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Purpose: Accurate segmentation of gross target volume (GTV) from computed
tomography (CT) images is a prerequisite in radiotherapy for nasopharyngeal carcinoma
(NPC). However, this task is very challenging due to the low contrast at the boundary of
the tumor and the great variety of sizes and morphologies of tumors between different
stages. Meanwhile, the data source also seriously affect the results of segmentation. In
this paper, we propose a novel three-dimensional (3D) automatic segmentation algorithm
that adopts cascaded multiscale local enhancement of convolutional neural networks
(CNNs) and conduct experiments on multi-institutional datasets to address the
above problems.

Materials and Methods: In this study, we retrospectively collected CT images of 257
NPC patients to test the performance of the proposed automatic segmentation model,
and conducted experiments on two additional multi-institutional datasets. Our novel
segmentation framework consists of three parts. First, the segmentation framework is
based on a 3D Res-UNet backbone model that has excellent segmentation performance.
Then, we adopt a multiscale dilated convolution block to enhance the receptive field and
focus on the target area and boundary for segmentation improvement. Finally, a central
localization cascade model for local enhancement is designed to concentrate on the GTV
region for fine segmentation to improve the robustness. The Dice similarity coefficient
(DSC), positive predictive value (PPV), sensitivity (SEN), average symmetric surface
distance (ASSD) and 95% Hausdorff distance (HD95) are utilized as qualitative
evaluation criteria to estimate the performance of our automated segmentation algorithm.
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Results: The experimental results show that compared with other state-of-the-art
methods, our modified version 3D Res-UNet backbone has excellent performance and
achieves the best results in terms of the quantitative metrics DSC, PPR, ASSD and HD95,
which reached 74.49 ± 7.81%, 79.97 ± 13.90%, 1.49 ± 0.65 mm and 5.06 ± 3.30 mm,
respectively. It should be noted that the receptive field enhancement mechanism and
cascade architecture can have a great impact on the stable output of automatic
segmentation results with high accuracy, which is critical for an algorithm. The final
DSC, SEN, ASSD and HD95 values can be increased to 76.23 ± 6.45%, 79.14 ± 12.48%,
1.39 ± 5.44mm, 4.72 ± 3.04mm. In addition, the outcomes of multi-institution
experiments demonstrate that our model is robust and generalizable and can achieve
good performance through transfer learning.

Conclusions: The proposed algorithm could accurately segment NPC in CT images from
multi-institutional datasets and thereby may improve and facilitate clinical applications.
Keywords: nasopharyngeal carcinoma, segmentation, deep learning, radiotherapy, CT images
1 INTRODUCTION

Originating in the nasopharynx epithelium, NPC is a malignant
tumor with the highest incidence among otolaryngological
cancers in Southwest Asia, Southern China and Northern
Africa (1, 2). Radiation therapy is the preferred treatment
strategy for NPC because the poorly differentiated squamous
cell carcinoma discovered upon pathological examination of
patients with NPC is commonly radiosensitive (3). Delineating
the tumor contour is the essential step in radiotherapy planning,
which is the mainstay of NPC treatment. Based on the gross
tumor volume (GTV) and organs at risk (OARs), the dose
distribution of irradiation can be calculated by a radiation
physicist. Therefore, accurate segmentation contributes to
delivering the prescribed dose to the tumor volume while
improving the sparing of OARs (4). However, in clinical
practice, tumor segmentation is carried out manually by slices
using multimodal or multiparametric imaging datasets, which is
time-consuming (5, 6). Interobserver variability, especially in
accuracy, is based on the expertise and experience of the
radiation oncologist (7, 8) because on imaging, NPC often has
a more complex tissue structure that has a similar intensity to its
neighboring organs and a high variations in shape and size
among cases (9). Accordingly, it is clinically desirable to develop
a robust, accurate and automatic algorithm for target
segmentation, which is helpful for reducing the labor intensity
and interobserver variability.

Among many of the proposed autosegmentation approaches,
atlas-based segmentation (10) has been widely used for the
delineation of targets and/or OARs in head-and-neck
radiotherapy (11–14), and it can obtain acceptable results
without supervision. Currently, with the enormous success of
deep learning in object detection (15), image classification (16),
and segmentation (17), the applications of deep learning in
medical imaging have received great attention. As the most
popular algorithm for deep learning, convolutional neural
networks (CNNs) have made significant progress in semantic
2

segmentation with the advantage of an end-to-end framework
for feature learning and model training. After the full
convolutional network (FCN) was proposed by Long et al.
(18), segmentation was achieved more efficiently in inference
and learning for images with arbitrary sizes. UNet is the most
successful FCNs utilized in medical image segmentation
investigations and has been cited more than 29000 times since
it was proposed in 2015 (17). Its success is largely attributed to
the U-shaped architecture and skip connection in which the
fusion of multiscale features and the recovery of fine-grained
details can be realized effectively.

