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Introduction
Stresses are key factors that influence plant development, often associated to extensive 
losses in agricultural production [1, 2]. Soil salinity is one of the most devastating abiotic 
stresses. According to [2], soil salinity contributes to a significant reduction in areas of 
cultivable land and crop quality. The study estimates that 20% of the total cultivated land 
worldwide and 33% of the total irrigated agricultural land is affected by high salinity. By 
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that generate co-expression can be identified by such modules. LASSO regression is 
employed to analyze phenotypic responses of modules to treatment.
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the end of 2050, areas of high salinity are expected to reach 50% of the cultivated land 
[2].

Salinity tolerance and susceptibility are the result of elaborated interactions between 
morphological, physiological, and biochemical processes. They are regulated by multi-
ple genes in various parts of the plant genome [3]. Consequently, identifying groups of 
responsive genes is an important step for improving crop varieties in terms of salinity 
tolerance. This paper proposes a workflow to identify stress responsive genes associated 
with a complex quantitative trait.

To discover the genes associated with a phenotypic response to treatment, the work-
flow takes as input the gene expression profiles of the target organism. Specifically, it 
takes the RNA sequencing read counts (measured under control and treatment condi-
tions) of at least two biological replicates per genotype. It also receives phenotypic data 
in the form of observable traits, measured for each genotype under the two conditions. 
The output of the workflow is a set of genes that are characterized as potentially relevant 
to treatment.

Broadly speaking, the workflow provides a framework that yields insight into the pos-
sible behavior of specific genes and the role they play in functional pathways in response 
to treatment. It takes advantage of the current availability of high-throughput technolo-
gies, which enable the access to transcriptomic data of organisms under different condi-
tions and a better understanding of their reaction under different environmental stimuli.

The proposed approach is both a generalization and an extension of the Weighted 
Gene Co-expression Network Analysis (WGCNA) [4, 5]. Like WGCNA, the general idea 
behind the proposed approach is to identify, after a sequence of normalization and fil-
tering steps, specific modules of overlapping communities underlying the co-expression 
network of genes. The proposed approach is considered a generalization of WGCNA 
because module detection recognizes overlapping communities using the Hierarchical 
Link Clustering (HLC) [6] algorithm. Conceptually, the generalization adds the overlap-
ping nature of the regulatory domains of the systems that generate the co-expression 
network [7]. The intuition is that overlapping modules allow for scenarios where bio-
logical components are involved in multiple functions. The workflow is also an extension 
of WGCNA because two additional constraints are considered: networks in the inter-
mediate steps are forced to be scale-free [8] and LASSO regression [9] selects the most 
relevant modules of responsive genes. The regularized regression technique of LASSO 
forces the coefficients associated to the less relevant modules to be assigned the value 
zero [10]; it is particularly useful in scenarios where the number of variables is much 
larger than the number of samples. This condition is satisfied when the target variables 
represent the overlapping communities (obtained with HLC) and the samples represent 
genotype data, which is usually a small set due to the high cost of the RNA sequencing 
process. Finally, the proposed workflow is also modular, since other module detection 
and selection techniques could be explored instead of HLC and LASSO.

The approach was showcased with a systematic study on rice (Oryza sativa), a food 
source that is known to be highly sensitive to salt stress [11]. RNA-seq data was accessed 
from the GEO database [12] (accession number GSE98455). It represents 57, 845 gene 
expression profiles of shoot tissues measured under control and stress conditions in 
92 accessions of the Rice Diversity Panel 1 [13]. A total of 6 modules were detected as 
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relevant in the response to salt stress in rice: 3 modules, each grouping together 3 genes, 
are associated to shoot K content; 2 modules of 3 genes are associated to shoot biomass; 
and 1 module of 4 genes is associated to root biomass. These genes are potential targets 
for experimental validation of salinity tolerance. From the 19 genes, 16 are also identi-
fied as deferentially expressed for at least one of the 92 accessions, which re-enforces the 
labeling of the genes as stress responsive. Moreover, independent recent studies report 
that 5 of these 19 genes have been identified, through in vivo experimentation, to saline 
stress. Other genes have GO-annotations related to saline stress, or are reported to have 
conserved heritability for both control and salt stress conditions. Further studies are 
needed to elucidate the detailed biological functions of the remaining genes and their 
role in the mechanisms that respond to salt conditions.

