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A B S T R A C T

Malaria and typhoid fever are revered for their ability to individually or jointly cause high mortality rate. Both
malaria and typhoid fever have similar symptoms and are famous for their co-existence in the human body, hence,
causes problem of under-diagnosis when doctors tries to determine the exact disease out of the two diseases. This
paper proposes a Bioinformatics Based Decision Support System (BBDSS) for malaria, typhoid and malaria
typhoid diagnosis. The system is a hybrid of expert system and global alignment with constant penalty. The ar-
chitecture of the proposed system takes input diagnosis sequence and benchmark diagnosis sequences through the
browser, store these diagnosis sequences in the Knowledge base and set up the IF-THEN rules guiding the
diagnosis decisions for malaria, typhoid and malaria typhoid respectively. The matching engine component of the
system receives as input the input sequence and applies global alignment technique with constant penalty for the
matching between the input sequence and the three benchmark sequences in turns. The global alignment tech-
nique with constant penalty applies its pre-defined process to generate optimal alignment and determine the
disease condition of the patient through alignment scores comparison for the three benchmark diagnosis se-
quences. In order to evaluate the proposed system, ANOVA was used to compare the means of the three inde-
pendent groups (malaria, typhoid and malaria typhoid) to determine whether there is statistical evidence that the
associated values on the diagnosis variables means are significantly different. The ANOVA results indicated that
the mean of the values on diagnosis variables is significantly different for at least one of the disease status groups.
Similarly, multiple comparisons tests was further used to explicitly identify which means were different from one
another. The multiple comparisons results showed that there is a statistically significant difference in the values
on the diagnosis variables to diagnose the disease conditions between the groups of malaria and malaria typhoid.
Conversely, there were no differences between the groups of malaria and typhoid fever as well as between the
groups of typhoid fever and malaria typhoid. In order to show mean difference in the diagnosis scores between the
orthodox and the proposed diagnosis system, t-test statistics was used. The results of the t-test statistics indicates
that the mean values of diagnosis from the orthodox system differ from those of the proposed system. Finally, the
evaluation of the proposed diagnosis system is most efficient at providing diagnosis for malaria and malaria
typhoid at 97% accuracy.
1. Introduction

Malaria is a life threatening disease common in temperate climate
zones including Sub-Saharan Africa, Asia and the Americas. A female
Anopheles mosquitoes carrying plasmodium parasite in their salivary
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glands is the transmitter of malaria (Poolphol et al., 2017). The severity
of malaria rest on the class of this plasmodium parasite. Malaria could be
a product of many sources such as insect stings, blood transfusion
through contaminated needles or unscreened blood (Abduah and Kar-
unamoorthi, 2016). When an infected source infects a person, the
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plasmodium parasites is injected into the blood and down to the liver for
its life cycle. After a complete life cycle of the parasite in lever, it then
travels through the circulatory system and attack red blood cells (Jan
et al., 2018; Sajjad et al., 2016). Symptoms of malaria are high fever,
sweating, vomiting, shaking, headache, muscle and joints pain, usually
noticeable within a few weeks after infection.

Typhoid on the other hand is a bacteria illness caused by the Salmo-
nella enterica serotype Typhi and transmitted through a human carrier in
the form of contaminated food and water (Qamar et al., 2018; Abatcha
et al., 2019). The bacteria attack the intestine and temporarily stayed in
the blood stream. The bacteria are then transported by white blood cells
in the liver and bone marrow, where they regenerate and re-enter the
blood stream. The maturity period of typhoid is basically a maximum of
two weeks and the illness can take several weeks. The symptoms include
headaches, diarrhea, high fever, poor appetite, and body pains.

Both malaria and typhoid fever have similar symptoms and are
famous for their co-existence in the human body i.e. malaria and typhoid
can combine in human as malaria typhoid causing severe complexity in
diagnosis. Precisely speaking, the joint infection of malaria typhoid in a
host causes problem of under-diagnosis when doctors tries to determine
the exact disease out of the two diseases. Malaria and typhoid fever have
been identified by scholars as killer diseases accounting for the periodic
death of several millions of people worldwide. This high mortality rate
can be traced to reasons such as poor medical diagnosis methods and lack
of competent medical personnel.

Bioinformatics is an interdisciplinary field of science involving the
use of information technology to solve problems inherent in biology and
computer science (Edwards et al., 2009). Research in bioinformatics in-
cludes algorithms designed for storage, retrieval, and data analysis.
Bioinformatics is a fast developing field of science combining biology,
information engineering, computer science, mathematics and statistics to
examine and understand biological phenomena. It has practical appli-
cations in specific areas such as molecular biology and medical disease
diagnosis. Sequence Alignment is a form of bioinformatics that uses
various algorithms to locate functional subsets in biological sequences
(whether DNA or protein) (Rosenberg, 2009). Sequence alignments can
also be deployed to non-biological phenomena such as in natural lan-
guage, clustering and financial data.

An expert system is an area of Artificial Intelligence (AI) designed to
learn the skills of a human-expert coded in the form of rules (Yadav and
Pandey, 2015). An expert system has been identified as a vibrant tool for
the identification of various diseases such as skin diseases (melanoma,
impetigo, and eczema), kidney diseases, meningitis, cerebral palsy,
migraine, cluster headache, stroke, epilepsy, multiple sclerosis, parkin-
son, alzheimer and huntington disease (Amarathunga et al., 2015; Singla
et al., 2014). Recently, a lot of researches has been geared towards the
use of expert system for medical disease diagnosis and this has trans-
formed to the emergence of technologically inclined medical consulta-
tion. Therefore, expert system is regarded as a decision support system in
combination with other techniques in the field of AI for diseases diag-
nosis based on known symptoms (Horvitz et al., 1988). The main ob-
jectives of this paper are (1) To improve on existing systems that can only
diagnose one disease at a time (2) To design benchmark sequences of
symptoms for malaria, typhoid fever and malaria typhoid and (3) To
design a bioinformatics approach for the identification and prediction of
malaria, typhoid fever and malaria typhoid simultaneously.

