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Abstract
Lipid accumulation is associatedwith various forms of acute renal injury; however, the causative factors and pathways under-
pinning this lipid accumulation have not been thoroughly investigated. In this study, we performed lipidomic profiling of renal
tissue following ischaemia–reperfusion injury (IRI).We identified a significant accumulation of cholesterol and specific phos-
pholipids and sphingolipids in kidneys 24 h after IRI. In light of thesefindings, we hypothesised that pathways involved in lipid
metabolism may also be altered. Through the analysis of published microarray data, generated from sham and ischaemic
kidneys, we identified nephron-specific metabolic pathways affected by IRI and validated these findings in ischaemic renal
tissue. In silico analysis revealed the downregulation of several energy and lipid metabolism pathways, including mitochon-
drial fatty acid beta-oxidation (FAO), peroxisomal lipid metabolism, fatty acid (FA) metabolism, and glycolysis. The pentose
phosphate pathway (PPP), which is fuelled by glycolysis, was the onlymetabolic pathway thatwas upregulated 24 h following
IRI. In this study, we describe the effect of renal IRI on metabolic pathways and how this contributes to lipid accumulation.
© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Renal ischaemia–reperfusion injury (IRI) is a pertinent
issue in sepsis [1], major surgery [2], and shock [3],
but also renal transplantation, as it has been established
as a risk factor for acute kidney injury (AKI), delayed
graft function (DGF), and both acute and chronic rejec-
tion [4]. IRI is defined as a temporary, concomitant dep-
rivation of oxygen and nutrients, resulting in reduced
oxidative phosphorylation (OXPHOS), ATP depletion,
and metabolic waste accumulation [5].
Neutral lipid accumulation, a well-established fea-

ture of many forms of renal injury, is observed after
IRI. Zager et al observed cortical cholesterol and tria-
cylglycerol (TAG) accumulation following several
forms of AKI. Even physiological stress, which does
not result in renal tubular damage, was also found to
cause lipid deposition [6–8]. This suggests that lipid
accumulation is not simply an effect of tubular

damage, but a component of the cellular stress
response. Our group has shown that renal lipid accu-
mulation is not restricted to neutral lipids. Metabolic
overload in mice leads to an increase in cholesterol
and phospholipids in the proximal tubules, illustrating
the kidney’s susceptibility to both polar and nonpolar
lipid accumulation [9]. We found diet-induced renal
lipid accumulation to be associated with renal damage,
inflammation, and fibrosis in mice [9]; however, the
effect of lipid accumulation on renal tissue remains a
topic of debate. Zager’s group coined the term
‘acquired renal cytoresistance’ (ACR) after demon-
strating that various forms of renal injury conferred
resistance to a secondary insult of the same nature
[10,11]. They later reported that all cytoresistant
responses were associated with increased renal corti-
cal cholesterol, and inhibition of cholesterol synthesis
in vitro prevented the development of ACR in proxi-
mal tubules [12].
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Lipid accumulation is clearly a common phenotype
following renal injury; however, similar to the uncer-
tainties regarding its damaging or beneficial effect, the
underlying cause of this phenomenon also requires fur-
ther study. As ischaemia is known to suppress OXPHOS
[13], a major energy-producing metabolic pathway in
the kidney, it is plausible that pathways associated with
lipid metabolism could also be affected by an ischaemic
event. Our aim was to investigate the alterations in lipid
profile and the underlying metabolic pathway rewiring
that occurs during IRI. In order to further characterise
the renal lipid profile following IRI, we performed mass
spectrometry (MS) lipidomic analysis of kidney tissues
and found an accumulation of cholesterol and specific
phospholipids and sphingolipids in the early stages of
IRI-induced AKI. Additionally, through an in silico
analysis of published datasets, we analysed changes in
metabolic pathways in response to IRI and validated
these findings in our own IRI model. We found that
major energy and lipid metabolism pathways were
downregulated following IRI. The pentose phosphate
pathway (PPP) was the only metabolic pathway that
was upregulated 24 h following IRI, suggesting that this
pathway may be beneficial for adaptive repair.