Paper outline The remainder of the paper is organized as follows. The “Preliminar-
ies” section gathers foundations on gene co-expression networks, HLC, and LASSO. 
The proposed workflow is presented in “The workflow” section, which emphasizes on 
the logical steps of the data analysis process and the internal structures supporting the 
approach. The “Case study” section presents an application of the workflow for the iden-
tification of rice genes that are sensitive to salt stress. Finally, the “Concluding remarks” 
section draws some conclusions and future research directions.

Preliminaries
This section presents preliminaries on networks, the clustering algorithm HLC, and the 
linear regression technique LASSO.

Co‑expression network

A network is an undirected graph G = (V ,E) where V = {v1, v2, . . . , vn} is a set of n verti-
ces (or nodes) and E = {e1, e2, . . . , eq} is a set of q edges (or links) that connect vertices. In 
a co-expression network of genes, each node corresponds to a gene and a link indicates a 
common expression pattern between two genes. The network can be represented by an 
adjacency matrix A ∈ {0, 1}n×n that is symmetric. A matrix entry in positions (vi, vj) and 
(vj , vi) is equal to 1 whenever there is an edge connecting vertices vi and vj , and equal to 
0 otherwise. Co-expression networks are of biological interest because adjacent nodes in 
the network represent co-expressed genes that are usually controlled by the same tran-
scriptional regulatory pathway, functionally related, or members of the same pathway or 
metabolic complex [14].

Hierarchical link clustering

The Hierarchical Link Clustering (HLC) algorithm partitions groups of links (rather 
than nodes), where each node inherits all memberships of its links and can belong to 
multiple, overlapping communities [6]. More specifically, HLC evaluates the similarity 
between links if they share a particular node. Consider a pair of incident links eik and ejk 
to node k. The similarity between eik and ejk is defined by the Jaccard index as

(1)S(eik , ejk) =
| η(i) ∩ η(j) |

| η(i) ∪ η(j) |
,
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where η(v) denotes the set containing the node v and its neighbors, for any v ∈ V  . The 
algorithm uses single-linkage hierarchical clustering to build a dendrogram where each 
leaf is a link from the network and branches represent linked communities.

The threshold to cut the dendrogram is defined based on the average density of links 
inside communities (i.e., partition density). For G = (V ,E) and a partition of the links into c 
subsets, the partition density is computed as

Note that, in most cases, the partition density D has a single global maximum along the 
dendrogram. As depicted in Fig. 1, if the dendrogram is cut at the top, then D represents 
the average link density of a single giant community. If the dendrogram is cut at the bot-
tom, then most communities consist of a single link. In other words, D = 1 when every 
community is a clique and D = 0 when each community is a tree. If a community is less 
dense than a tree (i.e., when the community subgraph has disconnected components), 
then such a community contributes negatively to D, which can take negative values. The 
minimum density inside a community is −2/3 , given by one community of two discon-
nected edges. Since D is the average of the intra-community density, there is a lower 
bound of −2/3 for D. By computing D at each level of the dendrogram, the level that 
maximizes partition density can be found (nonetheless, meaningful structure could exist 
above or below the threshold).

The output of the cut is a set of node clusters, where each node can participate in multiple 
communities.

Least absolute shrinkage selector operator (LASSO)

LASSO is a regularized linear regression technique. By combining a regression model with 
a procedure of contraction of some parameters towards 0, LASSO imposes a restriction (or 
a penalty) on regression coefficients. In other words, LASSO solves the least squares prob-
lem with restriction on the L1-norm of the coefficient vector. In particular, the approach 
is especially useful in scenarios where the number of variables c is much greater than the 
number of samples m (i.e., c ≫ m).

