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Abstract

Identification of novel drug targets is a critical step in drug development. Many recent

studies have produced multiple types of data, which provides an opportunity to mine the

relationships among them to predict drug targets. In this study, we present a novel inte-

grative approach that combines ontology reasoning with network-assisted gene ranking

to predict new drug targets. We utilized colorectal cancer (CRC) as a proof-of-concept use

case to illustrate the approach. Starting from FDA-approved CRC drugs and the relation-

ships among disease, drug, gene, pathway, and SNP in an ontology representing

PharmGKB data, we inferred 113 potential CRC drug targets. We further prioritized these

genes based on their relationships with CRC disease genes in the context of human

protein–protein interaction networks. Thus, among the 113 potential drug targets, 15

were selected as the promising drug targets, including some genes that are supported

by previous studies. Among them, EGFR, TOP1 and VEGFA are known targets of FDA-

approved drugs. Additionally, CCND1 (cyclin D1), and PTGS2 (prostaglandin-endoperox-

ide synthase 2) have reported to be relevant to CRC or as potential drug targets based on

the literature search. These results indicate that our approach is promising for drug

target prediction for CRC treatment, which might be useful for other cancer therapeutics.

Introduction

Drug discovery is a time-consuming and expensive process,

especially for complex diseases. In the last decade, in con-

trast to traditional phenotypic drug discovery, target-based

methods for drug discovery have become more common

and effective (1). Additionally, drug repurposing, finding

new therapeutic uses for old drugs, is another efficient and

effective approach to facilitating drug discovery (2).

However, the traditional approaches for drug repurposing

still mainly depend on phenotypic drug screening or target-

based methods using prior knowledge of mechanisms

(3, 4). Since the knowledge related to drug action is

VC The Author 2015. Published by Oxford University Press. Page 1 of 9
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2015, 1–9

doi: 10.1093/database/bav015

Original article

http://www.oxfordjournals.org/


distributed among different knowledge domains and differ-

ent databases, it becomes challenging to design effective

strategies for revealing the hidden connections between

novel drug targets and repurposed drugs. Recently, compu-

tational approaches have become one of the major methods

for alleviating this issue through the comprehensive integra-

tion of heterogeneous knowledge and data, including gen-

etic and genomic data, pharmaceutical data and pathway

data. Therefore, these approaches could accelerate the

process of revealing the valuable information underlying

these complicated data and lead to the identification of

promising drug targets and repurposed drugs (2, 5).

Most computational methods focused on revealing new

relationships between drugs and diseases based on different

biological perspectives such as pathway profiles (6), drug

similarities (7) or gene expression data (5, 8). However,

drug-disease relationships are not isolated from other

relationships since many factors systematically contribute

to the determination of the molecular mechanisms underly-

ing drug action. Therefore, it is important to consider dif-

ferent factors comprehensively and interactively when

developing effective medications. Thus, in this study, we

utilized the semantic web and biological network technolo-

gies to integrate the relationships among drugs, genes, dis-

eases, pathways and SNPs into one system for discovering

potential drug targets.

The semantic web technology provides several unique

benefits for data integration and knowledge inferences.

Representing relevant drug and disease associations using

semantic web notations will enable flexible data integration

among heterogeneous data sets, which is a well-known chal-

lenge in the translational science study community (9). The

Web Ontology Language (OWL) is a standard ontology lan-

guage for the Semantic Web that allows drug relevant

knowledge to be represented in a machine-understandable

way (an ontology), which enables automatic semantic rea-

soning for drug repurposing (10). The Resource Description

Framework (RDF) is a W3C standard for representing data

that allows efficient querying and visualization of relation-

ships between biomedical entities (11). RDF itself can be

viewed as a graph that can serve as the foundation of net-

work-based analysis. Network-based approaches to human

disease and treatment have multiple potential biological and

clinical applications, such as novel drug discoveries (12–14)

and identification of novel drug targets (15, 16).