Materials and methods

Mice
Pathogen-free, wild-type (WT), male C57BL/6J mice,
8–12 weeks of age, were purchased from Charles River
Laboratories (Cologne, Germany) for the purpose of
ischaemia–reperfusion experiments. Animals were
housed in the animal care facility of the Academic Med-
ical Center (University of Amsterdam) in accordance
with national guidelines and given ad libitum access to
both food and water. Environmental conditions were
monitored daily. These were in compliance with the cri-
teria set by the American Association for Laboratory
Animal Science (AALAS). All experiments were
approved by the Animal Care and Use Committee of
the University of Amsterdam.

Ischaemia–reperfusion injury
Renal ischaemic insult was induced by unilateral clamp-
ing of the renal pedicle (n = 5) or bilateral clamping of
both pedicles (n = 7). In brief, either the left or both renal
arteries were clamped for 20 min through an incision in
the flank under general anaesthesia (2.25% isoflurane–
100% oxygen). Upon removal of the clamp, the incision
was closed in two layers, and mice received Temgesic
(0.1 mg/kg buprenorphine; Schering-Plough BV,
Amstelveen, The Netherlands), administered by subcu-
taneous injection. A sham group (n = 4) received a sim-
ilar incision in the flank without renal clamping. All
mice were sacrificed 24 h after surgery by means of
exsanguination and cervical dislocation, all performed
under general anaesthesia (isoflurane). Kidneys were

snap-frozen in liquid nitrogen and/or fixed in neutral-
buffered formalin in preparation for further analyses.

Kidney histology
Formalin-fixed, paraffin-embedded renal sections (4 μm
thick) were stained using periodic acid–Schiff–diastase
(PAS-D), as described previously [14], for the general
visualisation of renal histology.
For the visualisation of lipid droplets (LDs), renal sec-

tions were pretreated for optimal epitope-retrieval, as
described previously [14]. Tissue was stained with
guinea pig anti-perilipin-2 primary antibody (Progen
Biotechnik, Heidelberg, Germany; Cat # GP40,
1:10 000), followed by incubation with a secondary rab-
bit anti-guinea pig (Thermo Scientific, Waltham, MA,
USA) antibody and a final incubation with a tertiary
layer, peroxidase-labelled antibody (Powervision poly
HRP-anti rabbit; Immunologic, Duiven, The Nether-
lands), prior to visualisation with the DAB Plus system
(Dako, Glostrup, Denmark).

Mass spectrometry
Lipids were extracted from homogenised tissues by
Bligh and Dyer’s chloroform/methanol extraction
method [15]. Analysis was performed by direct flow
injection electrospray ionisation tandem mass spectrom-
etry (ESI–MS/MS) in positive ion mode, using the ana-
lytical setup and strategy described previously [16].
Sphingolipids and minor glycerophospholipids were
extracted by the butanolic extraction procedure as
described by Baker et al [17] and Scherer et al [18]
and analysed by liquid chromatography–tandem mass
spectrometry (LC–MS/MS), as described previously
[19]. Quantification was attained utilising non-naturally
occurring internal standards and calibration lines gener-
ated by standard addition of a number of naturally occur-
ring species to samples. Excel Macros made in-house
were employed for deisotoping and data analysis of all
lipid classes [17–21]. Annotation of glycerophospholi-
pid species was based on the presupposition that the fatty
acyls contain an even number of carbon atoms. Sphingo-
myelin species were assigned based on the assumption
of a sphingoid base with two hydroxyl groups.