Consider a dataset of m samples, consisting each of c covariates and a single outcome. 
Let yi be the outcome and xi := (xi1, ..., xic) be the covariate vector for the i-th sample. The 
objective of LASSO is to solve

where s is the regularization penalty. Equivalently, in the Lagrangian form, LASSO 
minimizes

(2)D =
2

|E|

∑

c

|Ec|
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where � ≥ 0 is the corresponding Lagrange multiplier. Since the value of the regular-
ization parameter � determines the degree of penalty and the accuracy of the model, 
cross-validation is used to select the regularization parameter that minimizes the mean-
squared error. LASSO is preferred in the proposed workflow because it tends to outper-
form other methods such as ordinary least squares regression and Ridge [15].

The workflow
Figure 2 introduces the proposed workflow. It can be broken down into five macro-pro-
cesses (A)-(E). Compared to WGCNA, the workflow adds the macro-step (D) and gen-
eralizes macro-steps (A)-(C).

The input of the workflow includes RNA-seq read counts, representing gene expres-
sion levels. More precisely, the workflow uses n0 gene expression profiles measured 
for m different genotypes of r biological replicates (under control and treatment con-
ditions). This data is represented as matrix D0 ∈ N0

n0×2mr . To discover key genes and 
their interaction with phenotypes related to treatment, the approach also requires a set 
of p phenotypic traits measured for m genotypes. The phenotypic data is captured by 
matrix P ∈ R

2m×p , which contains two phenotypic values per genotype (under control 
and treatment conditions).

A. Data pre‑processing

The goal of the data pre-processing stage is to build matrices Pℓ and L1 representing, 
respectively, the changes in phenotypic values and expression levels between control and 
treatment condition. In other words, Pℓ and L1 are constructed from RNA-seq and phe-
notypic data found in matrices D0 and P.

A normalization process is applied to interpret RNA-seq data and handle possible 
biases affecting the quantification of results. Here, DESeq2 [16] is used to correct the 
library size and RNA composition bias. The normalized data is represented as a matrix 
D1 ∈ R

n0×2mr , and the biological replicates of each genotype are averaged and repre-
sented as a matrix D2 ∈ R

n0×2m . The genes exhibiting low variance or low expression 
are removed from D2 . Consequently, this stage of the approach reduces the set of genes 
from a pool of size n0 to a restricted pool of size n1 ≤ n0 . The control and treatment 
data is separated into the matrices C ∈ R

n1×m and T ∈ R
n1×m , respectively. The matrix 

entries cij in C and tij in T represent the normalized expression level of gene i in acces-
sion j under control and treatment condition, respectively. Control and treatment data is 
also separated from phenotypic data P, obtaining two matrices Pc and Pt of dimensions 
m× p.

In the above configuration, the changes in expression levels and phenotypic values 
between control and treatment conditions are measured in terms of logarithmic ratios. 
In the case of expression levels, the log ratios are represented in the Log Fold Change 
matrix L0 ∈ R

n1×m , where ℓij = log2(tij/cij) . Similarly, the log ratios of the phenotypic 
data are computed and represented in the Pℓ ∈ R

m×p matrix.
The final stage of pre-processing is to filter L0 by removing rows (e.g., genes) with low 

variance in the differential expression patterns, thus obtaining a new matrix L1 of dimen-
sions n2 ×m , with n2 ≤ n1.
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B. Construction of the co‑expression network

A gene co-expression network connects genes with similar expression patterns across 
biological conditions. The purpose of this step is to describe how to build the co-expres-
sion network A from the Log Fold Change matrix L1 : the goal is to capture the rela-
tionship between genes according to the change in expression levels between the two 
studied conditions. These co-expression patterns are meaningful for the identification of 
genes that are not yet associated to treatment response.