The rest of this paper is organized as follows: Section 2 presents
related work. Materials and methods is presented in Section 3. The
implementation procedure and discussion is presented in Section 4.
System evaluation of the proposed approach is well highlighted in Sec-
tion 5. Section 6 presents the conclusion and future work.

2. Related work

Computer inspired tool such as sequence alignment algorithms can be
deployed in medical diagnosis systems to check death ratio and reduce
2

the stress of waiting to see a medical doctor. Medical diagnosis system is
an emerging technology in the field of AI used to help health care experts
in making efficient and appropriate clinical decisions (Shortliffe, 1987).
Medical diagnosis systems in combination with bioinformatics inspired
techniques can provide useful information on medical data under the
knowledge supervision of a human expert. This useful information can
assist medical experts in identifying disease categories in patients and
provide timely intervention in the form of treatments advice (Wan and
Fadzilah, 2006).

Researchers have developed several intelligent approaches for med-
ical diagnosis systems in an attempt to identify disease category, reduce
waiting time of patients, reduce health care service costs and increase
service rate of medical experts. As seen in most studies (Bourlas et al.,
1999; Alexopoulos et al., 1999; Ruseckaite, 1999; Manickam and Abidi,
1999; Zelic et al., 1999), intelligent approaches developed to assist ex-
perts in timely detection and prevention of diseases can only deal with
one disease condition. Hence, it is important to develop a multi-target
disease diagnosis system for the identification of two or more disease
conditions in patients.

Oguntimilehin et al. (2013) presented a machine learning approach
for clinical diagnosis of typhoid fever. The authors collected labelled
dataset with severity levels of typhoid fever from medical experts. The
labelled dataset comprises of diagnosis variables and severity levels of
very low, low, moderate, high and very high as classes to create
reasonable guidelines for the diagnosis of typhoid fever with 96%
detection accuracy. The authors asserted that the system could lead to
reduction in mortality rate and patient waiting time respectively. One
limitation of their work was the problem of rule extraction, which, if
overcome, could lead to better diagnosis accuracy. Samuel and Omisore
(2013) proposed a mixture of fuzzy logic and neural network for the
efficient diagnosis of typhoid fever. The mixture model provide a method
that allows the neural network module to automatically optimize the
diagnosis of typhoid fever by generating the diagnosis rules for the fuzzy
inference system. The mixture model was reported to offer reliable
diagnosis that is time efficient and less expensive. However, the proposed
mixture model could lead to computational overhead due to unproven
concept of weight adjustment in neural networks. Fatumo et al. (2013)
designed a robust computer simulated medical expert based on input
diagnosis variables as rules stored in the inference engine for the iden-
tification of different types of malaria and typhoid problems. The
designed medical expert system offers effectiveness in use and accessi-
bility, although insufficient rules and symptoms in the knowledge base
can reduce the effectiveness of their designed system. Djam et al. (2011)
designed a fuzzy expert system for the diagnosis and treatment of malaria
based on degree of participation of each diagnosis variables using the
root sum square and centre of gravity for reasoning and diagnosis deci-
sion respectively. The designed fuzzy expert system was able to provide
reasonable diagnosis for malaria with some degree of confidence. The
authors considered the designed fuzzy expert system to be user friendly
and a means to ease medical consultations. The disadvantage of the
system is centered on the problem of knowledge representation inherent
to most rule based systems. Adehor and Burrell (2008) designed a simple
differential diagnostic model for detecting malaria, typhoid and
unknown-fever in the subregions of Africa based on signs and symptoms
provided from interaction with the users. The designed model provides a
more simplifiedway for entering signs and symptoms by taking responses
from both a supervising user and the patient. This way of information
entry reduces erroneous information and enhances the diagnosis accu-
racy. The designed differential diagnostic model could lead to delays,
risks and expensive inefficient diagnosis due to multiple alternative so-
lutions that may be similar. Aminu et al. (2016) proposed a predictive
symptoms-based system rooted in the binary classification of Support
Vector Machines (SVM) to enhanced joint classification of malaria and
typhoid fever. The authors reported that the proposed predictive
symptoms-based system represents a reliable substitute for disease



Figure 1. Bioinformatics disciplines (Source: Diniz and Canduri, 2017).

Figure 2. 1-gap alignment.
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diagnosis and the evaluation results indicates a low classification
accuracy.

Samuel et al. (2013) proposed a Web-Based Decision Support System
(WBDSS) rooted in Fuzzy Logic (FL) for the diagnosis of typhoid fever.
The FL system is composed of a fuzzifier, fuzzy inference engine, and a
defuzzifier for rules formulation, reasoning and diagnosis decision
respectively. The results obtained showed that the proposed system is
suitable for diagnosis problems. However, the fuzzy sets of fuzzy logic
models cannot automatically adjust its linguistic variables to suit unseen
conditions. Boruah and Kakoty (2019) provide a comparative analysis of
different data mining techniques for the prediction and diagnosis of
malaria. The study inferred that ensemble data mining techniques could
be more efficient in the prediction and diagnosis of malaria than a single
predictive model. The authors recognized that most literatures on disease
diagnosis systems failed to test their systems on detection accuracy,
simplicity and accessibility. Uzoka et al. (2011) proposed a combination
of fuzzy logic and the Analytical Hierarchy Process (AHP) methods in the
medical diagnosis of malaria. The fuzzy logic provides the rules needed
to combine the multiple diagnosis decision variables supported by AHP
in order to determine the relative importance of each variable in the
diagnostic decision making process. The results of the research proved
effective for non-expert medical practitioner in the diagnosis of malaria.
The limitation of the system hinges on the problem of knowledge rep-
resentation identified with fuzzy logic systems. Mutawa and Alzuwawi
(2019) presented a multi-layered rule-based expert system for detecting
uveitis. The rules combination on the diagnosis variables decreases as the
network propagate from the input layers to the output layer. The network
design assist in deciding the primary signs and symptoms of some dis-
eases needed to evaluate the probability of that disease instead of inte-
grating all the disease diagnosis variables. The system represents an
intelligent guideline for young medical doctors in providing accurate
treatment advice to patients. The system provides easy adaptability to
unseen conditions through its unique multilayer design. Conversely, the
system has no technique that can mitigate input errors of signs and
symptoms from users.