Microarray data
In 2014, Liu et al published an article in which they
described how they were able to measure gene expres-
sion in specific cell populations within the kidney fol-
lowing bilateral IRI [22]. This microarray dataset was
retrieved from NCBI Geo Datasets under the accession
number GSE52004. The retrieved microarray dataset
had already been normalised using the robust multi-
array average (RMA) approach. From this database, we
used gene expression data measured in cells from the
nephron both 4 h and 24 h following reperfusion. Data
from sham mice were used as a control. Each group
contained expression data from three mice.
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Microarray data analysis
Analysis of the microarray data was carried out using
Bioconductor packages in the R statistical programming
language. The normalised microarray dataset was log2
transformed and passed to the R package ‘limma’ for dif-
ferential expression analysis [23]. First, the fold-changes
and standard errors were estimated by fitting a linear
model for each gene. Next, an empirical Bayes method
was used to moderate the standard errors towards a com-
mon value and a moderated t-statistic was calculated.
Genes with a Benjamini–Hochberg adjusted P value less
than 0.05 were considered statistically significant.
The genes that were considered differentially

expressed were passed to the R package ReactomePA
for pathway enrichment analysis [24]. The ReactomePA
package allows for enrichment analysis using the reac-
tome pathway database [25]. Those pathways with a
Benjamini–Hochberg adjusted P value less than 0.05
were considered significant. The top 30 enriched reac-
tome pathways were visualised as an enrichment map
using an inbuilt function in the ReactomePA package.

Heatmaps
Pathway analysis identified differential expression of
functionally related genes. To determine whether these
pathways were up- or downregulated, custom heatmaps
were generated using the NetworkAnalyst 3.0 analytics
platform [26]. Gene expression was shown for sham
mice and mice sacrificed 4 and 24 h following
reperfusion.

Reverse transcription-quantitative PCR (RT-qPCR)
Total RNA was isolated from 300-μm-thick frozen renal
sections using TRIzol reagents (Invitrogen, Breda, The
Netherlands). RNA isolation was performed according
to the manufacturer’s instructions. Complementary
DNA was generated following a standard protocol. In
brief, oligo-dT primers were annealed to the RNA for
10 min at 72 �C, followed by reverse transcription for
60 min at 37 �C using M-MLV reverse transcriptase
(Promega, Leiden, The Netherlands). Real-time cDNA
quantification was performed on the Roche LightCycler
480 (Roche Diagnostics, Almere, The Netherlands)
using a SensiFAST SYBR No-ROX kit (Bioline, Wad-
dinxveen, The Netherlands). Gene expression was nor-
malised against TATA-box binding protein (Tbp)
transcripts. Analysis was performed using the Lin-
RegPCR 12.4 software. The following genes were ana-
lysed: Havcr1 (kidney injury marker-1; Kim-1), Lcn2
(neutrophil gelatinase-associated lipocalin; Ngal),
Ppara (peroxisome proliferator-activated receptor-
alpha), Ppargc1a (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; Pcg1-alpha),
G6pdx (glucose-6-phosphate dehydrogenase X), Taldo1
(transaldolase 1), Tkt (transketolase), Prps1 (phosphori-
bosyl pyrophosphate synthetase 1), Fasn (fatty acid
synthase), and Cd36 (cluster of differentiation 36).

Primer sequences are listed in supplementary material,
Table S1.

Statistical analyses
Statistical analysis was performed using Graphpad
Prism 8.3 software (Graphpad Software, San Diego,
CA, USA) and data are presented as mean � SEM.
Datasets were tested for normality using the Shapiro–
Wilk normality test. Based on data distribution, statisti-
cal analysis was then performed using an unpaired t-test
or aMann–Whitney test. Outliers were determined using
Grubbs’ test and subsequently excluded.

Results

Lipidomic profiling in ischaemic kidneys
In order to understand the diversity in lipid accumulation
following renal IRI, we performed MS-based lipidomics
on renal tissue from our unilateral IRI model. Tissue was
harvested 24 h post-ischaemia, the time point at which
tubular necrosis and intratubular cast formation occur
(supplementary material, Figure S1A). An extensive
panel of major sterols [cholesteryl esters (CE) and free
cholesterol (FC); Figure 1A,B], phospholipids [phos-
phatidylcholine (PC), phosphatidylglycerol (PG), phos-
phatidylinositol (PI), and bis(monoacylglycero)
phosphate (BMP); Figure 1C–F], and sphingolipids
[sphingomyelin (SM), dihydrosphingomyelin (DSM),
ceramide (Cer), hexosylceramide (HexCer), sphinga-
nine (SPA), and sphingosine (SPH); Figure 2] was
measured.