The Log Fold Change matrix L1 is used to build the co-expression network following 
the first two steps of WGCNA [4]. First, the level of concordance between gene differen-
tial expression profiles across samples is measured. To this end, as proposed in WGCNA, 
the absolute value of the Pearson Correlation Coefficient (PCC) is used as the similarity 
measure between genes, meaning that pairs of nodes with strong negative correlation 
are considered connected with the same strength as nodes with strong positive correla-
tion [17]. The resulting values are stored in the similarity matrix S ∈ R+

n2×n2 . Second, 
the matrix S is transformed into an adjacency matrix A ∈ R+

n2×n2 where each entry 
aij = (sij)

β encodes the connection strength between each pair of genes. In other words, 
the elements of the adjacency matrix are the similarity values up to the power β > 1 so 
that the degree distribution will fit a scale-free network. These networks contain many 
nodes with very few connections and a small number of hubs with high connections. In 
a strict scale-free network, the logarithm of P(k) (i.e., the probability of a node having 
degree k) is approximately inversely proportional to the logarithm of k (i.e., the degree of 
a node). The parameter β is chosen to be the smallest value for which the R2 of the linear 
regression between log10(p(k)) and log10(k) is closest to 1 (here, R2 > 0.8).

C. Identification of co‑expression modules

The next step in the workflow is to identify modules of overlapping communities from 
the co-expression network represented by A. The idea is to cluster genes with similar 
patterns of differential expression change. Membership in these modules may overlap 
in biological contexts, because modules may be related to specific molecular, cellular, 
or tissue functions, and the biological components (i.e., genes) may be involved in mul-
tiple functions. Unlike WGCNA, the workflow applies the Hierarchical Link Cluster-
ing (HLC) algorithm (overviewed in the “Preliminaries” section) to detect overlapping 
rather than non-overlapping communities.

First, the adjacency matrix A is transformed into an unweighted network 
Â ∈ {0, 1}n2×n2 . To this end, the PCC cutoff is determined using the approach described 
in [18]. The number of nodes, edges, and the network density is determined for different 
PCC cutoffs. In a neighborhood of the optimal PCC cutoff, the number of nodes pre-
sents a linear decrease and the density of the network reaches its minimum, while below 
this value the number of edges rapidly increases. Following this observation, a cutoff is 
selected such that gene pairs having a correlation score higher than the threshold are 
considered to have a significant level of co-expression. The entries of A become 1 above 
the cutoff and 0 otherwise. The HLC algorithm organizes the n2 genes of matrix Â into c 
modules, where each gene can belong to zero or multiple modules. This information is 
represented as an affiliation matrix F ∈ {0, 1}n2×c , where fiu = 1 if node i is a member of 
module u (and fiu = 0 , otherwise).
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D. Detection of modules association to phenotypic traits

Each module is represented by an eigengene, which is defined as the first principal com-
ponent of such module. An eigengene can be seen as an average differential expression 
profile for each community: it is computed from the Log Fold Change Matrix L1 and 
the affiliation matrix F. Given a module u, the affiliation matrix F is used to identify the 
genes belonging to u. The corresponding rows of the matrix L1 are selected to compute 
the first principal component of u. Each principal component becomes a column of the 
matrix M ∈ R

m×c.
These profiles are associated with each phenotypic trait using LASSO as a feature 

