0.5 Sampling time interval (s) 0.01

In order to evaluate the performance of the tracking filter, root-mean-square error (RMSE) in
position and azimuth are presented as:

RMSEPOS (k) =

√√√√ 1
MC

MC

∑
m=1

[x̂u
m (k|k)− x (k)]2 + [ŷu

m (k|k)− y (k)]2 + [ẑu
m (k|k)− z (k)]2 (44)

RMSEAZI (k) =

√√√√ 1
MC

MC

∑
m=1

[
θ̂u

m (k|k)− θ (k)
]2

(45)

where, MC is the number of Monte Carlo simulations, [ x̂u
m(k|k) ŷu

m(k|k) ẑu
m(k|k) ] and

[ x(k) y(k) z(k) ] are the state estimate and true value at time k, θ̂u
m(k
∣∣k) and θ(k) are the azimuth

estimate and true value, respectively. Additionally, the subscript m means the index of Monte Carlo
simulations. Correspondingly, the time-average RMSE (TARMSE) in position and azimuth can be
further obtained by:

TARMSEPOS =
1

L2 − L1

k=L2

∑
k=L1+1

RMSEPOS (k) (46)

TARMSEAZI =
1

L2 − L1

k=L2

∑
k=L1+1

RMSEAZI (k) (47)

where L1 and L2 are the start and end time of evaluating the TARMSE.
All the following simulations are carried out in MATLAB R2012b software (The MathWorks, Inc.,

Natick, MA, USA). Applying 100 Monte Carlo experiments, the position RMSE and azimuth RMSE
under SNR = 12 dB, SNR = 20 dB and SNR = 30 dB by employing the proposed tracking method can
be achieved, as shown in Figure 2. The original fusion measurement and corresponding EKF result
using the traditional tracking mode are depicted as a comparison. It can be seen that the proposed
algorithm will produce a stable trajectory and it will converge after 4 s. In addition, compared to the



Sensors 2016, 16, 1456 11 of 14

fusion result or the EKF result of the fusion measurement, the proposed SePDAF method will decrease
the target position RMSE and significantly decrease the azimuth RMSE. That is to say, the proposed
method could disambiguate the set of ambiguous angle estimates and acquire the high accuracy angle
filtering result.Sensors 2016, 16, 1456 12 of 15 
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Figure 2. Position RMSE and azimuth RMSE after using the proposed method: (a,b) SNR = 12 dB;
(c,d) SNR = 20 dB; and (e,f) SNR = 30 dB.

Assuming the SNR of single sub-radar varies from 12 dB to 30 dB with a step interval of 2 dB,
then the target TARMSE of the position and azimuth under different SNR can be simulated, which is
shown in Figure 3. It can be seen that with the SNR rising, the target TARMSEs of the position and
azimuth will decrease gradually. Moreover, the azimuth TARMSE of the proposed method is reduced
by a factor of about 1/25 when SNR is 30 dB, thus obtaining the high accuracy azimuth filtering result
from the ambiguous estimates.
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Figure 3. TARMSEs under different SNR after using the proposed method: (a) position RMSE;
and (b) azimuth RMSE.

Suppose the single sub-radar’s SNR is 20 dB, the sub-radar spacing changes from 0.5 m to 7.5 m
with a step interval of 1 m. Figure 4 draws the target TARMSEs of position and azimuth under different
sub-radar spacing. It indicates that the position TARMSE is almost identical with the sub-radar spacing
rising, and it is the same for the fusion measurement and the EKF result. However, the azimuth
TARMSE of the proposed method will drop greatly by a factor of 1/100 when the sub-radar spacing
is increased to 7.5 m, thus achieving the high accuracy azimuth filtering estimate. The reason is that
the increase of spacing can only improve the azimuth accuracy, while the range and elevation angle
accuracy remain the same; thus, the position accuracy will not greatly improve.
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Figure 4. TARMSEs under different sub-radar spacing after using the proposed method: (a) position
RMSE; and (b) azimuth RMSE.

In addition, assume the sub-radar number varies from 2–16 with a step interval of 2. Figure 5
depicts the target TARMSEs of position and azimuth under different sub-radar numbers. It denotes
that the two TARMSEs will decline as the sub-radar number increases. Furthermore, the azimuth
TARMSE will drop to 1/60 when the distributed array radar has 16 sub-radars. This indicates that the
high accuracy true angle estimate has already been disambiguated from the ambiguous ones.
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Figure 5. TARMSEs under different sub-radar number after using the proposed method: (a) position
RMSE; and (b) azimuth RMSE.

5. Conclusions

This paper proposes a second probability data association filter-based tracking method for
distributed array radar. It firstly uses the fusion measurement of all radars to the EKF to achieve the first
filtering. Then the SePDAF is applied as the second filtering which takes the first filtering result as prior
knowledge and utilizes the array processed ambiguous angle measurements. Therefore, the target can
be tracked steadily. Specifically, the azimuth filtering accuracy will be promoted significantly and the
position filtering accuracy will also improve after employing this method. Additionally, this method
has relatively low computational complexity. Finally, simulation results verify the effectiveness of the
proposed method. Future works will concentrate on the verification of the proposed method in the
real environment and even in the real battlefield by using an experimental radar system.
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