Cholesteryl esters, together with TAG and diacylgly-
cerol (DAG), are stored intracellularly in lipid droplets
(LDs) [27]. Therefore, we assessed the abundance of
LDs. Staining for perilipin-2, a structural component of
the LD outer layer, showed the presence of LDs within
ischaemic tubules. Perilipin-2 positivity was negligible
in sham kidneys (supplementary material, Figure S1B).
As excess fatty acids (FAs) are stored as TAGs, renal
expression of genes encoding for CD36, the tubular FA
uptake molecule, and FASN, the enzyme that catalyses
FA synthesis, was measured. The expression of both
genes was significantly decreased upon IRI (supplemen-
tary material, Figure S1C,D).

Ischaemic kidneys displayed a significant increase in
both CE and FC (Figure 1A,B), as well as a trend
towards increased phospholipid levels (Figure 1C–F),
with a statistically significant increase being observed
for PG (Figure 1D). Measurements were also performed
for phosphatidylethanolamine (PE) and phosphatidyl-
serine (PS), which were found to be unaffected by IRI
(data not shown). Among the sphingolipids analysed,
DSM, Cer, HexCer, and SPH levels were significantly
increased in ischaemic kidneys (Figure 2). In addition,
SPA and SM levels were increased in ischaemic kid-
neys, but did not reach statistical significance (Figure 2).
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Network map of pathways in the nephron affected
by IRI
As IRI is known to affect renal energy metabolism, we
performed a broad investigation to identify pathways

affected by IRI, hypothesising that we would encounter
pathways that could be associated with lipid accumula-
tion.We performed in silico analysis of publishedmicro-
array data (GSE52004) generated from analysis of

Figure 1. Effect of IRI on renal cholesterol and phospholipid content. Mass spectrometry analysis of renal homogenates from contralateral kid-
neys and ischaemic kidneys 24 h following IRI (unilateral IRI model). Lipid quantifications were performed for (A, B) cholesterols: CE and FC, and
(C–F) phospholipids: PC, PG, PI, and BMP. Data shown as mean � SEM. CE, cholesteryl esters; FC, free cholesterol; PC, phosphatidylcholine; PG,
phosphatidylglycerol; PI, phosphatidylinositol; BMP, bis(monoacylglycerol)phosphate; Ctr, contralateral kidney; IR, ischaemia–reperfusion. Statis-
tical analysis for PI was performed using a Mann–Whitney test. Unpaired t-tests were used for all other lipids. *p ≤ 0.05.

Figure 2. Effect of IRI on renal sphingolipid content. Mass spectrometry analysis of renal homogenates from contralateral kidneys and ischae-
mic kidneys 24 h following IRI (unilateral IRI model). Lipid quantifications were performed for several sphingolipid intermediates. Data shown
as mean � SEM. SPA, sphinganine; DSM, dihydrosphingomyelin; Cer, ceramide; HexCer, hexosylceramide; SM, sphingomyelin; SPH, sphin-
gosine; Ctr, contralateral kidney; IR, ischaemia–reperfusion. Statistical analysis for Cer was performed using a Mann–Whitney test. Unpaired
t-tests were used for the statistical analysis of all other lipids. *p ≤ 0.05, **p ≤ 0.01.
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murine kidneys harvested 24 h after bilateral IRI or
sham surgery. This dataset was chosen as it contains cell
type-specific data, allowing the identification of path-
ways affected in the nephron following IRI, while
excluding the interference of vascular and inflammatory
cells. The extent of the renal injury can be assessed in the
supplemental data shown in the original article [22].
Gene pathway enrichment analysis and network map-
ping were used to visualise pathways in which a signifi-
cant change in gene expression was measured. Major
differences in the expression of genes involved in path-
ways related to transcription, cell cycle, lipid metabo-
lism, and energy metabolism were observed in
ischaemic kidneys when compared with sham controls
(supplementary material, Figure S2). Therefore, we
studied next the expression of genes crucial for energy
and lipid metabolism pathways.

