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a b s t r a c t

To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was con-
structed for the functional integration of membrane proteins with large extra-membrane domains such
as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer
molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath.
Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid
bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein
integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody
binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The
platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid
bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal
Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biosensing and biointerface technologies have recently offered
new insights to measure and monitor drug-protein interactions in
real-time [1,2]. It is often complicated to study membrane pro-
tein–ligand and membrane protein–membrane interactions in vivo
and in vitro conditions due to many external and internal factors
involved in cellular organization. Cell membrane mimicking plat-
forms (i.e., model membrane systems) such as bicelles [3], nano-
discs [4], liposomes [5], black lipid films [6], solid-supported bi-
layer lipid membranes (sBLMs) [7], and tethered bilayer mem-
branes (tBLMs) [8], are employed to investigate the membrane
proteins, and provide information on drugs/toxins and membrane
proteins interactions in vitro. Particularly, tBLMs provide great
impact and utility on membrane protein investigations, where li-
pid membrane is elevated from the support surface using a spacer
molecule (e.g., peptide or polymer) which elevate the lipid bilayer
from the support surface [9]. Recently, long polymer-based spacer
molecules have been utilized to provide viscoelasticity to tBLMs,
where membrane spanning proteins are inserted [10,11]. These
membrane models mimic cellular environment by providing a
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reservoir section to preserve native structure of membrane pro-
teins in vitro. In addition, they minimize surface roughness effects
over membrane proteins that interfere to the durability and ac-
curacy of the constructed membrane system. These model mem-
brane platforms can also be characterized using various surface
sensitive techniques, imaging tools, and electrochemical devices
[12–14]. For instance, Surface Plasmon Resonance (SPR) is an op-
tical method to monitor the binding events on the sensor surface
by analyzing changes in refractive index parameter reflecting the
amount of binding molecule in real-time [15]. Quartz Crystal Mi-
crobalance–Dissipation (QCM–D), on the other hand, is sensitive to
mass accumulation on the surface, and simultaneously records
changes in total mass in terms of resonance frequency (f) and
dissipation (D) [16]. Dissipation parameter is also used to evaluate
the viscoelastic properties of constructed layers in lipid membrane
research [17]. For visualization studies, Atomic Force Microscopy
(AFM) has been employed to assess and explore the topography of
solid and viscoelastic surfaces including lipid bilayers in nano-
metric scale. AFM also provides insight in mechanical character-
istics of constructed surfaces (e.g., viscoelasticity and rigidity) and
the interaction forces in lipid bilayer platforms [18].

P-glycoprotein, a product of the multidrug resistance gene
(MDR1), is a transmembrane protein, which pumps various exo-
genous and endogenous toxic compounds out of the cell as a part
of cellular defense mechanism [19,20]. Recent experiments also
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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showed that MDR1 protein has crucial role in cancer cells [21],
nervous system [22], diabetic [23] and HIV-1 infected individuals
[24]. Since MDR1 is essential for cellular defense mechanism, to
evaluate the interactions of this protein with various drugs/toxins
has significant impact for medical and pharmaceutical studies. Due
to its large cytoplasmic domain, however, its functional integration
requires a tBLM platform, which utilizes a long spacer molecule.
Although short spacer molecules (e.g. tetra ethylene glycol) could
be used for insertion of small membrane proteins or pore forming
peptides such as gramicidin and mellitin [25,26], proteins with
large extra-membrane domains require longer spacers. Using long
spacer molecules like polyethylene glycol-2000 (PEG-2000)
[10,11,27,28], PEG-5000 [29], or oxazoline derivatives [30,31] were
reported by several groups. Although some of these studies have
focused on membrane construction and characterization, only
small proteins (o50 kDa) were inserted in the constructed tBLM
[10,27], and large membrane protein incorporation has not been
studied [11,28,29,32,33]. Only limited studies involve the in-
corporation of large proteins such as ATPase [31] and integrin
αııbβ3 [30] on tBLMs, and in both reports, oxazoline derivatives
were used as spacer molecule. In addition, integration of integrin
αııbβ3 had been done using fluorescently labelled proteins, and no
further examinations have been performed to demonstrate their
interactions with antibodies or drugs. ATPase, on the other hand,
has a large extra-membrane part with ATP hydrolysis activity and
this large domain had been extended to the upper part of the tBLM
to perform activity measurements. In our study, however, large
extra-membrane domain of MDR1 should be situated in the re-
servoir produced by the spacer molecule, not in the upper part,
since specific antibody and drug that were used would interact
with the opposite side of the protein.