Deep learning with the CNN technique in tumor
segmentation has recently made progress in the brain (19),
rectum (20) and breast (21). For the segmentation of the GTV
of NPC, a majority of CNN-based approaches have been applied
in magnetic resonance imaging (MRI), which demonstrates
superb resolution and soft tissue contrast and obtains
satisfying results (22–24). However, radiotherapy plans are
designed based on CT images, and MRI-based radiation
therapy techniques have not been widely applied in clinical
practice. Benefitting from the complementary information
from both CT and MRI images, Ma et al. (25) proposed a
multimodality segmentation framework based on CNN. While
the performance of this kind of approach largely depends on the
image registration accuracy, its difficulty will be further increased
due to different body positions, scan times and imaging
mechanisms. Therefore, the CT-based NPC segmentation
technique is the core element that can actually solve the above
clinical problems.

Although several methods have been explored for CT-based
GTV segmentation (4, 26, 27), the results are barely satisfactory,
and it remains the most challenging task primarily because of 1)
CT images with lower contrast result in a lack of clear tumor
boundaries; 2) tumors present a great variety of sizes and
morphologies between different stages, especially for stages T3
and T4, which always have lymph node metastasis and other
distant metastases, thus increasing the difficult of distinguishing
March 2022 | Volume 12 | Article 827991
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the primary tumor. Therefore, the presented algorithms
demonstrated good performance for early nasopharyngeal
carcinoma, although the accuracy decreased sharply when
advanced-stage tumors were included. Meanwhile, most of
these methods were based on 2D segmentation models with a
lack of complementary information between CT image layers.
Notably, current research is based only on one specific institution
dataset and does not consider differences between different data
sources, which limits the universality of clinical applications.

Hence, we explored automatic delineation of GTV based on
CT images and assessed its applicability for stages T1-T4. In our
previous study (28), a modified version 3D U-Net model based
on Res-block and SE-block to delineate the GTV for NPC was
developed; however, the accuracy still needs to be improved.
With the aim of promoting network performance, we propose a
cascaded multiscale local enhancement CNN structure, which
can realize NPC segmentation from global to local scales by
concentrating on the GTV region, and multiscale features in CT
images can be captured simultaneously. Comprehensive
experiments on diverse multi-institutional planning CT
datasets were performed to demonstrate the effectiveness of
our algorithm. Both the qualitative and quantitative evaluation
results show that our approach can achieve good segmentation
performance and outperforms other state-of-the-art
segmentation methods.
2 MATERIALS AND METHODS

2.A. Datasets
We collected retrospective data on 257 patients who were
diagnosed with NPC with stage T1-T4 and underwent
radiotherapy in our institution from 2016 to 2020. Data were
derived from radiotherapy treatment planning, including plain
CT (pCT) and contrast-enhanced CT (CE-CT) images, with the
scanned region covering the overall head, neck and partial chest
obtained by simulation CT. All images were axially reconstructed
with a matrix size of 512 × 512 pixels, a resolution of 0.748~0.976
mm and a slice thickness of 3.0 mm. The radiotherapy contours
were jointly delineated slice by slice by two radiation oncologists
on the pCT image by fusion of CE-CT and MR images according
to the consensus as the ground truth. The director with 20 years’
experience of the radiation oncology department was consulted
in cases of disagreement.

Meanwhile, multi-institutional datasets were also employed
in the experiments to evaluate the performance of the proposed
Frontiers in Oncology | www.frontiersin.org
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algorithm. These datasets from institution B are composed of 40
NPC patient pCT images, and the MICCAI 2019 StructSeg
challenge (GTV segmentation task) is composed of 50 NPC
patient pCT images. Table 1 shows the details of the multi-
institutional datasets.

2.B. Overview of the Method
In this paper, inspired by cascaded method (29), we propose a
two-stage cascaded multiscale local enhancement network
structure to achieve the goal of building a precise GTV
segmentation method. In the training phase, two networks
were trained simultaneously: one was for globally coarse
segmentation predictions and named MDR-UNet1, and the
other was for locally fine segmentation predictions
concentrated on the GTV and named MDR-Uet2. The testing
phase could be divided into three steps: 1) Obtain the globally
coarse segmentation result by MDR-UNet1; 2) Identify the
central location of the ROI from coarse results and acquire
precise segmentation for the cropped target region by MDR-
UNet2; and 3) Assemble the two-stage results to output as the
final prediction. The overall framework is presented in Figure 1.