selection mechanism [19]. Therefore, to identify the most relevant modules associ-
ated with the phenotypic response to the specific treatment, the eigengenes (i.e., the 
columns of M) act as regressor variables and each phenotypic trait (i.e., each column 
of Pℓ ) is used as an outcome variable. LASSO is applied z ∈ {1, 2, ..., p} times, once for 
each phenotypic trait. Recall that yi in Equation 4 is the phenotypic response for the i-
th sample (i ∈ {1, 2, ...,m}) , xij is the i-th value of the eigengene that represents the j-th 
module (j ∈ {1, 2, ..., c}) , and the weight αj represents the importance of the j-th module 
in the phenotypic response. The regularization parameter � , tuned with cross-valida-
tion, determines the number of modules to be selected. The weights α evolve with each 
LASSO iteration, by trying to minimize the value of Equation 4, until the desired num-
ber of modules with non-zero weight is found. Intuitively, the repetitive use of LASSO in 
the workflow achieves the goal of neglecting (i.e., reducing to zero) the weights associ-
ated to modules with non-essential effects in the phenotypic response and, at the same 
time, enhancing the weights associated to modules with significant effects.

The output after the repetitive application of LASSO is a set Wz of modules for each 
phenotypic trait z, where Wz ⊆ {u | 1 ≤ u ≤ c} for z = 1, 2, .., p . A target gene in I for 
downstream analysis is any gene belonging to a selected module; that is, I = ∪

p
z=1Wz , 

where I ⊆ {i | 1 ≤ i ≤ n2}.

E. Gene enrichment

This is the final step of the workflow. Its goal is to annotate with additional information 
the genes identified in previous stages, helping to elucidate their possible behavior and 
role in the response to the treatment under study.

A crucial step is to identify the differentially expressed genes in the set I. That is, to 
select the genes in I that have an absolute value of the Log Fold Change of at least 2 
( |ℓij| ≥ 2 ) for at least one sample. This corresponds to genes whose expression level is 
quadrupled (up or down) from the control to treatment condition; they are the target 
genes.

Furthermore, functional category enrichment can be carried out by, e.g., searching for 
gene ontology annotations in databases such as QuickGO [20], UniProt [21], and the 
Rice Genome Annotation Project [22]. Such annotations can provide evidence of bio-
logical implications of the target genes in the treatment-tolerance mechanisms. Further-
more, those databases can be used to identify the protein products of genes, which can 
be used in turn to provide new insights on how target genes are involved in functional 
pathways related to treatment. Such analysis includes a review of reported protein-pro-
tein interactions in databases such as STRING [23]. The protein interactions include 
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direct (physical) and indirect (functional) associations. They stem from computational 
prediction, knowledge transfer between organisms, and interactions aggregated from 
other (primary) databases. The search for unknown interactions would extend the work-
flow with additional steps.

Identifying potential saline stress responsive genes in rice
This section presents a case study, applying the approach introduced in “The workflow” 
section, for identifying genes that respond to saline stress in Oryza sativa. The goal of 
this case study is to discover groups of genes whose differential expression patterns are 
highly related to phenotypic responses to salt stress. The discovery process is validated 
with a Fisher’s exact test, thus ensuring that the number of differentially expressed genes 
(DEG) and of reported genes related to salt stress is statistically significant.

The RNA-seq data was accessed from the GEO database [12] (accession number 
GSE98455). It corresponds to n0 = 57, 845 gene expression profiles of shoot tissues 
measured for control and salt conditions in m = 92 accessions of the Rice Diversity 
Panel 1 [13], with r = 2 biological replicates. A total of p = 3 phenotypic traits were 
used: shoot K content, and root and shoot biomass. These traits were measured for the 
same 92 genotypes, under control and treatment conditions, and can be found in the 
supplementary information for [24].

A. Data pre‑processing

DESeq2 normalization was applied to the raw data and the biological replicates were 
averaged. Genes exhibiting low variance were identified as those with ratio of upper 
quantile to lower quantile smaller than 1.5 and were removed from the normalized 
data. Genes with low expression, corresponding to those having more than 80% sam-
ples with values smaller than 10, were also removed. After this filtering process a total of 
n1 = 9, 414 genes were kept for further analysis.

Genes whose difference between the upper and lower quantiles was greater than 0.25 
were removed from the Log Fold Change matrix L0 . Therefore, the resulting matrix L1 
contained the log ratios of n2 = 8, 928 genes. The logarithmic ratios of the phenotypic 
data, for the 92 accessions and the 3 traits, were also computed.