Colorectal cancer (CRC) is one of the most commonly

diagnosed cancers. It involves multiple genes or proteins

that interact with each other, but in which each gene or

protein contributes a small ‘risk’ on its own (17). Previous

research suggests that the most effective medications

should interact with or have influence on several molecular

targets, not just one target (18, 19). Thus, we hypothesized

that the combination of ontology-based data representa-

tion, semantic-based reasoning and network-based priori-

tization will facilitate the prediction of novel targets for the

development of novel CRC therapy. In this study, we first

represented the relationships among drugs, diseases, genes,

pathways and SNPs in an OWL ontology. We then speci-

fied computer rules to infer potential CRC drug targets.

From these inferred targets, we prioritized the most prom-

ising drug targets for CRC treatment by integrating the

relationships between drug targets and CRC disease genes

in the context of a human protein–protein interaction (PPI)

network. Three of the results are known targets of FDA-

approved drugs used to treat CRC. Additionally, some

others have been supported to be related to CRC or as

potential drug targets based on literature search results.

The results indicate that our combination method of ontol-

ogy and network analysis is promising for the identifica-

tion of novel drug targets, which may provide valuable

information for development of novel CRC treatment.

Materials and methods

Collecting FDA-approved CRC drugs, drug

classification and drug targets

We first collected the FDA-approved drugs to treat CRC

from the cancer drug list (http://www.cancer.gov/cancer-

topics/druginfo/alphalist), which was compiled by the

National Cancer Institute. We further verified the indication

and usage information of these drugs using their FDA label

files. To learn more about these drugs, we extracted their

classification information from the Anatomical Therapeutic

Chemical (ATC) classification from KEGG (Kyoto

Encyclopedia of Genes and Genomes) (20). The ATC classi-

fication provides information for a given drug regarding

which organ or system it acts on and/or its therapeutic and

chemical characteristics. The KEGG includes several do-

mains of knowledge, such as diseases, genes, pathway, drugs

and genomes. It not only provides detailed information for

each entity but also consists of the relationships among these

entities within each domain or across different domains.

Data and relationships in KEGG were mainly collected

from literature (21). Drug targets were extracted from the

DrugBank (22) and the Therapeutic Target Database (TTD)

(23) (Supplementary Table S1).

Constructing a CRC drug ontology for inferring

potential CRC drug targets

We have created an OWL ontology for drugs, diseases,

genes, pathways and SNPs, and modeled the relations

among them using data downloaded from the PharmGKB

Page 2 of 9 Database, Vol. 2015, Article ID bav015

,
,
``
'' 
,
-
,
colorectal cancer (
)
http://www.cancer.gov/cancertopics/druginfo/alphalist
http://www.cancer.gov/cancertopics/druginfo/alphalist
 (NCI)
,
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bav015/-/DC1
, 


database (May 2013 version) (24). The PharmGKB is a

pharmacogenomics knowledge resource, which collects,

curates and disseminates knowledge about the impact of

human genetic variation on drug responses (25). We used

data extracted from the relationship file and pathway file

from PharmGKB. The files were first loaded into a rela-

tional database. We then manually defined a PharmGKB

ontology that contains meta-level classes such as drug,

disease, gene, pathway and SNP. Object properties were

also defined to describe the relations between the classes

(e.g. associatedWithGene, associatedWithDisease, etc.) We

then developed a Java converter that reads the data from

the relational database and stores the data at the instance

level in OWL. Each entity (e.g. a particular gene or disease)

is represented as instances (OWL individuals) of the corres-

ponding class. Relationships between these individuals are

defined using RDF triples with the defined object property

(e.g. GP1BB associatedWithGene COL3A1).