The above two-stage independent cascade network structure
with central localization was designed to achieve ‘coarse-to-fine’
segmentation for the GTV region. Moreover, there are two other
key points that should be noted in this method: 1) Crop the ROI
using a body mask, which is obtained by morphology and
geometry; and 2) Use multiscale dilated convolution blocks in
the skip connections between the encoder and decoder to
enhance the receptive field to improve the segmentation
performance. These points will be described specifically in
the following.

2.C. Preprocessing
In this study, a 3D CNN was introduced in our automated
delineation GTV network structure. However, calculation
efficiency was an issue because of the massive occupation of
graphic processing unit (GPU) memory caused by 3D data.
Reducing neural network channels, layers, and batch size are
always selected as the solution; however, such changes will have a
great negative impact on the training results. Hence, we
preprocessed the data to minimize the data cropped from the
original images and simultaneously guarantee that the target was
completely included. For the preprocessing procedures, we first
removed beds and obtained the body mask by utilizing Hough
transform line detection, threshold and morphological methods,
which are binary images with targets shown in pixels (value=1)
and ground shown in pixels (value=0). Second, the body mask
was integrated along the vertical direction to find the minimum
point, and the corresponding abscissa was the neck position.
Then, the volume above the neck was clipped as the ROI. Finally,
for normalization, 1) the target voxel spacing was normalized to
0.952×0.952×3 mm for all of the data with third-order spline
interpolation; and 2) the intensities were normalized by
subtraction of the global mean and division by the global
standard deviation, which are obtained by computing the
foreground voxels based on body mask cropping in the dataset.
After preprocessing, the image overall mean size with standard
TABLE 1 | Details of the multi-institutional datasets.

Dataset A B C

Source Our department Institution B MICCAI 2019
Images pCT + CE-CT pCT pCT
Number 257 40 50
Stage T1-T4 (30:93:87:47) NA NA
Axially size 512 × 512 512 × 512 512 × 512
Slice thickness 3 mm 3 mm 3 mm
March 2022 | Volume 12 | Article 827991
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deviation decreased from 512×512× (130 ± 11.7) to (190 ± 32.8)
× (222 ± 17.4) × (74 ± 4.8).

2.D. Proposed Two-Stage
Cascade Architecture
2.D.1. Stage 1: Initial Coarse Segmentation and
Central Localization
Although the image size was greatly reduced to half of the
original after preprocessing, it was still too large to put all
the images into the network for 3D CNN training. Therefore,
the preprocessed images were randomly cropped by a sliding
window before being put into the network during the training
stage to satisfy the calculation requirement. However, although
the cropped image might contain massive background
information, a few ROIs result from random cutting. As a
result, only the globally coarse segmentation region of the
GTV has been extracted at this stage. Based on the preliminary
segmentation, the centroid of the GTV can be determined and
used as preparation for the next locally precise segmentation. As
a trade-off between model performance and memory
consumption, the size of the window was set to 128×128×64.
2.D.2. Stage 2: Central ROI Fine-Segmentation
The aim of this stage was to further narrow the target region and
perform precise segmentation around the center of the tumor. To
achieve this goal, the first step was to realize the central
localization of the tumor. For the training data, the center of
the GTV can be identified from the ground truth, while for the
Frontiers in Oncology | www.frontiersin.org 4
test data, the location can only be determined from the
segmentation predicted in stage 1. Considering the error
between them, the position differences for the training data
were compared, and the results demonstrated that the centroid
of the GTV between the ground truth and stage 1 segmentation
results varied (1.46 ± 1.34, 1.84 ± 1.69, 1.14 ± 1.09) pixels. Hence,
by considering the error, we allowed the central location to vary
with the range in ( ± 3, ± 3, ± 3) pixels of the center determined
from the ground truth or stage 1 segmentation result. In addition
to the central localization, the cropped cube size of the GTV had
to be determined. The cube size of the GTV is known to correlate
with the stage of the tumor; therefore, we calculated the size of
the GTV for all of the data and found that the overall mean with
standard deviation was 64 ± 8.5, 43 ± 12.1, and 15 ± 5.7 pixels.
Thus, the cropped cube size of the ROI was set to 96×64×32. The
process not only made it possible to further reduce the size of the
input image, which contains much more ROI area and less
background information, but also optimized the network
model and facilitated its convergence in training.