2.1. Bioinformatics

Bioinformatics is an interdisciplinary field of science consisting of
tools developed to gain knowledge about biological phenomena
(Edwards et al., 2009). It is a technology initially designed for the
practical purpose of introducing pattern into the big data generated by
the modern development in molecular biology. The bioinformatics
technology started with the idea of developing computer inspired tools
for locating functional patterns in biological sequences e.g. locations of
functional structures in Deoxyribonucleic Acid (DNA). Bioinformatics is a
fast developing field of science combining biology, information engi-
neering, computer science, mathematics, chemistry and statistics to
derive useful knowledge from biological phenomena (See Figure 1). One
common area of its application include medical disease diagnosis.

2.2. Sequence alignment methods

Sequence Alignment is a form of bioinformatics tool designed for the
comparison of two or more sequences in order to derive important bio-
logical knowledge (Behbahani et al., 2016). It is used to discover both
patterns and functional connection between sequences. Alignment lo-
cates similarity grade between text sequences and pattern sequences.
Most sequence alignment employs divide-and-conquer approach for
optimal alignment scores.

The functional behaviour of an unknown pattern can be predicted by
simply employing sequence alignment. The optimum similarity of the
unknown pattern after alignment with a database of known text se-
quences is normally assumed as the functional information contained in
the pattern. There are predominantly two techniques of sequence
alignment: global alignment and local alignment.
3

2.2.1. Global alignment
In global alignment comparison is done from start till finish of the

pattern to locate the optimal alignment. This kind of alignment followed
the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). This
algorithm is very often used in many computer science applications.
Global alignment method is most recommended for sequences that are
identical in length.

2.2.2. Local alignment
Sequences with no identical length can be matched with local align-

ment technique. It divides sequences into subsets and compare subsets of
all possible lengths. This kind of alignment followed the Smith-Waterman
algorithm (Smith and Waterman, 1981).

These two basic alignment techniques are known to follow the pop-
ular divide-and-conquer approach.
2.3. Gap penalty

A Gap penalty is a technique derived to allow for more character
matching between closely related sequences.When comparing sequences,
the use of gaps in the sequences can allow more characters to be matched
by an alignment algorithm than it's possible in normal alignment. How-
ever, to arrive at suitable alignment it is essential to control the length and
number of gaps in an alignment. The three basic types of gap penalties are
constant, linear and affine (Manikandan and Ramyachitra, 2017).

2.3.1. Constant
This is the most basic type of gap penalty where a fixed negative score

is assigned to every gap, irrespective of its length. For example, aligning
two sequences as in Figure 2, with '-' showing a 1-gap alignment. Assume
a 1 is assigned for every match and -1 for every gap, then total score is 7�
1 ¼ 6 as computed by (1).

Score¼ number of matches� number of gaps (1)

2.3.2. Linear
The linear gap penalty in contrast to constant gap penalty consider the

length (L) of each insertion/deletion in the gap. Hence, if the penalty for
each gap is Y and the length of the gap is L; the resultant gap penalty is the
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product of the two YL. This technique discourages lengthy gaps, with total
score decreasing for each additional gap. For example, the total score for
Figure 2 using linear gap penalty is 7 � 3 ¼ 4 as computed by (2).

Score¼ number of matches� ðY ⋅ LÞ (2)

2.3.3. Affine
This is a blend of the constant and linear gap penalty. It is the most

common of the gap penalty types. The affine gap penalty is of the form.

Score¼ number of matches� ðXþY ⋅ LÞ (3)

where X is the gap opening penalty, Y the gap extension penalty and L the
length of the gap. Gap opening denotes the cost necessary to open a gap
of any length, and gap extension is the cost for each additional length to
an existing gap. Although, the value of X and Y varies according to
purpose and thus the values cannot be ascertained. If the purpose is to
find closely related matches, a bigger gap penalty is needed to discourage
gap openings. Conversely, if the purpose is simply to find a less closely
related match, then a reduced gap penalty is recommended.
2.4. Expert systems

The uncultivated habit of people to visit the hospital for regular
check-ups coupled with their busy schedule, has triggered the emergence
of medical diagnosis systems as an alternative for human experts. The
wide acceptance of these medical diagnosis systems has translated to an
alteration from human consultation to system consultation. Medical
diagnosis system is an expert system with coded knowledge of some
domain experts which can categorize diseases based on selected symp-
toms (Lingiardi et al., 2015; Weiss et al., 1978; Moses, 2015; Mutawa and
Alzuwawi, 2019). These coded knowledge based on some inference
mechanisms are deployed by the system for making smart decisions.
Figure 3. Architecture of BBDSS for
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Moreso, the deployment of these medical diagnosis systems can
greatly assist medical staff in the discharge of quality health care services.
AI as an umbrella word in intelligent computing, is the design and
implementation of machines behaving at the level of a human expert.
Expert systems have carved out a niche for itself in AI compared to other
machine learning techniques. The most recognised area of expert systems
application is inherent in the health care domain for detection and pre-
vention of diseases (Pai et al., 2006). The friendly user interface and
explanation facilities of expert systems has made them the most popular
tool for problem solving.

3. Materials and methods

The architecture of the proposed Bioinformatics Based Decision
Support System (BBDSS) for multi-target disease diagnosis is presented in
Figure 3.