In our study, a tBLM platform was constructed on a solid sup-
port surface to integrate MDR1 (i.e., P-glycoprotein) by using a
modified polymer spacer (PEG-2000-modified lipid molecule). To
the best of our knowledge, there is no prior study that demon-
strates functional incorporation of MDR1 protein with correct or-
ientation, as well as evaluation of drug (i.e., statin) interactions
with MDR1 protein on model membrane platforms. As a model
drug, pravastatin, a cholesterol lowering drug, was utilized since it
has been reported to interact with MDR1 protein and inhibits its
function [34]. To characterize the platform, three different tech-
nologies, namely SPR, QCM–D, AFM in liquid, were employed.
2. Materials and methods

2.1. Materials

L-α-Phosphatidylcholine (PC) from egg yolk (P3556), 3,3′-di-
thiodipropionic acid di(N-hydroxysuccinimide) (DTSP) (D3669),
pravastatin (P4498), P-glycoprotein (MDR1) (M9194), monoclonal
anti-P-glycoprotein (anti-MDR1, P7965) antibody, anti-Pin-1
mouse monoclonal antibody (WH0005300M1) were purchased
form Sigma-Aldrich (USA). Dimethyl sulfoxide (DMSO)
(1029521000) and chloroform (1070242500) were purchased from
Merck (USA). 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-
N-[amino (polyethylene glycol)-2000] (ammonium salt) (DSPE-
PEG) (880128P) and Mini-Extruder were purchased from
Avanti (USA). SPR gold-coated surfaces and QCM gold-coated
surfaces (QSX301) were purchased from Reichert (USA) and
Q-Sense (Sweden), respectively. In AFM imaging experiments,
Nanosensors™ cantilevers (Model: PPP-NCHAuD; Force constant
(k): 42N/m; Resonance Frequency (f): 328kHz, Switzerland) were
used.
2.2. Preparation of MDR1-free and MDR1-incorporated liposomes

In protein-free liposome production, 100 mL of PC solution
(1 mg/mL in chloroform) was added into a round bottom flask
(100 mL), and the flask was rotated under N2 atmosphere. Thin
lipid film was hydrated by adding phosphate buffer saline (PBS,
5 mL, 0.1 M, pH 7.4), and the solution was vortexed vigorously. This
suspension was then extruded (Avanti Mini-Extruder) through a
polycarbonate filter membrane with 100 nm pore size at least 15
times to obtain protein-free liposomes [35].

For protein-loaded liposome production, MDR1 stock solution
was first prepared according to the manufacturer's protocol.
Briefly, MDR1 protein solution (10 mL) was added to 1 mL of EGTA–
Tris buffer (0.1 M, pH 7.0), and the solution was stored at �20 °C
for further use. For the production of MDR1 protein-loaded lipo-
some, the same procedure in the protein-free liposome production
was followed, and different volumes of MDR1 stock solution (0.7–
5.0 mL or 0.00014–0.001 (v:v)) was added to PBS before the ex-
trusion step. As indicated by the manufacturer, Avanti Mini-Ex-
truder System provides liposomes ranging from 120 to 140 nm.
Further, MDR1 has two jut-outs (up-side: �2 nm and down-side:
�8.6 nm) at membrane surface as reported in the literature [36].

2.3. Construction of tBLMs

Formation of tBLMs was performed in three steps: (i) activation
of gold-coated surface (Fig. 1A), (ii) attachment of the tethering
layer (B), and (iii) formation of either MDR1-free (C) or MDR1-
integrated lipid bilayer (D). Gold-coated surfaces were activated
with DTSP (1 mM in DMSO) at room temperature overnight, then
washed with acetone, and dried with N2 gas. The activated sur-
faces (Fig. 1A) were mounted to either SPR or QCM–D, and the
system was stabilized using degased distilled water. To construct
the spacer layer, DSPE-PEG molecule was used at various con-
centrations (0.01–0.06 mg/mL in distilled water) (Fig. 1B). The
system was then equilibrated with PBS, and either MDR1-free
(Fig. 1C) or MDR1-incorporated liposome solution (D) was pumped
through the reaction chamber until signal was stabilized. Unbound
or weakly bound lipid vesicles were rinsed with PBS, and whole
procedure was monitored by SPR and/or QCM–D.