B. Construction of the co‑expression network

The Log Fold Change matrix L1 was used to compute the corresponding similarity 
matrix. For this network, it was observed that β = 3 is the smallest integer such that 
R2 ≥ 0.8 . Figure 3 depicts the degree distribution of the similarity matrix (left) and the 
degree distribution of the adjacency matrix (right), which is the degree distribution of a 
scale-free network with R2 = 0.8 and β = 3.

The resulting adjacency matrix A represents a complete graph G = (V ,E) , with 
|V | = 8, 928 genes ( |E| = 39, 850, 128 edges).

C. Identification of co‑expression modules

The adjacency matrix A was transformed into an unweighted network Â applying the 
approach described in [18]. The cutoff value was set to 0.2, based on the density of the 
network combined with the decreasing number of nodes and edges with higher PCC 
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values. Hence, only connections above this threshold were kept, while isolated nodes 
were removed. The resulting adjacency matrix Â consists of 5, 810 connected genes and 
accounts for 614, 501 edges.

The HLC algorithm distributes 4, 131 genes in c = 5, 143 overlapping modules of at 
least 3 genes each. Figure 4 presents a histogram of the overlapping percentage of these 
genes, measured as the proportion of modules to which each gene belongs. The first bar 
of the histogram represents the genes with zero overlap, corresponding to 28% of the 
total genes; the remaining 72% genes belong to more than one module.

D. Detection of module association to phenotypic traits

The phenotypic traits under study are shoot K content, and root and shoot biomass. 
Figure 5 suggests that there are significant differences in the values of these phenotypic 
traits between stress and control conditions. This supports the working hypothesis that 
these three variables represent tolerance-associated traits in rice under salt stress.

By using the affiliation matrix F derived from the HLC output and the Log Fold 
Change matrix L1 , a matrix M was built by computing the eigengene for each of the 
c = 5, 143 modules. LASSO was applied by using each of the phenotypic traits as the 
outcome variable, one at a time. As shown in Fig. 6, cross-validation was performed for 
each phenotypical trait to select the corresponding regularization parameter � minimiz-
ing the mean-squared error.

Three LASSO models were adjusted by using the corresponding � and phenotypical 
data with the eigengenes of matrix M. As result, 6 modules were detected as relevant 
in the response to salt stress in rice: 3 modules of 3 genes, each associated with shoot K 
content; 2 modules of 3 genes associated with shoot biomass; and 1 module of 4 genes 
associated with root biomass. Figure 7 depicts in a Venn diagram how the number of 
genes selected at different stages evolved.

E. Gene enrichment

From the 19 genes selected by LASSO, 16 genes ( 84% ) were also identified as differen-
tially expressed ( |ℓij| ≥ 2 ) for at least one of the 92 accessions. In general, there were 
3, 741 unselected differentially expressed genes and 5, 168 unselected non-differentially 
expressed ones, for a total of 8, 909 genes. Therefore, differentially expressed genes were 
significantly more likely to be selected by the workflow, as checked by a Fisher exact test 
with p-value less than 10−3.

Figure 7 summarizes how, from the initial n0 = 57, 845 genes, the proposed workflow 
identified a reduced set of 19 genes. First, 48, 431 genes were discarded after filtering 
the normalized expression data D2 and then 486 additional genes were discarded when 
filtering the Log Fold Change matrix L0 . A final set of 19 genes are identified, of which 16 
are differentially expressed.

The 19 selected genes were also enriched by contrasting them with findings reported 
in the literature [25–28], which applied different approaches to study the same RNA-seq 
dataset GSE98455. In [27], 11 of the 19 selected genes were reported to have conserved 
heritability for both control and salt stress conditions.
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The identifiers for the 19 genes are listed in Table 1. Differentially expressed genes are 
identified by the mark (*) in column DEG, and those with heritable expression under 
control and salt stress (as reported in the literature) in column H.

Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and 
the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells 
in roots and shoots, and regulate leaf development and the onset of senescence [29]. GO 
terms related to these characteristics, and therefore relevant to salt stress, were found 
in this case study to be associated with some selected genes. For example, gene LOC_
Os12g37260 is annotated with response to abiotic stimulus and response to stress, and 
gene LOC_Os12g10280 is annotated with response to extracellular stimulus, channel 
activity, and transmembrane transport. Genes LOC_Os04g12499, LOC_Os04g12530, 
and LOC_Os12g10280 are annotated with transporter activity, while gene LOC_
Os04g35010 is annotated with multicellular organism development.

In vivo experiments, reported by independent authors, provide evidence on the 
relationship with salt stress of 5 genes among the ones selected in the case study 

Table 1  Selected genes

Phenotypic trait Module TU ID LOC_Os ID DEG H

K_shoot 1 13101.t01457 LOC_Os01g16124 * *

13101.t01458 LOC_Os01g16130 * *

13104.t01366 LOC_Os04g16230 *

2 13104.t01068 LOC_Os04g12520 * *

13104.t01069 LOC_Os04g12530 * *

13104.t01066 LOC_Os04g12499 * *

3 13101.t00913 LOC_Os01g10400

13102.t03795 LOC_Os02g41820 *

13103.t00468 LOC_Os03g05870 *

BM_shoot 4 13101.t02836 LOC_Os01g33450 * *

13102.t01261 LOC_Os02g14520 *

13107.t03589 LOC_Os07g39390 *

13112.t00905 LOC_Os12g10280 *

BM_root 5 13101.t05133 LOC_Os01g58100 *

13112.t02444 LOC_Os12g27254 *

13112.t03421 LOC_Os12g37260 * *

6 13104.t03155 LOC_Os04g35010 * *

13108.t03971 LOC_Os08g42310 * *

13109.t01501 LOC_Os09g17049 *

Fig. 1  Example of a full link dendrogram (left) and partition density (right), borrowed from [6]
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Fig. 2  The proposed workflow is broken down into five macro-steps: a Data pre-processing, b Co-expression 
network construction, c Identification of co-expression modules, d Detection of modules association to 
phenotypic traits, and e Gene enrichment

Fig. 3  Degree distribution of the network represented by S (left) and A (right)
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( 26% ). Gene LOC_Os04g12530 is reported as an up-regulated gene in rice plants 
tolerant to salt stress [30]. Gene LOC_Os12g10280 encodes an aquaporin nodulin 
26-like intrinsic membrane (NIP3;5) protein [31]; it has been shown that NIPs play 
an important role in salt stress responses and in maintaining plant water balance [32]. 
Gene LOC_Os04g35010 encodes a protein from the bHLH domain, which have been 
shown to be part of multiple cellular processes, including salt stress signaling path-
ways [33]. Gene LOC_Os12g27254 encodes spermidine hydroxycinnamoyltransferase 
2 (SHT2) protein. This protein contributes to the natural variation of spermidine-
based phenolamides in rice cultivars, which is known to promote tolerance to saline 
stress [34–37]. Gene LOC_Os12g37260 encodes the Lipoxygenase protein, which is 

Fig. 4  Overlapping percentage of genes after applying HLC

Fig. 5  Phenotypic traits distribution under control and salt stress

Fig. 6  Cross-validation of the LASSO regularization parameter � , for each phenotypic trait
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known to correlate directly with salt tolerance in rice [38–40]. Note that the STRING 
database reported a protein-protein interaction of the last two mentioned proteins, 
namely SHT2 and Lipoxygenase, supporting their membership within the same mod-
ule, as seen in Table  1. Figure  8 shows the corresponding 3D protein structures of 
these two proteins. In relation to the 5 genes above-mentioned, there are 387 other 
genes known to be involved in salt stress (see [30, 41, 42]). Therefore, it can be said 
that the number of genes selected by the workflow that are related to salt stress is sig-
nificant, as checked by a Fisher exact test with p-value less than 10−2.