Figure 3 consists of a fusion of expert system and sequence alignment
techniques for the diagnosis of Malaria Fever (MF), Typhoid Fever (TF)
andMalaria Typhoid Fever (MTF). The architecture takes input diagnosis
variables through the browser representing benchmark diagnosis se-
quences for the three disease conditions, patient signs and symptoms and
domain expert knowledge. The browser is the interface through which
the users (health professional and domain expert) interact with the sys-
tem and provide diagnosis results to the outside world. The Knowledge
base comprises of the database and Rule Base (RB). The database stores
benchmark diagnosis sequences, patient signs and symptoms and domain
expert knowledge while the RB is made up of a set of IF-THEN rules
depicting the benchmark diagnosis variables for each disease conditions
of MF, TF and MTF respectively. The sequence alignment component
receives as input the patient signs and symptoms (input sequence) sup-
plied by the patient and applies global alignment technique with constant
penalty for the matching between the input sequence and the three
benchmark sequences in turns. The global alignment technique with
multi-target disease diagnosis.
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constant penalty applies its pre-defined process to generate optimal
alignment and determine the disease condition of the patient through
comparing the alignment scores for the three benchmark diagnosis se-
quences. Finally, the best optimal alignment score is returned as the
diagnosis result for the patient. The full details of the sequence alignment
component showing the process flow is also presented in Figure 4.
3.1. Diagnosis variables

Given an input sequence X of patient signs and symptoms and
benchmark sequences Y of domain expert rules for the diagnosis of MF,
TF and MTF respectively. Let Eqs. (4) and (5) represent input and
benchmark diagnosis sequences respectively;

X¼ x1x2…xn (4)

Y ¼ y1y2…ym (5)

Such that xi and yi represents joint disease diagnosis variables for the
possible diagnosis of MF, TF and MTF as in Table 1. Table 1 shows the
joint disease diagnosis variable, value and abbreviation code. Depending
Figure 4. Flowchart of t
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on the input sequence per patient in alignment with the benchmark
diagnosis sequences, MF, TF or MTF can be diagnosed.
3.2. Database

The database stores patient interaction with the system providing
symptoms details. The database is a repository storing the benchmark
diagnosis sequences, patient signs and symptoms and domain expert
knowledge. It receive input diagnosis variables and the domain expert
knowledge through the browser interface. Hence, the authors sought and
obtained ethical approval from the Landmark University Research
Ethical Board. This ethical approval was given by the Landmark Uni-
versity in collaboration with its medical center.
3.3. Rule base

The rule base for MF, TF and MTF is composed of the benchmark
diagnosis variables combined by a set of IF-THEN rules in which the IF-
parts consist of the diagnosis variables combined by the AND operator
while the THEN-parts involve the diagnosis decisions. The rules that
he proposed system.



Table 1. MF, TF, MTF diagnosis variables.

SN MF, TF, MTF diagnosis variable Value CODE

1 Generalized Body Pain Y/N GBP

2 Generalized Body Discomfort (Malaise) Y/N GBD

3 Generalized Body Weakness Y/N GBW

4 Sweating Profusely Y/N SP

5 Vomiting Y/N VMT

6 Loss of Appetite Y/N LOA

7 Bitter taste in your Throat Y/N BT

8 Diarrhea (discharging faeces from the bowels frequently in liquid form) Y/N DHE

9 Type of Fever (Intermittent or Remittent) I/R TOF

10 Abdominal Distension (Swelling Stomach) Y/N AD

11 Abdominal Pain Y,N AP

12 Constipation Y/N CON

13 Loss of Weight Y/N LOW

14 Extreme Muscle Weakness Y/N EMW

15 Confusion Y/N CF

16 Irrational Talking Y/N IRR

17 Epistaxis (Bleeding nose) Y/N EPI

MF ¼ Malaria Fever, TF ¼ Typhoid Fever, MTF ¼ Malaria Typhoid Fever, Y¼Yes, N¼No.
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constitute the benchmark sequences were intelligently formulated with
the knowledge of domain experts. Table 2 represents the rule base of
benchmark sequences for the three disease conditions. The three disease
conditions have joint diagnosis variables but different diagnosis values.
When an input sequence is aligned with the benchmark sequences a rule
is fired for a disease condition with the maximum alignment score,
otherwise the diagnosis result returns no decision if all the alignment
scores is below a specified percentage threshold.
3.4. Dot plot matrix

A dot plot matrix or similarity matrix is constructed to permutate all
the possible alignment between a given input diagnosis sequence and all
the benchmark diagnosis sequences. In order to characterise all the
possible combinations of variables and their resultant scores a similarity
matrix is used. The similarity matrix is defined by an alignment matrix
and scoring matrix.
3.5. Alignment

3.5.1. Alignment operation
Given two sequences X ¼ x1x2…xn and Y ¼ y1y2…ym defined over an

alphabet
P

.Analignmentoperation isapair ðx; yÞ 2 ðP[f �g 6¼ ð� ; �ÞÞ.
Note that� 62P

but x;y 2 P⋆. We call (x, y).

� substitution iff x 6¼ � and y 6¼ �
� deletion (del) iff y ¼ �
� insertion (in) iff x ¼ �

3.5.2. Alignment matrix
Let n ¼ jXj and m ¼ jY j: Alignment matrix of X and Y is the ðnþ1Þ�

ðmþ1Þ-matrix defined by (6):
Table 2. MF, TF, MTF benchmark sequences.

Disease GBP GBD GBW SP VMT LOA BT DHE

MF Y Y Y Y Y Y Y Y

TF N N Y N Y Y N Y

MTF Y Y Y Y Y Y Y Y

6

Dij ¼Dw x1…i; y1…j ¼minfwðX; YÞg (6)

� �

Given (X; Y) is alignment of x1…i;y1…j, where w is the cost function.
3.6. Scoring matrix

Weusea scoring schemeor cost function that simply give a value of 1 for
each match, and 0 for mismatch using constant penalty as in (1). A simple
scoring scheme (7) is used for the alignment between an input diagnosis
sequence and benchmark diagnosis sequences, since no gap allowance is
considered in the system. i.e., all sequences are of equal lengths.

wðx; yÞ¼
�
1 iff x ¼ y
0 iff x 6¼ y

(7)

3.7. Trace-back

Once the alignment matrix with the cost function is computed, the
entry D{nm} provides the maximum score among all possible align-
ments. To compute optimal alignment, you start from the bottom right
cell as follows:

� Start in (n, m). For every (i, j) determine optimal case.
� Compare the value with the three possible sources (match, insert, and
delete)

� Sequence of trace arrows with maximum trace gives optimal
alignment.