Effect of IRI on the expression of genes involved in
metabolic pathways in the nephron
The NetworkAnalyst platform was used to generate
heatmaps to visualise the expression of the genes
involved in the IRI-affected pathways, both 4 h and
24 h post-IRI (Figures 3–5). For the purpose of this arti-
cle, we focused on pathways involved in energy and
lipid metabolism. IRI was found to lower the expression

of genes involved in the tricarboxylic acid (TCA) cycle,
respiratory electron transport (supplementary material,
Figures S3 and S4), mitochondrial fatty acid beta-
oxidation (FAO) (Figure 3A), and peroxisomal lipid
metabolism (Figure 3B). We also analysed data avail-
able from mice sacrificed 4 h post-ischaemia to deter-
mine if this metabolic change was an early event.
Interestingly, gene expression in metabolic pathways
appeared to increase (slightly) 4 h after IRI, before
decreasing at the 24 h time point. This pattern was
observed for all pathways, suggesting that ischaemia
does not lead to an immediate metabolic shutdown and
that metabolic disruption occurs later in the reperfusion
phase along with extensive tubular injury [28].

Due to the sheer number of IRI-affected pathways, it
was not feasible for all of them to be displayed in the net-
work map. Therefore, we manually analysed the raw
microarray data to find other relevant pathways that were
significantly affected by IRI. As mitochondrial FAOwas
repressed in ischaemic kidneys, we were curious as to
whether this would affect general FA metabolism.
Indeed, expression of FA metabolism-related genes
was downregulated 24 h, but not 4 h, following IRI
(Figure 4 and supplementary material, Figure S5). Fur-
thermore, we questioned whether the glycolytic pathway
would compensate for the repression of FAO, in order to
meet energy requirements. Although the glycolytic

Figure 3. Effect of IRI on the expression of genes involved in metabolic pathways in the nephron (1). Gene expression data, derived from the
GSE52004 database, were analysed in renal IRI samples (bilateral IRI model). The NetworkAnalyst platform was used to generate heatmaps to
visualise the expression of genes involved in (A) mitochondrial fatty acid beta-oxidation and (B) peroxisomal lipid metabolism pathways.
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pathway was not listed as a pathway significantly
affected by IRI, we compiled a list of glycolytic genes
and checked for their expression levels within the micro-
array data. Interestingly, genes involved in the glycolytic
pathway were also found to be downregulated 24 h

following IRI (Figure 5A). Similar to the other metabolic
pathways, genes relevant for FAmetabolism and glycol-
ysis were (slightly) increased at the 4 h time point, before
decreasing at the 24 h time point. Upon further analysis
of the data, we found the expression of genes involved

Figure 4. Effect of IRI on the expression of genes involved in metabolic pathways in the nephron (2). Gene expression data, derived from the
GSE52004 database, were analysed in renal IRI samples (bilateral IRI model). The NetworkAnalyst platform was used to generate heatmaps to
visualise the expression of genes involved in fatty acid metabolism. The remainder of the genes that were differentially expressed in this path-
way are shown in supplementary material, Figure S5.

Figure 5. Effect of IRI on the expression of genes involved in metabolic pathways in the nephron (3). Gene expression data, derived from the
GSE52004 database, were analysed in renal IRI samples (bilateral IRI model). The NetworkAnalyst platform was used to generate heatmaps to
visualise the expression of genes involved in (A) the glycolytic pathway and (B) the pentose phosphate pathway.