2.D.3. Network Architecture
Our network architecture is shown in Figure 2. We used UNet
(17) and its 3D counterpart VNet (30)-like architecture as the
backbone due to their excellent performance in medical image
segmentation. UNet consists of three components: 1)
downsampling for feature extraction, 2) upsampling for
resolution restoration and 3) skip-connection for feature
fusion, which can achieve the multiscale feature extraction of
large medical images. Res-block (31) was introduced in the
FIGURE 1 | Overview of the workflow of the proposed method.
March 2022 | Volume 12 | Article 827991
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procedure of downsampling and upsampling because it has
excellent performance in deep networks for solving gradient
dispersion and precision reduction. In the skip connection, we
employed the modified 3D ASPP (32, 33) block because it can
use multiscale dilated convolution to enlarge the field of view.
The proposed network contains 11 Res-blocks and 5 ASPP-
blocks in total. The network adopts the common configuration of
blocks per resolution step in both the encoder and decoder, with
each block consisting of a Conv-block and Res-block. The
proposed network can only be trained with a small batch size
for a large patch size. In the case of a small batch size, we utilized
instance normalization (34) to speed up or stabilize the training
because of the poor performance shown by batch normalization
(35). Furthermore, the leaky ReLU (36) was used as the
activation function in the hidden layers. Following the final
segmentation map, sigmoid activation function outputs are
obtained. As a compromise between model performance and
memory consumption, the initial number of feature maps was set
to 32 and doubled or halved in each downsampling or
upsampling procedure. To limit the parameter size of the final
model, the number of feature maps was additionally capped at
512 and 1024 for stage 1 and stage 2, respectively.
Frontiers in Oncology | www.frontiersin.org 5
For the best performance, the two-stage network architectures
were slightly different to allow for adaptations to different data
characteristics. In stage 1, due to the large input image, we
introduced the ASPP block (32) with a larger dilation rate in the
skip connection toobtainmultiscale feature informationofdifferent
fields of view. For stage 2, further reducing the size and range of the
input image would contribute to the appearance of overfitting
during the network training. Hence, to obtain a better training
effect, the ASPP_v3+ block (33), which has a small dilation rate and
includes a dropout layer,was employed to replace theASPPblock in
the skip connection for this stage. In addition, the dropout layerwas
also added at the end of the encoder to prevent overfitting.

2.E. Postprocessing
In the test phase, to obtain the initial coarse segmentation result,
the test samples were input into the stage 1 network by grid
sliding with an input size of 128×128×64 and a stride of 64 × 64 ×
32. The stage 2 input ROI could be extracted from the original
image by taking the centroid of the GTV determined from the
stage 1 segmentation result as the center of a cube. For both stage
networks, the segmentation results were acquired after activation
with a sigmoid function. Then, the segmentation results obtained
FIGURE 2 | Network architecture of the proposed CNN model.
March 2022 | Volume 12 | Article 827991
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in stage 1 and stage 2 were assembled by S =wS1 + (1 – w)S2, w
was set to 0.5, and the final segmentation score map was output,
where the threshold value was set to 0.6 and values lower than
the threshold were regarded as background. Finally, the
predicted ROI was reconstructed and returned to the
corresponding position of the original CT images.
3 EXPERIMENTS AND RESULTS

3.A. Experimental Scheme
3.A.1 Implementation Details
Fivefold cross-validation was adopted to evaluate the network
performance among our 257-patient dataset, which meant that
the dataset was randomly divided into 5 subsamples. Specifically,
in each round, one of the subsamples (20%) was used as the test
set and the remaining four folds (80%) were used as training set.
We repeated this procedure five times until all the five folds have
been used as the test set. Varieties of data augmentation
techniques were introduced into the training dataset, and they
consisted of random scaling (scaling factors: 0.7~1.3), random
elastic transformation (scaling factor: 34; elasticity coefficient:
10), random rotation (angle: -10~10), random noise (Gaussian
noise: 0~0.1 or uniform noise: -0.1~0.1), and random flipping.

In our 257 dataset, for the two networks, the ‘kaiming normal’
(37) strategy was employed for weight parameter initialization,
the stochastic gradient descent (SGD) optimizer was used for
training with momentum of 0.99, the learning rate (LR) abided
by the ‘poly’ policy (32) decaying with LR = lrini* (1 –epoch/
epochmax)

0.9, initial learning rate (lrini) was set to 0.01, and the
loss function was the sum of cross-entropy and dice loss. Based
on previous experiments and experience, as a compromise
between runtime and reward, each fold of both networks was
set to 120 epochs. The batch size was set to 1, and the network
parameters were updated every 2 batch sizes with the gradient
accumulation method.

The experiments were implemented on a workstation
powered by a NVIDIA GeForce RTX 2080Ti with 11 GB GPU
memory. The code was implemented with Pytorch 1.4.0 in
Ubuntu 18.04.3 LTS.