Hence, the number of possible global alignments between an input
diagnosis sequence and a benchmark diagnosis sequence of length N can
be represented as in (8).

nðx; yÞ¼ 22Nffiffiffiffiffiffiffi
πN

p (8)
TOF AD AP CON LOW EMW CF IRR EPI

I N N N N N N N N

R Y Y Y Y Y Y Y Y

R Y Y Y Y Y Y Y Y
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3.8. Research hypotheses

In order to investigate if the mean score of the proposed system is
statistically equal to the orthodox system, the following research hy-
potheses were formulated:

� H0: μ1¼ μ2: The paired mean score between the orthodox system and
the proposed system are equal, that is, differ on average by a small
margin at most.

� H1: μ1 6¼ μ2: The paired mean score between the orthodox system and
the proposed system are not equal, that is, differ on average by a large
margin.

where H0 denotes the null hypothesis and H1 denotes the alternative
hypothesis.

4. Implementation results and discussion

The proposed diagnosis system was implemented using a java pro-
gramming language which runs on Netbeans IDE 8.0.2 environment and
MySQL as the database management system.

Figure 5 presents an instance interface through which a health pro-
fessional enter the input diagnosis value in the form of signs and symp-
toms for a diagnosis decision. The health professional can enter the next
input diagnosis value by pressing the next button. The diagnosis infor-
mation were gathered from experts about symptoms of malaria and
typhoid. These symptoms led to a total of 17 questions being asked on the
GUI of the program with a “Yes” or “No” option. Any of the selected
option generates a character (i.e. ‘Y’ for a “Yes” and ‘N’ for a “No”). These
characters form a sequence of string at the end of the questions. Three
benchmark sequences of strings are being stored in the rule base of the
program, which represents malaria, typhoid and malaria typhoid se-
quences respectively.

The string generated is then aligned with those in the rule base for
comparison. The percentage of matches between the three sequences
determines what disease the patient is most likely suffering from as in
Figure 6. For example, if the generated string has a higher percentage of
match with malaria sequence than that of the two other sequences, then
the patient is most likely suffering from malaria. The proposed system is
designed in such a way that if the percentage of matches between the
generated sequence and the three benchmark sequences in the rule base
is not up to 70%, then the patient is most likely not suffering from any of
Figure 5. Patient d
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the three diseases. Hence, the patient is advised to visit the medical
doctor (See Figure 4).

When the ‘‘View Sequence Details’’ button in Figure 6 is pressed, the
result of sequence alignment details for a given patient is displayed as in
Figure 7. This result represents the diagnosis results leading to a diag-
nosis decision for the patient with ID ‘‘001’’.

Table 3 represents the input diagnosis sequences of fifteen patients for
MF, TF and MTF. Column 1 represent patient identification numbers.
Columns 2–18 represents the diagnosis variables. Columns 19, 20 and 21
depicts the diagnosis scores for MF, TF and MTF respectively. The last
column represents the diagnosis decision at each instance for the fifteen
patients.

Figure 8 presents the diagnosis category against the number of pa-
tients for the fifteen patients.

5. System evaluation

Since the diagnosis of malaria, typhoid and malaria typhoid is inde-
pendent of one another but having joint diagnosis variables, a one-way
ANOVA was used in order to compare the means of the three indepen-
dent groups (malaria, typhoid and malaria typhoid) to determine
whether there is statistical suggestion that the associated values on the
diagnosis variables means are significantly different.

In the proposed system, the diagnosis variables is the health pro-
fessional's inputs (Y/N) to diagnose a given disease condition, and dis-
ease status is an indicator about whether or not the patient have (0 ¼
malaria, 1 ¼ typhoid, 2 ¼ malaria typhoid). We use ANOVA to test if
there is a statistically significant difference in diagnosis variables with
respect to disease status. Diagnosis variables will serve as the dependent
variable, and disease status will act as the independent variable.

From Table 4, we conclude that the mean of the values on diagnosis
variables is significantly different for at least one of the disease status
groups (F (2, 351) ¼ 9.194, p < 0.005). Since the ANOVA alone is
considered insufficient to tell us explicitly which means were different
from one another, multiple comparisons tests was further used.

From the ANOVA results, we ascertained that there are statistically
significant differences between the groups as a whole. From Table 5,
multiple comparisons shows which groups differed from each other. The
Tukey post hoc test was used due to its simplicity and preferred test for
conducting post hoc tests on a one-way ANOVA. Table 5 shows that there
is a statistically significant difference in the values on the diagnosis
variables to diagnose the disease conditions between the groups of
iagnosis pane.



Figure 6. Diagnosis decision.

Figure 7. Sequence alignment result for patient with ID ‘‘001’’.
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malaria and malaria typhoid (p ¼ 0.000). However, there were no dif-
ferences between the groups of malaria and typhoid fever (p¼ 0.141), as
well as between the groups of typhoid fever and malaria typhoid (p ¼
0.520).

In order to evaluate the performance of the proposed diagnosis sys-
tem in terms of results accuracy, we performed a comparative analysis of
one hundred and twenty random system diagnostic findings with those
obtained from the orthodoxmethod equivalent as shown in Tables 6a,b,c.
Table 6a, b, c gives the total diagnosis accuracy of the proposed system
with accuracy of 38.1565, 38.703 and 39.5497 respectively. The mean
8

accuracy can be computed by the summation of the three accuracies
divided by the 120 data points.

Therefore, the mean accuracy of the proposed diagnosis system and
its efficiency is computed as follows:

Mean Accuracy ðMAÞ¼
P3

i¼1ð1� eiÞ
n

¼ 116:4092
120

¼ 0:970077

EfficiencyðEÞ¼MA * 100¼ 0:970077 * 100¼ 97%



Table 3. Input diagnosis sequences for MF, TF and MTF.