On top of this PharmGKB ontology, we further speci-

fied a drug repurposing application ontology for CRC. A

new CRC Drug class has been created to serve as the basis

of our drug target inference. We defined that a CRC drug

is a drug that is associated with Disease Colorectal

Neoplasms. In addition, all the FDA approved CRC drugs

are listed as instances of this class. We further specified

OWL DL (description logic) rules to infer possible CRC

drug target genes. A CRC relevant gene must be a gene

that associates with either a CRC associated pathway,

drug, gene or SNP. More rules are specified in the ontology

to automatically locate genes that are relevant to CRC

drugs as well as their associated SNPs, pathways, genes

and diseases. For example, we can define the SNPs that are

directly associated with any CRC drug (we call these

CRCSNP) using the DL rule SNP and associatedWithDrug

some CRCDrug. In addition, we can find the CRCSNPs

that are at most two nodes away by using this DL rule:

SNP and ((associatedwithDrug some CRCDrug) or

(associatedwithGene some CRCGene) or (associatedWithSNP

some CRCSNP)), where CRCGene is defined similar as

CRCSNP. With these DL rules, we can find genes that directly

or indirectly connect with any CRC Drug instance. In this pro-

ject, we only consider the entities that are at most two nodes

away from the CRC drug nodes. Figure 1 summarized the

process. The ontology can be accessed from our web site:

https://sbmi.uth.edu/ontology/project/drug-repurposing.htm.

Functional analysis of potential drug targets

revealed by CRC ontology search

To assess if the genes that encode the potential CRC drug

targets inferred above were enriched in the pathways related

to the CRC, we performed the KEGG pathway enrichment

analysis using an online tool called WebGestalt (version 2)

[29]. The WebGestalt performed the hypergeometric test

Figure 1. The process of semantic reasoning using CRC as an example. The process involved three steps. We first utilized the OWL definition to define

the CRC drugs in Protégé ontology editor. The ‘Equivalent to’ section shows the semantic definition of the CRC Drug class whereas the ‘Members’

section shows a partial list of all the drugs that are members of the class. Then, we employed DL rules to determine the inference path. This figure

only shows the overall rule for inferring the possible genes that are relevant to CRC drugs. Additional rules were defined to infer CRC relevant

pathways, SNPs and genes in the ontology. Finally, we used Pellet to infer potential CRC target genes. The ‘Equivalent to’ section shows a DL rule for

finding the potential CRC target a gene whereas the ‘Members’ section (in yellow background) shows the inferred target genes.
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followed by the Benjamini–Hochberg method to control

type I errors [30]. We selected those pathways that have

adjusted P-values of <0.001 as the enriched pathways. To

make the analysis biologically meaningful, we considered

only those KEGG pathways containing five or more genes.

Collecting CRC disease genes

To create a specific and comprehensive list of CRC dis-

ease-causing genes (CRC disease genes), we extracted dis-

ease genes from three resources: the Cancer Gene Census

(CGC) (26), the Online Mendelian Inheritance in Man

(OMIM) (27) and the Genetic Association database (GAD)

(28). The CGC is an ongoing effort to catalog genes with

mutations that have been causally implicated in cancer.

We downloaded the list of known cancer genes from the

CGC website in December 2013 and extracted 23 genes

associated with CRC. The OMIM database was the first

database to collect all known diseases with their genetic

components. It provides a precise and comprehensive sum-

mary of clinical and genetic information on cancer. From

its description of CRC, 12 genes were extracted

(Downloaded in December 2013). The GAD is a resource

of summarized human genetic association studies of com-

plex diseases and disorders. From GAD, we extracted 34

genes at least with one positive association with CRC

(downloaded in December 2013). After combining these

lists, we finally arrived at 56 genes as CRC disease genes.

Only three genes were common to all three data sources

(Supplementary Table S2).

Ranking CRC candidate drug targets

To identify the most promising targets among the ontol-

ogy-driven CRC potential drug targets, we implemented

network neighborhood modeling to prioritize the potential

drug targets. More specifically, we utilized the relation-

ships among drug targets and CRC disease genes in the

context of the human PPI network. The ranking method

was mainly based on the hypothesis that the closer the

targets are to causal genes, the more efficiently drugs will

act. The human PPI network provides a comprehensive

platform to investigate the association between CRC

disease genes and drug targets (18).