3.A.2 Evaluation Criteria
Three volumetric overlap metrics, the Dice similarity coefficient
(DSC), positive predictive value (PPV), and sensitivity (SEN),
and two distance metrics, the average symmetric surface distance
(ASSD) and 95% Hausdorff distance (HD95), were utilized as
qualitative evaluation criteria to estimate the performance of our
automated segmentation algorithm. These metrics are defined
as follows.

a) Volumetric overlap metrics:

DSC =
2 G ∩ Aj j
Gj j + Aj j (1)

PPR =
G ∩ Aj j
Aj j (2)
Frontiers in Oncology | www.frontiersin.org 6
SEN =
G ∩ Aj j
Gj j (3)

b) Distance metrics:

ASSD =
1
2

mean
g∈Gs

min
a∈As

 d(a, g) + mean
a∈As

min
g∈Gs

 d(a, g)

� �
(4)

HD95(Gs,As) = max (d95(Gs,As), d95(As,Gs)) (5)

Where

d95(Gs,As) = K95
g∈Gs

(min
a∈As

jja − gjj) (6)

For the volumetric overlap metrics, G and A represent the
voxel sets of the ground truth and automatic delineation,
respectively. DSC, PPV and SEN, which are a series of ratios,
are used to describe the corresponding spatial overlap between
the ground truth and the automated delineation, and a higher
value indicates better performance.

For distance metrics, where Gs and As are the corresponding
surface voxel sets ofG and A, d(a,g) and ||a – g|| are the Euclidean
distance of the voxel between a and g, dGsAs

describes the point x
∈ Xs that is farthest from any point of Ys and calculates the
distance from x to its nearest neighbor in Ys. ASSD and HD95
describe the mean surface distance between the ground truth and
automated delineation, and a lower value shows a higher
delineation accuracy.

In addition, IBM SPSS (version 23; New York, NY) was used
for statistical analysis. The mean DSC, PPR, SEN, ASSD and
HD95 values for the GTV segmentation were evaluated the
dispersion with standard deviation (SD) and analyzed with
paired t-tests between different models. All values are
presented as mean ± SD. Two-tailed p-values <0.05 were
considered statistically significant.

3.A.3 Comparison of Model Performance
Automated segmentation models of the GTV based on the
proposed cascaded multiscale local enhancement CNN
structure were achieved in this study. First, several successful
network architectures and our proposed 3D Res-UNet without
ASPP block (33) and cascade architecture were applied to data
for 257 NPC patient cases from our institution for GTV
segmentation to compare the performance. Two modalities
(pCT and CE-CT) were used to train the network models,
because the advantage of CE-CT in terms of contrast visibility
between tumor and normal tissues can help improve the
performance of network segmentation (28). The other
successful network architectures were as follows: 3D CNN
(22), which is based on the 3D CNN architecture of
VoxResNet and used to segment the complicated NPC GTV
based on MRI showing outstanding performance, Attention-
UNet (38), which adds AGs to filter the features propagated
through the skip connections of UNet; and UNet++ (39), which
improves UNet performance by alleviating the unknown
network depth, redesigning the skip connections, and devising
March 2022 | Volume 12 | Article 827991
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a pruning scheme to the architecture. For comparison, the
Attention-UNet and UNet++ were changed from 2D to 3D
network architectures. Second, based on the 3D Res-UNet
backbone model, the important roles of the multiscale dilated
convolution blocks and cascade architecture, namely, the five
ASPP blocks and the two-stage cascade method shown in
Figure 2, were further explored experimentally in the proposed
algorithm. Moreover, the feature maps and the boundary
probability maps were output further to confirm the ASPP
block mechanism on segmentation performance.

Finally, additional datasets of 40 NPC patients from
institution B and 50 NPC patients from the MICCAI 2019
StructSeg challenge were also adopted to validate the
effectiveness of the model further and evaluate the
generalizability of the model application. The model was
applied to two additional datasets for further algorithm
verification experiments in MDR-UNet without the cascade
architecture to reduce time consumption. Because of the lack
of CE-CT data in the institution B and C datasets, only pCT data
were used for training. It is important to note that transfer
learning was used to fine-tune the network based on the model
trained to reduce estimation errors between different datasets.
Specifically, the model was first trained on the A dataset, and its
performance was evaluated on the B and C datasets. Then, based
on the model pre-trained on the A dataset, transfer learning was
employed for training datasets B, C and B+C. Moreover, the
original and target domains were switched in the experiment to
verify further the generalization ability of the network in transfer
learning. Datasets B, C, and B+C were utilized for training the
network to verify the network performance and tested on the A
dataset. The network was then fine-tuned with dataset A using
the transfer learning method. It should be noted that during
transfer learning stage, datasets A, B and C were randomly split
into 70% and 30% respectively for fine-tuning and testing. The
network was trained for 60 epochs, and the initial learning rate
lrini was adjusted to 0.001 during the fine-tuning phase.