ID GBP GBD GBW SP VMT LOA BT DHE TOF AD AP CON LOW EMW CF IRR EPI Score Diagnosis

MF TF MTF

001 1 1 1 0 0 1 1 1 I 0 0 0 1 1 0 0 0 0.7647 0.3529 0.4706 malaria

002 1 0 1 1 1 0 0 1 I 1 0 0 0 0 0 0 1 0.7059 0.4118 0.4118 malaria

003 0 0 1 0 0 1 0 1 R 0 1 0 1 1 0 1 1 0.3529 0.7647 0.5294 typhoid

004 1 1 1 0 1 0 0 1 I 1 1 1 1 0 1 0 1 0.4706 0.6471 0.6471 neither

005 0 1 1 0 1 1 0 0 R 1 1 1 1 1 1 1 1 0.2353 0.8824 0.7647 typhoid

006 0 0 0 1 0 0 1 0 R 0 0 1 0 0 1 1 0 0.4118 0.3529 0.3529 neither

007 1 1 0 1 1 1 1 0 I 0 1 0 0 1 0 0 1 0.7059 0.2941 0.5294 malaria

008 1 1 1 1 1 1 1 1 R 1 1 1 1 1 1 1 0 0.5294 0.7059 0.9412 malaria typhoid

009 0 0 1 0 1 1 0 0 R 0 1 1 1 0 1 1 1 0.2941 0.8235 0.5882 typhoid

010 1 1 1 1 1 0 1 1 R 1 1 1 1 1 0 1 1 0.4706 0.6471 0.8824 malaria typhoid

011 1 1 1 1 0 1 1 1 R 0 1 0 0 0 1 1 1 0.6471 0.4706 0.7059 malaria typhoid

012 0 1 0 1 1 1 1 0 I 0 0 0 0 0 0 0 0 0.8235 0.1765 0.2941 malaria

013 0 1 1 1 1 1 1 0 I 1 0 1 1 1 0 1 1 0.5294 0.5882 0.7059 malaria typhoid

014 0 0 1 1 1 1 0 1 R 1 1 0 1 1 1 1 1 0.3529 0.8824 0.7647 typhoid

015 0 0 0 0 0 1 0 0 R 1 1 1 1 0 0 1 1 0.1765 0.7059 0.4706 typhoid

1 ¼ Yes, 0 ¼ No, I ¼ Intermittent, R ¼ Remittent.

Figure 8. Diagnosis category Vs Number of patients.
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From the evaluation result, it can be concluded that the proposed
diagnosis system is most efficient at providing diagnosis for malaria and
malaria typhoid at 97% accuracy.
Table 4. ANOVA.

Sum of Squares Df

Between Groups 0.267 2

Within Groups 5.093 351

Total 5.359 353

Table 5. Multiple Comparisons (measure mean difference based on the benchmark s

(I) Category (J) Category

Mean Difference (I-J)

0 1
2

-.0422215
-.0707797*

1 0
2

.0422215
-.0285582

2 0
1

.0707797*

.0285582

* The mean difference is significant at the 0.05 level, 0 ¼ malaria, 1 ¼ typhoid, 2
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The calculated MA and E values suggested that the proposed system is
97% accurate. In order to show the significant difference in the diagnosis
scores between DROM and DRPS, we use the t-test statistics. It is used to
test for differences between the two diagnosis methods based on the
measured scores. In Table 7, t-test statistics for the two diagnosis
methods under comparison was presented. It can be reported in Table 7
that the p-value of 2.24734E-29 means that the averages for DROM and
DRPS are significantly different. In order words, the mean values of
diagnosis from the orthodox system differ from those of the proposed
system.

In order to conclude that the mean value of the proposed system is
statistically the same as that of the orthodox system, equivalence test was
investigated. In other words, equivalence test was conducted to investi-
gate if the accuracy of the proposed system is as good as the orthodox
system.

Table 8 shows the results of the equivalence test between the ortho-
dox and the proposed diagnosis systems. From the results, it can be
concluded that:

� DROM and DRPS scores were strongly and positively correlated (r ¼
0.947, p < 0.001).
Mean Square F Sig.

0.133 9.194 .000

0.015

equences).

95% Confidence Interval

Std. Error Sig. Lower Bound Upper Bound

.0222496

.0173578
.141
.000

-.094590
-.111635

.010147
-.029925

.0222496

.0261836
.141
.520

-.010147
-.090186

.094590

.033070

.0173578

.0261836
.000
.520

.029925
-.033070

.111635

.090186

¼ malaria typhoid.



Table 6a. Comparative analysis.