Metabolic dysregulation in renal ischaemia–reperfusion injury 409

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2021; 253: 404–414
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


in the pentose phosphate pathway (PPP) to be unaltered
at the 4 h time point, but increased at the 24 h time point,
when compared with sham controls. In our analysis, the
PPP was the only metabolic pathway found to be upre-
gulated in ischaemic kidneys 24 h following injury
(Figure 5B). The PPP has been depicted schematically
in supplementary material, Figure S6.

RT-qPCR validation of the effect of IRI on damage,
FAO, and the PPP in the kidney
We validated the microarray data in kidney samples
from our bilateral IRI model that were harvested 24 h
following injury. We focused on this time point as both
damage and lipid accumulation were observed 24 h fol-
lowing IRI (supplementary material, Figure S1). We
evaluated the expression of genes involved in renal dam-
age, FAO, and the PPP. The expression levels of tubular
damage markers, Kim-1 and Ngal, were significantly
increased in ischaemic mice compared with sham mice
(Figure 6A,B). PPAR-alpha and PCG1-alpha are tran-
scription factors whose target genes are involved in
FAO. The expression of these FAO-regulating genes,
Ppar-alpha andPcg1-alpha, was significantly decreased
in ischaemic kidneys, indicating suppression of the FAO
pathway (Figure 6C,D). Consistent with the results
obtained in the in silico analysis, the expression of
PPP-related genes – G6pdx, Taldo1, Tkt, and Prps1 –

was significantly increased in ischaemic mice, compared
with sham mice (Figure 6E–H). It is important to note
that elevated expression of PPP-related genes was also
observed during the repair phase in a publicly available
single cell RNA dataset [29] (supplementary material,
Figure S7E–H).

Discussion

Acute renal injury is known to be associated with an
increase in renal lipid content. Specifically, cholesterol
and TAG levels are increased following AKI [7].
Reports investigating the underlying cause of renal lipid
accumulation in AKI are scarce. In this study, we
describe the IRI-induced accumulation of structural
lipids and the suppression of several metabolic path-
ways. We report the upregulation of the PPP, which
may provide oxidative protection and supply building
blocks for cellular regeneration.

MS analysis was used to measure renal lipid accumu-
lation in our murine, unilateral IRI model. Cholesterol,
phospholipids, and sphingolipids, all essential constitu-
ents of the plasma membrane [30–33], were found
to be increased in the kidneys of ischaemic mice.
As cellular regeneration and proliferation are required
to cope with the IRI-induced necrotic cell death, the
demand for plasma membrane production increases.

Unesterified cholesterol acts as a critical regulator of
membrane fluidity [30]. CE and FC levels were signifi-
cantly increased in renal homogenates. Cholesterol
exchange/transfer occurs between the plasma membrane
and lipoproteins for the removal of CE, which are stored
in LDs and the endolysosomal compartment [27,34].
The accumulation of FC may indicate the establishment
of a cholesterol reservoir for the building of new
membranes.

The effect of renal ischaemia on membrane metabo-
lism has been known for at least three decades. Siegel
et al quantified the incorporation of [14C]choline into
phospholipids as a measurement of membrane metabo-
lism in a rat model of ischaemia and reported a

Figure 6. RT-qPCR analysis used to validate the effect of IRI on damage, FAO, and the PPP in the kidney. Gene expression was measured in
sham mice and mice sacrificed 24 h following IRI (bilateral IRI model). RT-qPCR analysis was used to measure the expression of genes
involved in (A, B) renal damage: Kim-1 and Ngal; (C, D) FAO: Ppar-alpha and Pcg1-alpha; and (E–H) the PPP: G6pdx, Taldo1, Tkt, and Prps1.
Data shown as mean � SEM. Kim-1, kidney injury marker-1; Ngal, neutrophil gelatinase-associated lipocalin; Ppar-alpha, peroxisome
proliferator-activated receptor-alpha; Pcg1-alpha, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; G6pdx,
glucose-6-phosphate 1-dehydrogenase; Taldo1, transaldolase 1; Tkt, transketolase; Prps1, ribose-phosphate diphosphokinase 1. Statistical
analysis was performed using unpaired t-tests for all measurements. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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significant increase in the [14C]choline uptake in ischae-
mic rats [35]. Among the phospholipids detected by MS
analysis, significant accumulation was only observed for
PG; however, we also report a trend towards increased
PC, PI, and BMP levels. This increment in renal phos-
pholipid levels after ischaemic injury can be associated
with enhanced biogenesis of endosomal, lysosomal,
mitochondrial, and plasma membranes [36–39].