2.4. Characterization of tBLMs

In SPR measurements, Reichert SR7000 SPR system (USA) and
sensor chips (chromium (1 nm) and gold (50 nm) coated BK7 glass
slides) were used. Refractive index changes were measured as
micro refractive index unit (mRIU) in 3 s. intervals (sensitivity:
0.75 mRIU). In QCM–D (KSV QCM Z500, Finland) characterization,
changes in frequency (f) and dissipation (D) were simultaneously
monitored at 15, 25, 35, 45 MHz with different overtone values
from 1 to 9. In these measurements, temperature was set to 25 °C,
and the flow rate for all solutions was adjusted to 0.1 mL/min in
both systems with a peristaltic pump (Masterflex Model 7550-50,
USA). In AFM studies, NanoMagnetics Instruments AQUA non-
contact-AFM system (Turkey) was used.

2.5. Antibody binding studies

To confirm the integration of MDR1 protein in tBLM platform, anti-
MDR1 monoclonal antibody was used, and the binding events were
monitored by SPR. To evaluate non-specific binding, anti-MDR1 anti-
body was also incubated with MDR1-free lipid bilayers. As a negative
control, anti-Pin-1 (G8) monoclonal antibody was applied to the
MDR1-integrated membrane platform. In these experiment, antibodies
were diluted to 1:1000 (v:v) ratio with PBS, and then, introduced to the
system. When the signal was stabilized, PBS was passed through the



Fig. 1. Construction of tBLM on gold-coated surface. (A) Activation of the surface with DTSP. (B) DSPE-PEG modification. (C) Construction of protein-free tBLM. (D) Con-
struction of protein-incorporated tBLM (molecules were not presented in their actual sizes).
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system for rinsing till the signal was stabilized again.

2.6. Analysis of statin–MDR1 Interaction

For the demonstration of drug–membrane protein interaction,
pravastatin (0.01 and 0.05 mg/mL in 0.1 M, pH: 7.4 PBS) was used.
Drug solutions were circulated through SPR reaction chamber
until the signal was stabilized, and then, washed with PBS. As a
control experiment, 0.05 mg/mL of pravastatin was introduced
MDR1-free membranes, and the same procedure was followed.

2.7. Statistical analysis

To assess the conformational transition of DSPE-PEG molecule
from the mushroom to brush-like regime, the experimental results
(n¼3) were analyzed using analysis of variance (ANOVA) with
Bonferroni correction for multiple comparisons (po0.01). To
evaluate the effect of spacer concentration on liposome behavior,
the experimental results (n¼3) were analyzed using ANOVA with
Tukey's post-hoc test for multiple comparisons (po0.01). To
evaluate the effect of MDR1 amount on liposomal behavior, the
experimental results (n¼3) were analyzed using ANOVA with
Tukey's post-hoc test for multiple comparisons (po0.05). All
statistical analyses were performed using Minitab Software (Re-
lease 14; Minitab Inc, State College, PA).
3. Results and discussion

3.1. Characterization of DSPE-PEG layer

To construct a tBLM platform for the incorporation of trans-
membrane proteins with large hydrophilic domains, DSPE-PEG
was used as a spacer molecule to elevate lipid bilayer. SPR results
indicated that the mRIU values increased with increasing DSPE-PEG
concentrations (Fig. S1A). The lowest spacer concentration
(0.01 mg/mL) presented a significantly lower mRIU value compared
to higher concentrations. After this transition, only a gradual in-
crease was observed. QCM–D measurements presented consistent
results with SPR experiments (Fig. S1B). Statistical analyses de-
monstrated that signal change in 0.02 mg/mL of spacer con-
centrations was significantly greater than that of 0.01 mg/mL for
both SPR (Fig. S1C) and QCM–D (po0.01) (D). Since dissipation is
a vital parameter to understand this structural transition, espe-
cially affecting on viscoelastic properties of layers [37–39], the
change in dissipation value was also evaluated, and a similar in-
crease was also observed in these measurements (Fig. S1E). In our
platform, viscoelastic property, molecular conformation and
binding events are significantly affected by a long PEG chain
((OCH2CH2)45) rather than lipid molecules (DSPE) in this hybrid
spacer molecule. As reported in the literature, surface coverage of
PEG molecules affects its conformation [33,39]. When the cover-
age is low, the distance between individual molecules restricts the
intermolecular interactions. The intramolecular interactions are
then favored, and a more compact conformation demonstrates a
“mushroom-like” structure. On the other hand, at higher surface
coverage, PEG residues starts to interact with each other that lead
to a “brush-like” conformation, in which polymeric chains are
extended from the surface. In our study, this transition was ob-
served between 0.01 and 0.02 mg/mL of DSPE-PEG concentration.