Here, we first downloaded the human PPIs from the

Protein Interaction Network Analysis platform (PINA

v2.0) (downloaded in September 2013) (29), which were

derived from human-related experiments. After filtering

out the PPIs without experimental evidence and removing

redundancies and self-interactions, we built a human PPI

network that included 101 219 edges and 12 978 proteins.

Second, we mapped the ontology-driven candidate drug

targets and CRC disease genes onto the human PPI net-

work. Third, we ranked the candidate targets based on the

fraction of CRC disease genes in their neighborhood. For

example, for a given candidate target, we collected the

nodes that have direct links with it as its first-degree neigh-

bors (N) and then counted the number of neighbors

belonging to the CRC disease genes (n). Based on the two

numbers, we calculate the fraction (n/N) to represent the

fraction of disease genes around the drug target. Previous

studies suggested that the fraction of disease genes is

enriched at the first, second and third shortest path dis-

tances in the neighborhood of drug targets. And similarly,

the fraction of drug targets is enriched at the first, second

and third shortest path distances in the neighborhood of

disease genes (18, 30). Therefore, we only utilized their

relationships at the first-, second- and third-level to rank

these candidate drug targets, respectively. To integrate the

three sets of rankings, we employed a robust rank aggrega-

tion (RRA) method, which is implemented in the R pack-

age called RobustRankAggreg (31). The RRA method can

detect genes that are ranked consistently better than

expected by chance. The method assigns a P-value to each

gene based on significant scores, which shows how much

better it is positioned in the ranked list than expected by

chance designated as potential CRC targets.

Results

Overview of the computational framework and

related data

In this study, we developed a computational framework to

integrate complex relationships among different types of

data and infer potential drug targets by using semantic

web technology, and to improve performance through net-

work neighborhood effect modeling. In this study, we util-

ize CRC as a proof-of-concept use case to evaluate this

approach. Figure 2 illustrates each step in this framework.

We first constructed the ontology based on the relation-

ships among drugs, genes, diseases, pathways and SNPs

from PharmGKB and collected FDA-approved drugs and

their targets from DrugBank. Second, we collected CRC

disease genes (Supplementary Table S2) from multiple data

sources and inferred the CRC potential drug target genes

using semantic reasoning methods. Finally, we further

prioritized the inferred genes based on their relationships

with CRC disease genes in the context of PPI networks and

performed literature searches to provide independent

evidence for the top ranked genes.

In this study, considering that the FDA approved drug

have well-characterized pharmacology, we employed the

FDA-approved drugs for one disease as the input into the
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ontology system to infer the genes that might have significant

association with drug targets, associated SNPs, genes and

pathways that reflect their molecular mechanisms. Then we

hypothesized that these genes may have potential as drug tar-

gets. Therefore, we collected 10 FDA-approved drugs to treat

CRC that existed in PharmGKB database, their classifications

and their targets (Table 1). Among the 10 drugs, eight belong

to antineoplastic agents (ATC class L01), three belong to the

monoclonal antibodies (L01XC), two to the antimetabolites

(L01B), one to the oxaliplatin (L01XA), one to the protein

kinase inhibitors (L01XE) and one to the other antineoplastic

agents (L01XX). Of the other two, the drug aflibercept

belongs to the antineovascularization agents (ATC class

S01LA) and leucovorin calcium belongs to the detoxifying

agents for antineoplastic treatment (ATC class V03AF).

Among the 10 drugs, nine have 40 unique targets that were

collected from two drug-target databases, DrugBank and

TTD.

One hundred and thirteen potential drug targets

Using the ontology-based inference from PharmGKB data,

we have inferred 113 potential genes (Supplementary

Table S3). To assess whether these 113 ontology-inferred

genes were significantly associated with CRC, we com-

pared them with the previously defined 56 CRC disease

genes and the 40 target genes encoding the 40 known tar-

gets of the 10 FDA-approved CRC drugs. Among the 113

genes, eight were present among the 56 CRC disease genes

(CCND1, MSH6, IL8, KRAS, MTHFR, MTRR, PTGS2

and TP53). The 56 CRC disease genes were collected from

three disease genetic association databases including CGC,

OMIM and GAD. The data in these databases were

curated by experts and therefore were more likely to be ac-

tual CRC disease genes.