3.B. Results and Analysis
3.B.1. Comparison Between Different Network
Architectures
The quantitative comparison results of the fivefold cross-
validation of the different network models trained by pCT and
CE-CT are summarized in Table 2. As shown in the table, Res-
Frontiers in Oncology | www.frontiersin.org 7
UNet performed better in mean DSC, PPR, ASSD and HD95
with standard deviations of 74.49 ± 7.81%, 79.97 ± 13.9%, 1.49 ±
0.65mm, 5.06 ± 3.30mm, respectively, compared to other
networks, benefiting from the dominance of the RES-block in
solving gradient dispersion and precision reduction, which
verifies the effectiveness of the proposed backbone. However,
the mean SEN index of Res-UNet was only 73.9%, which is a
poor result due to the lack of relevant attention mechanism,
indicating that the network is under-segmented. Figure 3 shows
the visual segmentation results for the comparison of automatic
ground truth delineation by the public networks, the method
used for this research and human experts. It is obvious that the
estimation of the proposed Res-UNet produces fewer false
positive predictions and presents more robust segmentation
results, particularly in the coronal and sagittal views, compared
to the 3D CNN, 3D Attention-UNet and 3D UNet++. To
summarize, the experimental results demonstrate that although
the Res-UNet backbone network might not have the best
performance and statistical significance in all indicators.
Nevertheless, the key indicator DSC was significantly improved
(P<0.05) and had better performance than other successful
architectures when dealing with anisotropic 3D resolution.

3.B.2. Evaluation of the Network Mechanism
When the 3D Res-UNet backbone was combined with the ASPP
blocks and cascade architecture, the experimental results trained
by pCT and CE-CT illustrated significant improvements in most
of the evaluation indicators under the effect of local enhancement
mechanisms, as shown in Table 3. The mean values of DSC,
SEN, ASSD and HD95 increased to 76.23 ± 6.45%, 79.14 ±
12.48%, 1.39 ± 5.44mm and 4.72 ± 3.04mm. It is found that the
mean PPR decreased from 79.97 ± 13.90% to 77.34 ± 14.04%
(P<0.001), while the mean SEN increased from 73.90 ± 14.58% to
79.14 ± 12.48% (p<0.001). Although the network model changed
from under-segmentation to over-segmentation, the model was
able to keep the segmentation results in a relatively optimal state.
For DSC, which is the key indicator of segmentation
performance, a boxplot is shown in Figure 4. The differences
can be found in the following three statistical intervals, i.e., the
5%-95%, 25%-75% and 50%, and the results show that the model
with the ASPP block and cascade architecture, named CMDR-
UNet, has a higher average value along with a smaller
variance (P<0.001).
TABLE 2 | Quantitative comparison of different backbone models for GTV segmentation performance, including mean DSC, PPR, SEN, ASSD and HD95 with standard
deviation.

Method/P -value DSC (%) PPR (%) SEN (%) ASSD (mm) HD95 (mm)

① 3D CNN (22) 73.67 ± 7.88 76.74 ± 14.71 75.27 ± 14.31 1.84 ± 3.91 6.32 ± 13.77
② 3D Attention-UNet (38) 73.54 ± 7.16 75.95 ± 14.59 76.04 ± 14.48 1.80 ± 1.64 6.74 ± 11.91
③ 3D UNet++ (39) 73.87 ± 7.07 77.73 ± 14.40 74.82 ± 14.26 1.53 ± 0.60 5.17 ± 3.04
④ Proposed 3D Res-UNet 74.49 ± 7.81 79.97 ± 13.90 73.90 ± 14.58 1.49 ± 0.65 5.06 ± 3.30
P-value ④ vs. ① 0.026* <0.001* 0.041* 0.179 0.190

④ vs. ② 0.007* <0.001* 0.001* 0.005* 0.043*
④ vs. ③ 0.027* <0.001* 0.107 0.213 0.520
Mar
ch 2022 | Volume 12 | A
Asterisks (∗) indicate that the difference between the proposed 3D Res-UNet method and the competing method is statistically significant (p < 0.05) using a paired t-test. The best result is
highlighted in bold.
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TABLE 3 | Comparison of the effects of adding the ASPP blocks and the proposed cascade architecture.

Method/P -value DSC (%) PPR (%) SEN (%) ASSD (mm) HD95 (mm)

① Res-UNet 74.49 ± 7.81 79.97 ± 13.90 73.90 ± 14.58 1.49 ± 0.65 5.06 ± 3.30
② MDR-UNet 75.16 ± 6.76 78.73 ± 13.50 75.81 ± 13.65 1.68 ± 3.44 5.82 ± 13.57
③ CMDR-UNet 76.23 ± 6.45 77.34 ± 14.05 79.14 ± 12.48 1.39 ± 5.44 4.72 ± 3.04
P-value ② vs. ① 0.065 0.002* <0.001* 0.409 0.418