3.2. The effect of DSPE-PEG concentration on liposome binding/
spreading

A fixed concentration of liposome solution was incubated on
tethered layers, which were prepared with different DSPE-PEG
concentrations. Thus, the effect of DSPE-PEG concentrations on
liposome binding/spreading was evaluated. In SPR measurements,
DSPE-PEG amount on the surface significantly affected the beha-
vior of liposome to form a lipid layer.

Statistical analyses on mRIU values demonstrated that 0.03 and
0.04 mg/mL of DSPE-PEG concentrations were significantly greater
than the other DSPE-PEG concentrations (po0.01) (Fig. S2A). In
QCM–D frequency experiments, low DSPE-PEG concentrations (0.01
and 0.02 mg/mL) indicated that liposomes could not bind effectively
on the tethered layer (Fig. S2B). Higher DSPE-PEG concentrations
(0.04–0.06 mg/mL) implied different binding curves (data not
shown) but the signal levels for these concentrations reverted to the
starting level after washing step (Fig. S2B). Statistical analysis in-
dicated that 0.03 mg/mL of DSPE-PEG concentration allowed sig-
nificantly higher binding of liposomes compared to the other con-
centrations. Since both SPR and QCM–D experiments demonstrated
that 0.03 mg/mL of DSPE-PEG concentration provided the highest
binding level, further characterization experiments were continued



F. Inci et al. / Biochemistry and Biophysics Reports 2 (2015) 115–122118
to carry out with this spacer concentration. Overall, 0.03 mg/mL of
spacer concentration resulted in 19687126 mRIU of a signal increase
in SPR measurements, and 489791 Hz of a signal decrease in QCM
frequency measurements.

Further, dissipation parameter of QCM–D measurements was
assessed to determine the viscoelastic properties of the lipid lay-
ers. In the literature, �ΔD/Δf ratio was utilized to understand
liposomal behavior on model membrane systems [39–42]. Briefly,
high water content increases elasticity when the liposomes
remain to be intact on the surface, and so, this event results in high
�ΔD/Δf value. When liposomes fuse, deform and lose their water
content by deformation, a more rigid layer is formed onto the
surface and thus, �ΔD/Δf value decreases. As reported previously
[43,44], the frequency value was first normalized using the over-
tone number, and then, the actual dissipation value was used in
calculations. To compare these values, the exact dissipation and
frequency values in the same overtone number was used. �ΔD/Δf
ratios had been used to predict liposome behavior and bilayer
formation on rigid membranes in the literature [44], in our case,
however, liposomes were spread on top of a polymer-based spacer
molecule, thus forming a viscoelastic layer. For this reason, the
calculated values (Table 1) were used to comment on the relative
rigidity of the constructed layers. As a result, high (0.04 and
0.06 mg/mL) and low (0.01 and 0.02 mg/mL) spacer concentra-
tions resulted in high �ΔD/Δf ratios (between 3 and 6). As a
measurement of rigid surface [44,45], Bovine Serum Albumin
(BSA) was introduced to the sensor surface and �ΔD/Δf value of
1.370.76 Hz was observed compared to 1.8570.15 Hz obtained
by spacer concentration of 0.03 mg/mL. Therefore, it could be said
that at 0.03 mg/mL of DSPE-PEG, liposome deformation, flattening
and bilayer formation were observed more successfully compared
to other concentrations. It should also be noted that mushroom to
brush transition for the spacer layer was in between 0.01–0.02 mg/
mL and 0.03 mg/mL just above the concentration where the in-
termolecular interactions started between individual chains but
the surface coverage is relatively low. When spacer concentration
was further increased, individual spacer chains would start to
extend, and the height of the layer would increase. This might
have an effect on the liposomal behavior on the surface. Overall,
the polymer concentration and conformation played a key role in
liposomal behavior and lipid bilayer construction.