The 113 ontologies-inferred genes were enriched signifi-

cantly with CRC disease genes when compared with the

20 737 human protein-coding genes, which was more than

expected by chance (Hypergeometric test P-value:

4.96�10�10). Similarly, among the 113 genes, there were

nine genes in common with the genes that encode the 40

CRC drug targets (ABCC1, DPYD, EGFR, FCGR2A,

FCGR3A, TOP1, TYMS, VEGFA and VEGFB). Thus, the

ontology-inferred genes were also significantly enriched with

CRC drug target genes when compared with the 20 737

human protein-coding genes (P-value: 7.15�10�13).

To further examine the functional characteristics of

these 113 genes, we performed a KEGG pathway enrich-

ment analysis using the tool WebGestalt. We identified a

total of 30 pathways that are significantly enriched in these

113 genes (Table 2). These pathways can be grouped into

five major biological processes according to the KEGG

BRITE pathway hierarchies. Two of the pathways belong

to cellular processes, 4 to environmental information pro-

cessing, 10 to human diseases (nine cancer-related and one

infectious disease), 12 to metabolism and 2 to organismal

systems. Considering that our ontology knowledge is

mainly from PharmGKB, the observation that the majority

of these pathways belong to drug metabolism and cancer is

not surprising. More interestingly, carbohydrate meta-

bolic-related pathways such as ‘ascorbate and aldarate me-

tabolism’, ‘pentose and glucuronate interconversions’ and

‘starch and sucrose metabolism’ were also observed in

these genes, which were consistent with previous studies

that reported that the glycemic load and carbohydrate in-

take are associated with risk of CRC (32). In addition, the

Figure 2. Computational framework for predicting the potential drug targets using CRC as an example. The framework involves three main steps:

1) ontology construction and collection of CRC drugs and their targets, 2) semantic reasoning and 3) network-based gene prioritization.
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‘bile secretion’ pathway (adjusted P-value: 9.85� 10�15)

was also significantly enriched in these 113 genes. This

pathway has been reported to play an important role in the

CRC pathogenesis as evidenced by epidemiological and ex-

perimental studies (33–35). In addition, the pathway ‘ster-

oid hormone biosynthesis’ (adjusted P-value: 1.73� 10�21)

is also enriched in these 113 genes, which is consistent with

the results observed in the colon carcinoma cell lines DLD1

and SW480 after treatment with b-catenin siRNA (36).

Those observations highlighted that these 113 potential

genes might be involved in the drug action in CRC

treatment.

Fifteen promising drug targets

Starting from the 113 genes, we performed gene ranking

based on their neighborhood of CRC disease genes in the

context of one human PPI network. To assess the associ-

ation between the 113 ontology-inferred genes and the

CRC, we employed the relationships between them and

CRC disease genes. Considering that the majority of drug

targets has shortest path lengths ranging from one to three

(18, 30), we mainly ranked these 113 genes at the first-, se-

cond- and third-degree level, respectively, and then

integrated their rankings by a novel RRA method from a R

package called RobustRankAggreg (31).

Among the 113 genes, 15 genes had significant P-values

(Table 3). Among them, three encode known CRC drug

targets including EGFR, TOP1 and VEGFA. The EGFR is

the target of the drugs cetuximab and panitumumab;

TOP1 is the target of the drug irinotecan and VEGFA is

the target of the drugs aflibercept and bevacizumab.