As a conclusion, the results presented in this section strongly suggest that the pro-
posed workflow, based on identifying overlapping communities in co-expression net-
works, is capable of detecting stress responsive genes. Further studies are needed to 
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Fig. 7  Venn diagram representing the number of genes selected at different stages of the proposed 
workflow for the case study in rice

Fig. 8  3D protein structure of named genes selected by LASSO, borrowed from [23]
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elucidate the detailed biological function of the remaining 14 genes –out of the initial 
57, 845 genes– that have not been reported in the literature to be related to salt stress 
response. This study suggests that they may have the potential to intervene in stress 
responsive mechanisms to salt conditions in rice.

Concluding remarks
This manuscript provides a detailed description of a network-based analysis workflow 
for the discovery of key genes responding to a specific treatment in plants. It links tran-
scriptomic with phenotypic data and identifies overlapping gene modules.

The proposed approach was inspired by the workflow suggested in the WGCNA [4]. 
Its main steps are the preprocessing of the gene expression data, the construction of a 
co-expression network, the detection of modules within the network, the relation of 
modules with external information (e.g., phenotypic data), and the enrichment of the 
identified key genes with additional information. Both approaches are structured in a 
modular way, which allows modifying and exploring different techniques in each step of 
the workflow.

The proposed workflow is designed to integrate expression data measured under two 
different conditions (namely, control and treatment), unlike the usually co-expression-
based approaches working with both conditions independently or considering only a 
single condition. For this purpose, an approach similar to that proposed in [25] is used, 
where the control and treatment data are compiled in a single matrix using the Log Fold 
Change measure. Thus, the input to construct the co-expression network is not the 
expression data, but instead the changes in the expression levels from one condition to 
the other, making room for capturing the signal of changes caused by the treatment.

An important feature in the proposed workflow is the module detection technique. 
The co-expression network is computed, as in WGCNA, until a scale-free network 
is obtained. In the proposed approach, this network is then used to apply the HLC 
algorithm, a clustering tool capable of detecting overlapping communities. Several 
approaches of module detection from gene expression have been proposed and are eval-
uated in [43]. Most of them focus mainly on disjoint (non-overlapping) communities; 
the techniques described to deal with overlaps are not clustering, but bi-clustering and 
decomposition methods. It is well known that communities in real networks, includ-
ing biological ones, are likely to overlap [44]. Thus, the approach presented in this work 
can be seen as a generalization of the previous approaches, such as WGCNA, with the 
potential to deal with genes associated to multiple biological processes.

The workflow proposed in this paper was applied in a case study with rice under salt 
stress. It identified a group of 19 genes, of which 16 were differentially expressed and 5 
have been reported to be related to saline stress response in independent in vivo experi-
ments by other authors [30, 32–35, 39]. Moreover, also 5 of the 19 genes have GO-anno-
tations related to saline stress, and 11 genes are reported to have conserved heritability 
for both control and salt stress conditions.

As future work, other overlapping module detection and selection techniques should be 
used, complementing HLC and LASSO, respectively. The combination of these techniques 
would allow finding target genes for future biological studies that evaluate their potential 
as genes that respond to salt stress in rice, and other crops and stresses. In vivo laboratory 
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experimentation needs to be conducted to validate the findings of this paper in relation to 
salinity stress for some of the 19 genes.

Finally, the workflow is presented as a protocol capable of considerably reducing the 
number of genes detected as relevant in the response to a given stress. Other traditionally 
used methods for this purpose tend to generate a large list of candidate genes, thus limit-
ing subsequent efforts in experimental validation. In this sense, the proposed workflow can 
help in reducing such efforts in time and money invested by researchers in the experimen-
tal validation of stress-responsive genes.
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