Additionally, the mass load on the sensor surface were calcu-
lated using Sauerbrey's equation [46]. This formula correlates the
decrease in frequency with the bound mass:
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where f0 is the resonance frequency of quartz crystal (Hz), mq is
the shear modulus of quartz (2.947�1011 g cm�1 s�2), ρq is the
density of quartz (2.648 g cm�3), and Δm is the change in the
bound mass per area (g cm�2). The following equation was also
derived for the mass load calculations:
Table 1
Effect of DSPE-PEG concentration on the behavior
of liposomes on the surface.

DSPE-PEG concentration (mg/mL) �ΔD/Δf ratio

0.01 4.0373.53
0.02 5.7171.13
0.03 1.8570.15
0.04 6.1672.58
0.05 5.2070.61
0.06 3.3871.20
m
C f
n 2Δ = − Δ

( )

where C is the mass sensitivity constant (17.7 ng cm�2 Hz�1 for
f¼5 MHz crystals), and n is the overtone number (3, 5, …, n).

Mass load is dependent on several parameters including layer
characteristics (e.g., rigidity and viscoelasticity) and sensor prop-
erties (e.g., resonance frequency, shear modulus, and the density of
quartz). Theoretical calculations demonstrated a �2.1 μg/cm2 of
mass accumulation by considering molecular weight and head
group size of PC molecules [44,47]. In optimum conditions
(0.03 mg/mL of spacer concentration), the constructed layer re-
sulted in a 1.270.3 mg/cm2 of mass load. In the literature, there are
rigid lipid bilayer platforms reported with a mass load ranging
from �400 to �500 ng/cm2 using the Sauerbrey model
[43,48,49]. Considering these values, the mass load in our platform
is three times higher than the Sauerbrey model-based studies.
However, this model is valid in acoustically rigid films with low
dissipation [47,50], and it is insufficient when ΔD is more than
zero [51]. In our platform, on the other hand, the polymer-based
spacer layer provides a viscoelastic layer. In the literature, the
Voigt–Voinova model is described to measure the changes in mass
Fig. 2. Binding and spreading of MDR1-incorporated liposomes at various MDR1
volumes on 0.03 mg/mL of DSPE-PEG-modified surfaces by (A) SPR (● 0.7; ∎ 0.9; ♦
1.0; ▲ 2.0;▼ 3.0; ✶ 4.0; ◄ 5.0 mL of MDR1) and QCM–D (● 0.7; ∎ 0.8; ♦ 0.9; ▲ 1.0;▼
2.0; ✶ 3.0; ◄ 4.0 mL of MDR1) (overtone number: 7), (B) using frequency and (C)
dissipation parameters.
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and effective viscoelastic features of the layer during the trans-
formation process from adsorbed vesicles to a lipid bilayer
[50,52,53]. The additional mass of coupled water associated with
the spacer layer has been demonstrated to change significantly in
different platforms, depending on the nature of the spacer layer. A
mass uptake between 1.5 and 10 times higher than the mass of the
adsorbed material was generally estimated [53,54]. Similarly, a
PEG spacer-based lipid bilayer system presented a mass load
ranging from �1.4 to �1.8 mg/cm2 by changing the spacer con-
centration whereas the dry mass ranges between �0.16 and
�0.2 mg/cm2 [10]. In our study, the polymer spacer provides a
viscoelastic layer (i.e., cushion-like structure) and considerably
holds water, thus increasing the total mass three times higher than
that of the rigid layer calculated by the Sauerbrey model. This
excessive mass in our platform is comparable to the reported va-
lues in the literature, and it is also in the range of the estimated
mass calculations (i.e., 1.5–10 times higher than the rigid layers) in
the Voigt–Voinova model. This difference implies that some of the
liposomes were deformed and spontaneously fuse to either con-
struct a lipid bilayer or form partial local multilayers
[40,44,47,55,56].