Besides, the CCND1 (cyclin D1) is the target of the drug

arsenic trioxide, which is used to treat leukemia. The

PTGS2 (prostaglandin-endoperoxide synthase 2) is the tar-

get of multiple drugs such as lenalidomide, pomalidomide

and thalidomide. The lenalidomide is used for treating

lymphoma. Both pomalidomide and thalidomide are used

for treating multiple myelomas and other plasma cell neo-

plasms. The CCND1 is a well-recognized oncogene that is

amplified and/or overexpressed in a substantial proportion

of human cancers including colon, prostate and breast

(37). Therefore, it might be a promising anti-cancer thera-

peutic target (38). The gene PTGS2 encodes prostaglandin

G/H synthase-2, which catalyzes the first two steps in the

metabolism of arachadonic acid. It is overexpressed in

many types of cancer such as colon, stomach, breast and

lung (39). Additionally, PTGS2 has three variations with

Table1. Summary of FDA-approved drugs used to treat CRC and their targets

Drug name PharmGKB ID ATC classification Targets from DrugBank Targets from TTD Number of targets

Bevacizumab PA130232992 L01XC07 C1QA, C1QB, C1QC,

C1R, FCGR1A,

FCGR2A, FCGR2B,

FCGR2C, FCGR3A,

FCGR3B, VEGFA

11

Capecitabine PA448771 L01BC06 TYMS TYMS 1

Cetuximab PA10040 L01XC06 C1QA, C1QB, C1QC,

C1R, C1S, EGFR,

FCGR1A, FCGR2A,

FCGR2B, FCGR2C,

FCGR3A, FCGR3B

ABCC1, EGFR 13

Fluorouracil PA128406956 L01BC02 TYMS DPYD 2

Irinotecan

hydrochloride

PA450085 L01XX19 TOP1, TOP1MT, TYMS TOP1 3

Leucovorin

calcium

PA450198 V03AF03 TYMS TYMS 1

Oxaliplatin PA131285527 L01XA03 0

Panitumumab PA162373091 L01XC08 EGFR EGFR, GLRB,

GUCY2C

3

Regorafenib — L01XE21 ABL1, BRAF, DDR2,

EPHA2, FGFR1, FGFR2,

FLT1, FLT4, FRK, KDR,

KIT, MAPK11, NTRK1,

PDGFRA, PDGFRB,

RAF1, RET, TEK

18

Aflibercept — S01LA05 PGF, VEGFA, VEGFB KDR 4
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pharmacogenomics significance (rs20417, rs5275 and

rs689466) (40). Therefore, inhibiting it with drugs such as

aspirin, celecoxib and ibuprofen might have potential for

the prevention and treatment of cancer (41).

Discussion

In this study, we introduce a computational framework to

integrate ontology-based data representation, semantic

reasoning and network-based gene prioritization for pre-

dicting potential drug targets. In the this article, we repre-

sented data from the PharmGKB data tables using an

OWL ontology. To illustrate that the framework is

implementable, we utilized CRC as an example. Starting

from FDA-approved CRC drugs and the relationships

among drugs, genes, diseases, SNPs and pathways from

PharmGKB, the system inferred 113 genes that could be

relevant to CRC based on a set of DL rules defined in the

ontology. We then further integrated these genes in the

context of PPIs, and further inferred 15 potential drug tar-

gets for CRC. Some of them are known targets of FDA-

approved drugs; others have been reported to be relevant

in CRC or CRC treatment. These results demonstrate that

the computational framework effectively integrates various

types of data and different technologies to predict potential

drug targets. In this novel framework, we combined the

ontology-based reasoning and network-based prioritiza-

tion to predict potential drug targets, which can be applied

to other diseases as well.

Though the framework effectively predicted potential

drug targets, there are ways to improve this approach.