Patient ID DROM DRPS ei (1� ei) Disease status

1 0.8128 0.7647 0.0481 0.9519 malaria

2 0.7638 0.7059 0.0579 0.9421 malaria

3 0.7925 0.7647 0.0278 0.9722 typhoid

4 0.8996 0.8824 0.0172 0.9828 malaria typhoid

5 0.9824 0.9412 0.0412 0.9588 typhoid

6 0.9412 0.8745 0.0667 0.9333 malaria

7 0.8235 0.7864 0.0371 0.9629 malaria

8 0.8824 0.8231 0.0593 0.9407 malaria typhoid

9 0.7059 0.6942 0.0117 0.9883 neither

10 0.8235 0.7864 0.0371 0.9629 malaria typhoid

11 0.7059 0.6942 0.0117 0.9883 neither

12 0.8824 0.8231 0.0593 0.9407 malaria

13 0.7059 0.6942 0.0117 0.9883 neither

14 0.8150 0.7833 0.0317 0.9683 typhoid

15 0.8525 0.7814 0.0711 0.9289 typhoid

16 0.8688 0.8134 0.0554 0.9446 malaria typhoid

17 0.8868 0.8113 0.0755 0.9245 malaria typhoid

18 0.7730 0.7025 0.0705 0.9295 malaria

19 0.8753 0.8227 0.0526 0.9474 typhoid

20 0.6731 0.6221 0.051 0.949 neither

21 0.7654 0.7243 0.0411 0.9589 malaria

22 0.9388 0.8267 0.1121 0.8879 typhoid

23 0.9134 0.8544 0.059 0.941 malaria

24 0.7674 0.7215 0.0459 0.9541 malaria

25 0.7445 0.7087 0.0358 0.9642 typhoid

26 0.8653 0.8262 0.0391 0.9609 malaria

27 0.8444 0.8045 0.0399 0.9601 malaria typhoid

28 0.8529 0.8153 0.0376 0.9624 typhoid

29 0.7806 0.7234 0.0572 0.9428 malaria

30 0.7441 0.7167 0.0274 0.9726 malaria

31 0.7402 0.7014 0.0388 0.9612 malaria

32 0.7961 0.7392 0.0569 0.9431 malaria typhoid

33 0.7964 0.7554 0.041 0.959 malaria

34 0.9581 0.9221 0.036 0.964 typhoid

35 0.8298 0.7552 0.0746 0.9254 malaria typhoid

36 0.7515 0.7261 0.0254 0.9746 malaria

37 0.8704 0.8278 0.0426 0.9574 typhoid

38 0.7041 0.6447 0.0594 0.9406 neither

39 0.6762 0.6255 0.0507 0.9493 neither

40 0.7719 0.7435 0.0284 0.9716 malaria

Total 1.8435 38.1565

DROM ¼ Diagnosis Results of the Orthodox Method, DRPS ¼ Diagnosis Results of the Proposed.
System, ei ¼ error in diagnosis, and (1� ei) ¼ accuracy of the proposed system.
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� There was a significant average difference between DROM and DRPS
scores (t119¼ 15.091, p < 0.001).

� On average, DROM scores were 0.0299233 points higher than DRPS
scores (95% CI [0.0259971, 0.0338496]).

Since the paired mean difference between the orthodox system and
the proposed system differ on average by a small score margin of
0.0299233 and probability level for the equivalence test is less than the
recommended value of alpha (0.05), the null hypothesis can be accepted
and the accuracy of the proposed system can be considered valid.
5.1. Conclusion and future work

This paper developed a decision support system for malaria, typhoid
fever and malaria typhoid diagnosis using bioinformatics approach. The
10
system is a hybrid of expert system and global alignment with constant
penalty. Both malaria and typhoid fever have similar symptoms and are
famous for their co-existence in the human body. Hence, the need for an
efficient method for detecting these disease conditions.

The architecture of the proposed system takes input diagnosis vari-
ables through the browser representing benchmark diagnosis sequences
for the three disease conditions, patient signs and symptoms controlled
by a health professional and domain expert knowledge respectively. The
browser is the interface through which a health professional interact with
the system and provide diagnosis results to the outside world. The
Knowledge base comprises of the database and rule base. The database
stores benchmark diagnosis sequences, patient signs and symptoms and
domain expert knowledge while the rule base is made up of a set of IF-
THEN rules depicting the benchmark diagnosis variables for each dis-
ease conditions of malaria, typhoid fever and malaria typhoid



Table 6b. Comparative analysis.

Patient ID DROM DRPS ei (1� ei) Disease status

41 0.7560 0.7157 0.0403 0.9597 typhoid

42 0.8692 0.7841 0.0851 0.9149 malaria

43 0.8110 0.7981 0.0129 0.9871 malaria typhoid

44 0.8419 0.7898 0.0521 0.9479 malaria typhoid

45 0.8154 0.7628 0.0526 0.9474 malaria

46 0.8641 0.8124 0.0517 0.9483 typhoid

47 0.7765 0.7283 0.0482 0.9518 malaria

48 0.8477 0.7768 0.0709 0.9291 malaria

49 0.8585 0.8161 0.0424 0.9576 typhoid

50 0.8395 0.7827 0.0568 0.9432 malaria

51 0.7357 0.6742 0.0615 0.9385 neither

52 0.8660 0.8098 0.0562 0.9438 malaria

53 0.7165 0.6731 0.0434 0.9566 neither

54 0.8125 0.7815 0.031 0.969 malaria typhoid

55 0.8614 0.8198 0.0416 0.9584 malaria typhoid

56 0.8524 0.8354 0.017 0.983 malaria

57 0.7407 0.7297 0.011 0.989 malaria

58 0.8498 0.8192 0.0306 0.9694 malaria

59 0.7322 0.7157 0.0165 0.9835 typhoid

60 0.8082 0.7977 0.0105 0.9895 malaria typhoid

61 0.8734 0.8671 0.0063 0.9937 typhoid

62 0.7345 0.6924 0.0421 0.9579 neither

63 0.8548 0.8486 0.0062 0.9938 malaria typhoid

64 0.8101 0.7948 0.0153 0.9847 malaria

65 0.8277 0.8042 0.0235 0.9765 malaria

66 0.8415 0.8171 0.0244 0.9756 typhoid

67 0.8613 0.8537 0.0076 0.9924 malaria

68 0.7109 0.6898 0.0211 0.9789 neither

69 0.7645 0.7571 0.0074 0.9926 malaria

70 0.8051 0.7732 0.0319 0.9681 malaria

71 0.9189 0.8848 0.0341 0.9659 typhoid

72 0.9334 0.8928 0.0406 0.9594 typhoid

73 0.7635 0.7423 0.0212 0.9788 malaria

74 0.8903 0.8644 0.0259 0.9741 malaria

75 0.8384 0.8192 0.0192 0.9808 typhoid

76 0.7217 0.6911 0.0306 0.9694 neither

77 0.7979 0.7533 0.0446 0.9554 malaria

78 0.8142 0.7864 0.0278 0.9722 malaria

79 0.9125 0.8881 0.0244 0.9756 typhoid

80 0.7058 0.6953 0.0105 0.9895 neither

Total 1.297 38.703

DROM ¼ Diagnosis Results of the Orthodox Method, DRPS ¼ Diagnosis Results of the Proposed.
System, ei ¼ error in diagnosis, and (1� ei) ¼ accuracy of the proposed system.
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respectively. The matching engine component receives as input the input
sequence and applies global alignment technique with constant penalty
for the matching between the input sequence and the three benchmark
sequences in turns. The global alignment technique with constant penalty
applies its pre-defined process to generate optimal alignment and
determine the disease condition of the patient through comparing the
alignment scores for the three benchmark diagnosis sequences.