3.3. The effect of MDR1 amount on liposome binding/spreading

Various volumes of MDR1 stock solution (0.7–5.0 mL or
0.00014–0.001 (v:v)) were evaluated to understand optimum
MDR1 amount to construct a successful platform. SPR analysis
demonstrated that liposomes with low (0.7 mL or 0.00014 (v:v))
and high (3.0–5.0 mL or 0.0006–0.001 (v:v)) MDR1 ratio were ei-
ther fully removed from the surface or not efficiently bound to the
surface (Fig. 2A). When liposomes prepared with 0.9–2.0 mL
(0.00018–0.0004 (v:v)) of MDR1 stock solution were used, stable
lipid layer was observed. In QCM–D frequency measurements, low
(0.7 mL or 0.00014 (v:v)) and high (2.0–4.0 mL or 0.0004–0.0008 (v:
v)) volumes of protein resulted in low binding capacity (Fig. 2B)
Fig. 3. Visualization of DSPE-PEG modified surface and liposome binding/spreading using
scale. Topography image of (C) MDR1-free tBLM and (D) MDR1-integrated tBLM. Dissip
while 0.8–1.0 mL (i.e., 0.0016–0.0002 (v:v)) resulted in more stable
surfaces. Moreover, liposomes prepared with 1.0 mL (i.e., 0.0002 (v:
v)) of MDR1 stock solution resulted in surfaces with highest dis-
sipation value (Fig. 2C). Statistical analyses indicated that the
usage of 1 mL (i.e., 0.0002 (v:v)) of MDR1 stock solution resulted in
the construction of a protein-incorporated lipid layer with sig-
nificantly higher values in both characterization experiments
(n¼3, po0.05) (Fig. S3).

QCM–D dissipation analysis showed that the presence of MDR1
protein caused a decrease in dissipation value, resulting in more
rigid layers, and possibly hindrance in the movement of phos-
pholipids as observed in their native environment [43,47,55], and
possibly increased the stability of the platform by restricting
phospholipid movement. The mass load caused by MDR1-in-
corporation was calculated as 1.67 mg/cm2, and thus, the total mass
load increased ca. 0.47 mg/cm2 compared to MDR1-free lipid layers.
In the literature, the protein insertion demonstrated a decrease in
the efficiency of lipid bilayer construction, and to construct lipid
bilayer, in some studies, the outward sections of the proteins were
cleaved enzymatically and a truncated form of the protein was
used [57]. In our tBLM platform, there is no need for enzymatic
cleavage of the outward sections and the MDR1 was incorporated
without any modification.

3.4. Visualization by Atomic Force Microscopy operating in liquids

Overall roughness of unmodified gold-coated BK7 surfaces (SPR
sensor slides) was first measured as ca. 8 nm. High roughness
value of BK7 surfaces might be caused from the abrasive ma-
chining processes (e.g., cutting and shaping of glass slides) [58].
When optimum DSPE-PEG concentration (0.03 mg/mL) was used,
a condensed structure with 0.39 nm of roughness was observed in
the AFM studies (Fig. 3A). The spacer layer was further in-
vestigated with 6 nm of vertical scale to visualize the behavior of
the spacer molecule (Fig. 3B). In this spacer concentration
AFM. Topography images of DSPE-PEG layer with (A) 3 nm and (B) 6 nm of vertical
ation image of (E) MDR1-integrated tBLM.



Fig. 4. Antibody and pravastatin binding on MDR1-incorporated tBLM by SPR. (A) (●) Binding result of anti-MDR1 monoclonal antibody on MDR1-incorporated tBLM. (■)
Binding result of anti-MDR1 antibody on MDR1-free tBLM. (▲) Binding result of anti-Pin-1 (G8) mouse monoclonal antibody on MDR1-incorporated tBLM. (B) Binding result
of (○) 0.05 mg/mL and (□) 0.01 mg/mL pravastatin solutions on MDR1-incorporated tBLM and binding of 0.05 mg/mL of pravastatin (Δ) on MDR1-free bilayers.
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(0.03 mg/mL), intermolecular interactions between PEG residues
appeared to be critical, and “brush-like” conformation, in which
thin and long polymeric chains extended through vertical direc-
tion, was observed in the AFM analysis [59–61]. Further, this di-
rectional behavior was not observed in surfaces with lower DSPE-
PEG coverage such as 0.0003 mg/mL, probably due to the occur-
rence of “mushroom like” structure explained in previous sections.