First, integrating more relationships among drugs, genes,

diseases, SNPs and pathways from more relevant data

sources such as DrugBank and KEGG into the ontology

system will provide more choices for determination of in-

ference paths during semantic reasoning. In addition, we

can take the types of relationships among drugs, genes, dis-

eases, SNPs and pathways into consideration. Our current

system treats all types of relations equally. The inferred re-

sults could be improved if different types of relations are

considered differently. Second, the accuracy and comple-

ment of disease genes and drug targets plays a critical role

in the network-based prioritization. In the future, we will

expand the disease gene source to include for example the

Catalogue Of the Somatic Mutations in Cancer (42) and

the Comparative Toxicogenomics Database (43) and

Table 2. KEGG pathways enriched significantly in the 113

genes

KEGG pathwaya Adjusted P-valueb

Drug metabolism—other enzymesM 1.37�10�42

Metabolic pathwaysM 4.58�10�23

Metabolism of xenobiotics

by cytochrome P450M

6.63�10�22

Steroid hormone biosynthesisM 1.73�10�21

Retinol metabolismM 9.48�10�21

Drug metabolism—cytochrome P450M 5.10�10�20

Bladder cancerD 5.21�10�17

Ascorbate and aldarate metabolismM 5.21�10�17

Pentose and glucuronate interconversionsM 3.73�10�16

ErbB signaling pathwayE 1.73�10�15

Porphyrin and chlorophyll metabolismM 6.00�10�15

Other types of O-glycan biosynthesisM 9.85�10�15

Bile secretionO 9.85�10�15

Starch and sucrose metabolismM 4.35�10�14

Pancreatic cancerD 4.78�10�13

ABC transportersE 5.31�10�13

Pathways in cancerD 7.13�10�12

Pyrimidine metabolismM 9.97�10�12

Prostate cancerD 6.39�10�9

Non-small cell lung cancerD 9.90�10�9

GliomaD 2.94�10�9

Endometrial cancerD 3.63�10�7

Renal cell carcinomaD 1.55�10�6

MelanomaD 1.60�10�6

Gap junctionC 4.99�10�6

Cytokine-cytokine receptor

interactionE

7.82�10�6

GnRH signaling pathwayO 8.13�10�6

Focal adhesionC 1.65�10�5

Hepatitis CD 2.98�10�5

MAPK signaling pathwayE 7.00�10�4

aThe capital letters beside the pathway names are the abbreviation of the

KEGG category names at the first-level. C, cell communication, E, environ-

mental information processing, D, human diseases, M, metabolism, O, organ-

ismal systems.
bAdjusted P-value was corrected from nominal P-values by

Benjamini–Hochberg multiple testing corrections.

Table 3. Genes encoding the 15 promising drug targets

Rank Gene Symbol P-valuea

1 TP53 5.06�10�6

2 EGFR 1.37�10�4

3 UBE2I 1.37�10�4

4 CCND1 6.33�10�4

5 TOP1 6.33�10�4

6 MECP2 5.06�10�3

7 IMPDH2 6.74�10�3

8 NOS3 6.74�10�3

9 XRCC1 6.74�10�3

10 GNAS 0.0087

11 VEGFA 0.0139

12 PTGS2 0.0207

13 CFH 0.0296

14 MSH6 0.0437

15 GSTP1 0.0469

aP-value was calculated based on score distribution.
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manually check relevant publications to obtain the most

promising disease genes. For the drug targets, we will manu-

ally check FDA drug labels and relevant publications to de-

termine the proteins that are responsible for the desired

pharmacological effects. Finally, in this framework, we uti-

lized the PPIs from the PINA database that include physical

associations, genetic associations and enzymatic reactions.

In the future, we will further test if disease genes and targets

are preferentially found in particular associations. Besides

improving performance, we will expand the prediction of

drug targets to drug repurposing, and finally pursue clinical

trials for several promising drugs after critical assessment

for these repurposed drugs.

Conclusion

In this article, we present our work on using ontology and

network analysis methods to infer potential CRC-relevant

genes. We inferred 113 potential CRC drug targets, of which

15 were selected as promising drug targets based on network-

assisted ranking, including some genes that are supported by

previous studies. The result indicates that our approach is

promising for drug target prediction for CRC treatment.

Supplementary Data

Supplementary data are available at Database Online.
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