We used ANOVA to compare the means of the three independent
groups (malaria, typhoid and malaria typhoid) to determine whether
there is statistical evidence that the associated values on the diagnosis
variables means are significantly different. The ANOVA results indicates
that the mean of the values on diagnosis variables is significantly
different for at least one of the disease status groups. Similarly, multiple
comparisons tests was further used to explicitly tell us which means were
different from one another. The multiple comparisons results showed
11
that there is a statistically significant difference in the values on the
diagnosis variables to diagnose the disease conditions between the group
of malaria and malaria typhoid. Conversely, there were no differences
between the groups of malaria and typhoid fever as well as between the
groups of typhoid fever and malaria typhoid.

In order to show the significant difference in the diagnosis scores
between DROM and DRPS, t-test statistics was used. It is used to test for
differences between the two diagnosis methods based on the measured
scores. The results of the t-test statistics indicates that the mean values of
diagnosis from the orthodox system differ from those of the proposed
system. Equivalence test was also conducted to investigate if the accuracy
of the proposed system is as good as the orthodox system. The result of
the equivalence test validates the accuracy of the proposed system.

Finally, the evaluation of the proposed system showed a high effi-
ciency for the possibility of malaria and malaria typhoid diagnosis. One



Table 6c. Comparative analysis.

Patient ID DROM DRPS ei (1� ei) Disease status

81 0.8201 0.8084 0.0117 0.9883 malaria

82 0.7872 0.7752 0.012 0.988 malaria

83 0.7922 0.7835 0.0087 0.9913 malaria typhoid

84 0.7672 0.7557 0.0115 0.9885 typhoid

85 0.9092 0.8961 0.0131 0.9869 typhoid

86 0.7978 0.7874 0.0104 0.9896 malaria

87 0.8770 0.8661 0.0109 0.9891 typhoid

88 0.8549 0.8472 0.0077 0.9923 malaria

89 0.7406 0.7391 0.0015 0.9985 malaria

90 0.8974 0.8891 0.0083 0.9917 malaria typhoid

91 0.8808 0.8781 0.0027 0.9973 malaria typhoid

92 0.7914 0.7847 0.0067 0.9933 malaria

93 0.8748 0.8531 0.0217 0.9783 typhoid

94 0.7087 0.6859 0.0228 0.9772 neither

95 0.7847 0.7781 0.0066 0.9934 malaria

96 0.8816 0.8791 0.0025 0.9975 typhoid

97 0.8988 0.8869 0.0119 0.9881 typhoid

98 0.8903 0.8731 0.0172 0.9828 malaria

99 0.8767 0.8634 0.0133 0.9867 typhoid

100 0.7775 0.7676 0.0099 0.9901 malaria

101 0.8770 0.8696 0.0074 0.9926 malaria

102 0.8704 0.8583 0.0121 0.9879 typhoid

103 0.8435 0.8247 0.0188 0.9812 malaria typhoid

104 0.7963 0.7819 0.0144 0.9856 malaria

105 0.8764 0.8665 0.0099 0.9901 malaria typhoid

106 0.7327 0.7172 0.0155 0.9845 malaria

107 0.7619 0.7583 0.0036 0.9964 typhoid

108 0.7312 0.7181 0.0131 0.9869 typhoid

109 0.7471 0.7393 0.0078 0.9922 malaria

110 0.8396 0.8175 0.0221 0.9779 malaria

111 0.8138 0.8005 0.0133 0.9867 malaria typhoid

112 0.7819 0.7783 0.0036 0.9964 malaria

113 0.7908 0.7877 0.0031 0.9969 malaria

114 0.9330 0.9275 0.0055 0.9945 typhoid

115 0.8079 0.7819 0.026 0.974 malaria typhoid

116 0.7819 0.7783 0.0036 0.9964 malaria

117 0.8056 0.7883 0.0173 0.9827 malaria

118 0.7755 0.7505 0.025 0.975 typhoid

119 0.7838 0.7701 0.0137 0.9863 malaria

120 0.9010 0.8976 0.0034 0.9966 malaria

Total 0.4503 39.5497

DROM ¼ Diagnosis Results of the Orthodox Method, DRPS ¼ Diagnosis Results of the Proposed.
System, ei ¼ error in diagnosis, and (1� ei) ¼ accuracy of the proposed system.

Table 7. t-test statistics.

DROM DRPS

Mean 0.81728 0.788273333

Variance 0.004397582 0.004419468

Observations 120 120

Pearson Correlation 0.949619763

Hypothesized Mean Difference 0

df 119

t Stat 15.07592871

P(T<¼t) one-tail 1.12367E-29

t Critical one-tail 1.657759285

P(T<¼t) two-tail 2.24734E-29

t Critical two-tail 1.980099876
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Table 8. Equivalence test.

Mean N Std. Deviation Std. Error Mean

Paired samples statistics DROM 0.817280 120 0.0663143 0.0060536

DRPS 0.787357 120 0.0668423 0.0061018

N Correlation Sig.

Paired correlation DROM & DRPS 120 0.947 0.000

Mean t df Sig. (2-tailed)

Paired differences DROM-DRPS 0.0299233 15.091 119 0.000

Lower Upper

95% Confidence Interval (CI) of the difference 0.0259971 0.0338496

*Lower ¼ Lower equivalence bound *Upper ¼ Upper equivalence bound.
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limitation of the proposed system is related to the age of the sick person.
The likelihood that children will not give accurate details of symptoms
without a health professional doing physical investigation on the sick
children is a clear limitation. In the future, the system will include
physical examination category for sick children. Secondly, it is recom-
mended that reinforcement learning be adapted to improve the opti-
mality of the sequence alignment method.
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