Additionally, DSPE-PEG layer was investigated after drying in
air for 24 h, and a highly rough surface (ca. 15 nm) was observed
(Fig. S4B) as opposed to measurements under aqueous conditions
(A). After re-hydration with PBS and incubation for 3 h, smooth
and uniform coating was regenerated as observed previously
(Fig. S4C). Thus, re-hydration allowed spreading of the liposomes.
This structural regeneration offered a great opportunity to dry and
store the spacer layer until it was used for further modifications.

After the application of liposomes onto the DSPE-PEG layer, the
roughness did not alter significantly, and a flat surface with
0.45 nm of roughness was measured using AFM system (Fig. 3C).
In literature, the height of lipid bilayer was reported as ca. 3–4 nm
[36], and well-organized lipid bilayer was theoretically expected to
be smooth. As observed in QCM–D measurements, AFM also in-
dicated that the most of liposomes were deformed and fused to
form either a lipid bilayer or partially local multilayers on the
surface. The presence of MDR1 proteins increased the roughness
value to 1.23 nm (Fig. 3D). Small region scans on the topography
imaging typically demonstrated several jut-outs with ca. 1.5 nm on
the platform (Fig. 3D). The presence of jut-outs becomes more
pronounced in dissipation image (E); stiff regions spread to com-
paratively more viscoelastic areas on the surface were observed,
and these stiff regions was thought to indicate the proteins in-
corporated into the lipid bilayer platform.

3.5. Antibody binding analysis

Anti-MDR1 human monoclonal antibody against extracellular
site of MDR1 protein was used to evaluate the orientation and
presence of MDR1 protein in lipid bilayers. Anti-MDR1 antibody
caused a 841720 mRIU change (Fig. 4A). In addition, two different
control sets were utilized to demonstrate the specificity of anti-
body binding to MDR1-incorporated lipid bilayer. No binding was
observed when anti-MDR1 antibody was interacted with MDR1-
free lipid layers. Anti-Pin-1 (G8) mouse monoclonal antibody,
which is known to have no interaction with MDR1 protein, also
showed no binding (Fig. 4A). Thus, antibody analysis demon-
strated that MDR1 protein was inserted into the lipid bilayers.
3.6. Analysis of statin–MDR1 interactions

For the preliminary investigation to evaluate the potential of
the platform in membrane protein–drug interactions, a statin-
based molecule, pravastatin was applied onto MDR1-loaded lipid
bilayer system. Since the stability of lipid layer was affected by
organic solvents, more hydrophobic statin molecules (i.e., lovas-
tatin and simvastatin) require organic solvent usage, and could not
be applied to the membrane platform. Two different concentra-
tions (0.01 and 0.05 mg/mL) of pravastatin resulted in �20 and
60 mRIU, respectively (Fig. 4B). At lower pravastatin concentrations
(o0.01 mg/mL), the signal remained on the noise level. There was
no significant signal observed when pravastatin was incubated
with MDR1-free membranes (Fig. 4B). In sum, the interactions
between pravastatin and MDR1 proteins were demonstrated on
the model membrane system.
4. Conclusion

In this study, a tBLM platform was constructed using a long
spacer molecule (i.e., DSPE-PEG) for the incorporation of MDR1, a
transmembrane protein with large extra-membrane domain. Here,
spacer concentration significantly affected the behavior of lipo-
somes on the surface. Incorporation of MDR1 resulted in more
rigid layers as shown by QCM–D and AFM results. Constructed
platform enabled to directly examine drug–membrane protein
interactions by introducing pravastatin to MDR1-integrated lipid
membranes. In sum, this presented study offers an alternative
approach to investigate membrane protein characteristics and
drug–membrane protein interactions without any considerable
damage on native structure of membrane proteins. Additionally, in
the future, this platform can be potentially integrated with distinct
modalities such as plasmonic [62], photonic [63], electrical [64]
and nanomechanical systems [65]. Further, it can deployed to
microfluidics [66], lab-on-a-chip systems [67], drug delivery [68]
and biosensor platforms [69] to investigate potential interactions
of several drugs with various membrane proteins in vitro condi-
tions, as well as to monitor binding events in molecular levels.
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