③ vs. ② <0.001* <0.001* <0.001* 0.233 0.244
③ vs. ① <0.001* <0.001* <0.001* <0.001* 0.002*
Frontiers in Oncology | www.frontiersin.org
 8
 Ma
rch 2022 | Volume 12 | A
Two-tailed p-values <0.05 were considered statistically significant between the proposed different models using paired t-tests. The best result is highlighted in bold.
∗p < 0.05 was considered significant. The values were represented as mean ± standard deviation. MDR-UNet: Adding the multiscale dilate CNN of the ASPP module. CMDR-UNet:
Adding our proposed cascade architecture.
FIGURE 3 | Visual comparison of different networks for GTV segmentation. The red arrows denote false positives and poorly segmented areas. Note that these
results derived from the models trained on pCT and CE-CT data are shown in pCT.
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To further validate our network mechanism, we extracted two
representative examples for boundary segmentation feature
maps as shown in Figure 5. Because of the effect of the ASPP
module, the weight distribution of the feature map is relatively
uniform and the tumor boundary is sharp, which are indicated
by the red arrows, when compared with the 3D Res-UNet
backbone. Figure 6 shows the visual comparison results of the
three different modules for four instances of NPC segmentation
along with the DSC quantification results. We found that the
ASPP block is more sensitive to the boundaries of the GTV than
the Res-UNet backbone, as shown by the red arrows indicating
positions, while the cascade architecture further improves the
stability of the network. In summary, the multiscale dilated
convolution block and proposed cascade architecture can make
a large difference in stably outputting automatic segmentation
results with high accuracy, which is critical for an algorithm.

3.B.3. Multi-Institution Experiments
The quantitative segmentation results of the models pretrained,
fine-tuned and validated on the multi-institution datasets using
mean DSC and ASSD with standard deviations were listed in
Table 4. For the A(pCT) pretrained model, the mean results of
the DSC and ASSD for the data with five-fold cross-validation
were 74.63% and 1.58 mm, respectively. The DSC value was
inferior to the 75.16% obtained for the DSC trained with pCT
and CE-CT, as shown in Table 3. In these five models pretrained
Frontiers in Oncology | www.frontiersin.org 9
on dataset A, the model with the best performance was applied to
the datasets B, C and B+C, the mean DSC and ASSD results were
68.21% and 2.09 mm, 61.64% and 2.13 mm and 64.26% and
2.12mm, respectively. Clearly, these results were not satisfactory.
FIGURE 5 | Visual comparison of the boundary feature maps obtained by including the Res-UNet backbone and adding the ASPP block. Map columns: includes
output feature maps and boundary feature maps, where warmer colors represent higher attention. Outline columns: red and blue denote the ground truth and
automatic segmentation results, respectively. The red arrows denote boundary areas noticed by the ASPP block, which has better boundary segmentation
performance. Note that the two rows are from different patients and shown in pCT.
FIGURE 4 | Boxplot showing the DSCs of different models. The symbols
represents the means, represents the 1% and 99%, represents the min
and max.
March 2022 | Volume 12 | Article 827991
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Then this pretrained model was fine-tuned with 70% of datasets
B, C and B+C and the remaining 30% dataset was utilized for
test, respectively. The mean DSC and ASSD results reached to
74.49%, 1.87 mm and 73.95%, 1.89mm for institution B, and
Frontiers in Oncology | www.frontiersin.org 10
69.64%, 1.42 mm and 67.43%, 1.60mm for institution C,
respectively. Compared with the model fine-tuned on the
single dataset B or C, the evaluation metrics of model fine-
tuned on the mixed dataset B+C showed slightly lower
FIGURE 6 | Example pCT images show the level of consistency for GTVnx between the automatic delineation with our method and the ground truth. Red lines
denote the human expert-delineated ground truth, and the other lines denote the contours of the automatic delineation.
March 2022 | Volume 12 | Article 827991
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performance, which was probably caused by the pCT scanned
from different devices and particularly the ground truth
delineated by different doctors. Moreover, the problem of
sample shortage leaded to the lack of stability in statistical
differences. In summary, these results demonstrate that
transfer learning can achieve good performance on
external datasets.

To further test the robustness and transferability of the model
application, the original and target domains were switched for
the following experiments. The segmentation results of the
models pretrained, fine-tuned and validated on the dataset B,
C, B+C and A were listed in the Supplementary Table 1. The
pretrained network model achieved good performance on the B
and C datasets with the mean DSC and ASSD of 72.84%,
1.89 mm and 65.77%, 2.56mm, respectively. It shows that the
model also has good robustness on other datasets. However,
direct application of the trained models based on B and C
datasets to the A dataset shows poor performance with mean
DSC and ASSD as low as 61.23%, 2.80mm and 58.88%, 2.72mm,
respectively. Meanwhile, dataset A (70%) was used to fine-tune
the models pretrained on the B, C and B+C datasets, respectively.
The mean DSC and ASSD results reached 74.81%, 1.36mm,
74.27%, 1.40mm and 74.46%, 1.61mm, respectively. It is easy to
notice that there is no improvement in the above results
compared to the dataset directly training results of 74.46%,
1.45mm (P>0.05). These results suggest that models trained on
small datasets have poor generalization ability and transfer
learning being introduced to large datasets may not
improve performance.
4 DISCUSSION AND CONCLUSION