Sphingolipids are strategically distributed to spe-
cific plasma membrane microdomains, serving as plat-
forms for receptor proteins and lipids, and thereby
facilitating transmembrane signalling [32,33]. The
increased sphingolipid levels observed in ischaemic
kidneys may alter plasma membrane microdomain
distribution and formation, which consequently
impact signalling pathways and lipid-derived second
messengers. Particularly ceramide, a central lipid spe-
cies of the sphingolipid pathway, is involved in multi-
ple intracellular processes, such as cell proliferation,
differentiation, cell cycle arrest, and apoptosis [40].
Therefore, besides its role in the renewal of mem-
branes, sphingolipid accumulation is also regarded as
a response to cellular stress.

The GSE52004 database allowed us to study the
effect of IRI on metabolic pathways within the nephron.
We validated these data in renal tissue collected from a
bilateral IRI model, as the microarray data were also
generated from a bilateral IRI model.We confirmed both
proximal and distal tubular injury by quantifying the
expression of Kim-1 and Ngal, respectively. The signif-
icantly decreased expression of the FAO markers
Ppar-alpha and Pcg1-alpha corresponded to the sup-
pression of the FAO pathway observed in the microarray
data. Upregulation of the PPP was validated by measur-
ing the expression of G6pdx, Taldo1, Tkt, and Prps1,
which encode four enzymes. G6PDX catalyses the
rate-limiting step of the oxidative phase of the PPP,
while TALDO1, TKT, and PRPS1 are involved in the
non-oxidative phase. The upregulation of the PPP was
confirmed in our samples, as the expression of all four
PPP-related genes was significantly increased in
ischaemic mice.

In order to fulfil the continuous demands of active
transport, proximal tubular cells exhibit a high rate
of metabolic activity. These cells are most reliant on
aerobic respiration through OXPHOS and mitochon-
drial FAO. As both OXPHOS and FAO are sup-
pressed, and the glycolytic capacity of proximal
tubules is limited, the proximal tubules effectively
lose their energy supply under ischaemic conditions
[41] and consequently their function, as reflected by
the elevation of urea/creatinine levels following
IRI [42].

Twenty-four hours following IRI, LDs, observed as
intratubular, perilipin-2-positive vacuoles, were
detectable in ischaemic renal tissue [43]. FAs are
stored as TAGs through an esterification reaction with
glycerol [44], and LDs are known to contain neutral
lipids, such as cholesterol esters and TAGs [27].
Therefore, the suppression of FAO, and the resulting

FA accumulation, along with the augmented CE
levels, may underlie the increase in LD formation in
ischaemic kidneys. In light of the reduced mRNA
levels of Fasn and the FA membrane transporter
Cd36, FA accumulation following IRI is likely the
result of suppressed catabolism rather than active syn-
thesis and/or uptake. Indeed, FA accumulation has
been linked to the ischaemia-induced absence of oxi-
dative substrates [45]. Both mitochondrial and perox-
isomal FAQ [46] are dependent on oxygen
availability. Furthermore, as FAs are a structural com-
ponent of phospholipids [31], we cannot exclude the
remodelling of phospholipids as another possible
source of FAs.
Contrary to others, we did not find evidence that indi-

cated an increase in anaerobic glycolysis in ischaemic
tubules. A study by Lan et al reported a metabolic shift
towards anaerobic glycolysis in kidneys that had suf-
fered ischaemic injury. Interestingly, the increase in gly-
colytic activity was higher in proximal tubules that failed
to recover but instead displayed persistent mitochondrial
damage and became atrophic [47]. Legouis et al have
recently shown that AKI leads to increased glycolysis
and reduced gluconeogenesis in the kidney, which
together lead to lactate accumulation and a decrease in
systemic glucose levels. AKI-associated mortality was
reduced when glucose metabolism was restored by thia-
mine supplementation, thereby demonstrating the need
to explore metabolic disturbances in AKI as new areas
for therapeutic intervention [48].
The PPP, which is related to the glycolytic pathway,

consists of an oxidative phase that metabolises glu-
cose to produce NADPH and a non-oxidative phase
that produces five-carbon sugars called pentoses.
NADPH is a reducing agent that protects against
ROS production, which is one of the most prominent
sources of renal injury following reperfusion. Pen-
toses are necessary for nucleotide synthesis during cell
proliferation and regeneration. The PPP does not pro-
vide any cellular energy but can be redirected towards
glycolysis for ATP production. Our data imply that
during the reperfusion phase, the cell strategically
chooses the PPP over glycolysis. Once metabolic
functions have been restored, it does not seem advan-
tageous for the cell to shuttle glucose through a path-
way that does not yield ATP; however, our analysis
of a single cell RNA dataset [29] showed that
increased expression of several PPP-related genes is
maintained for up to 7 days following IRI in the prox-
imal tubular cell population. This further suggests that
the activation of the PPP may be responsible for the
generation of ‘chemical supplies’ needed for cellular
repair.
The anti-oxidative effects of the PPP have been

shown to protect neurons during brain IRI [49]. Kim
et al reported increased PPP activity after renal IRI, as
well as its protective effect [50], while Ash and Cup-
page described PPP activity in renal homogenates fol-
lowing mercuric chloride injection in rats [51].
Furthermore, a study by Zhou and co-workers reported
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that the renoprotective effect of inhibiting the glyco-
lytic pathway following renal ischaemia was mediated
by the upregulation of the PPP [52]. Taken together,
these studies support the role of the PPP in the regener-
ation of renal tissue; however, specific inhibition of the
PPP in renal IRI is needed to definitively determine the
effect of this metabolic pathway and explore its thera-
peutic potential.
As previously mentioned, renal lipid accumulation

has been observed in both acute and chronic renal dis-
ease. In terms of chronic renal disease, there seems to
be a consensus on the damaging effects of FA [53] and
phospholipid [9] accumulation. Although Zager’s group
has linked ACR in AKI to increased cholesterol content
[12], we have shown that renal lipid accumulation fol-
lowing renal IRI is not limited to cholesterol accumula-
tion. Therefore, the overall effect of renal lipid
accumulation in AKI remains unclear. Based on this evi-
dence, we can speculate that the net effect of renal lipid
accumulation following AKI is based on the cumulative
effects of the various lipid types that accumulate. Possi-
bly, temporary intervention in the accumulation of the
lipids deemed more detrimental may enhance the effect
of the lipids shown to be beneficial. It is, however, cru-
cial to remember that lipid metabolism is linked; there-
fore targeting one lipid species will often affect another
[54]. Interestingly, the upregulation of the PPP in renal
ischaemia may be linked to the IRI-induced renal lipid
accumulation, as the reducing agent NADPH, a major
product of PPP, is necessary for the biochemical path-
ways involved in both FA and cholesterol synthesis
[55,56]. Further investigations are needed to address
whether the induction of the PPP and renal lipid storage
are causally related.
Our data do not exclude the possibility that other cell

types may contribute to renal lipid accumulation follow-
ing renal IRI; however, we have shown that there is sig-
nificant lipid accumulation in tubular cells and that this
can be linked to the downregulation of several catabolic
pathways. We anticipate that the redirection of glucose
through the PPP, following IRI, will be beneficial, as this
pathway protects against oxidative stress and provides
precursors for the biosynthesis of nucleotides and amino
acids, both of which are crucial for cell regeneration and
the induction of the reparative phase.
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