Blurred tumor boundaries and large shape variations have always
been huge challenges for GTV segmentation of NPC in lower-
contrast CT images. In this work, a 3D automatic segmentation
algorithm has been proposed to solve these issues, in which the
concept of multiscale local enhancement is employed with the
foundation of the 3D Res-UNet backbone model. First, for small
target areas, such as GTV, we introduced the multiscale ASPP-
block in skip-connection to guide the network to focus more on
the target area, especially for the boundary during learning, to
Frontiers in Oncology | www.frontiersin.org 11
promote the segmentation performance. Second, benefiting from
the excellent ability to capture both global and local feature
information simultaneously, a cascade architecture was adopted
in training for outputting robust segmentation results. Moreover,
we adopted an automatic preprocessing method to reduce the
image background to solve the problem of heavy computation
and memory consumption in loading the 3D network
model data.

In multi-institution experiments, as shown in Tables 3, 4, CE-
CT is helpful for improving segmentation performance. Due to
the differences in data sources and manual delineation for
different institutions, as demonstrated in the literature (22),
DSCs can vary from 71% to 80% compared to the manual
contours of eight radiation oncologists with ground truth
contours. In our experiments, it was found that direct
application of the model trained with the internal dataset to
the external dataset yielded suboptimal results. However, the
performance of the models can be significantly improved by
transfer learning, which only requires fine-tuning the network
with a smaller dataset to output comparable results obtained
from a larger dataset. Although transfer learning may not be used
to improve the performance of applying a model trained on a
small dataset to the results of a large dataset, it can output
comparable results with higher training speed. In addition, the
models were applied to the small datasets B and MICCAI, where
the DSC could reach 72.84% and 65.77%, respectively. Another
study based on MICCAI data showed that the DSC of the
ensemble multi-scale model was only 65.66% (40), which is
comparable to the result (65.77%) but lower than the proposed
method with transfer learning (69.64%). It shows that the model
is robust to small datasets. In general, although a trained model
cannot not be valid for all dataset estimations, the proposed
model can achieve good performance through transfer learning.

Indeed, limitations have been observed within the current
model. In the multi-institution experiment, since the labels are
delineated by different radiation oncologists, the dataset cannot
be evaluated uniformly when multiple institutions are integrated
into the network model for supervised training. In future work,
the segmentation performance will be further improved in the
following three aspects: 1) To overcome the differences in tumor
delineations by various doctors, the accuracy and consistency of
delineation will be further advanced. 2) Considering the
TABLE 4 | The segmentation results of the models pretrained, fine-tuned and validated on the dataset A, B, C and B+C.

Training datasets Test datasets DSC (%) ASSD (mm)

A (pCT) A 74.63 ± 7.05 1.58 ± 0.94
B 68.21 ± 5.51 2.09 ± 0.74
C 61.64 ± 13.55 2.13 ± 1.02

B+C 64.26 ± 11.54 2.12 ± 0.93
A Pretrained + B (70%) fine-tuning ① B (30%) 74.49 ± 6.86 1.87 ± 0.67
A Pretrained + C (70%) fine-tuning ① C (30%) 69.64 ± 10.02 1.42 ± 0.36
A Pretrained + (B+C) (70%) fine-tuning ② B (30%) 73.95 ± 8.66 1.89 ± 0.78

② C (30%) 67.43 ± 12.35 1.60 ± 0.49
P-value ② B vs. ① B 0.810 0.893

② C vs. ① C 0.180 0.041*
March 2022 | Volume 12 | A
Two-tailed p-values <0.05 were considered statistically significant. The best result is highlighted in bold.
The values were represented as mean ± standard deviation. ∗p < 0.05 was considered significant. A: Our institution; B: institution B; and C: MICCAI2019.
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significant differences between numerous data sources, a semi-
supervised method will be introduced in training to enhance the
robustness of the network. 3) Multimodal data will be utilized to
assist CT image segmentation.

Extensive experiments on our CT dataset show that our
proposed CMDR-UNet method based on the modified 3D
Res-UNet backbone outperforms other state-of-the-art
methods and achieves the best results for the quantitative
indicators DSC, PPR, ASSD and HD95. In multi-institution
experiments, due to the differences in data sources and manual
delineations for different institutions, the segmentation results of
other datasets acquired from a single institution trained model is
unsatisfactory, although this issue can be resolved by transfer
learning. This finding is desirable because it partially reflects the
universality of our proposed algorithm for clinical application.
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