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Genetic program activity delineates risk, relapse, and therapy
responsiveness in multiple myeloma
Matthew A. Wall1, Serdar Turkarslan1, Wei-Ju Wu1, Samuel A. Danziger2, David J. Reiss2, Mike J. Mason3, Andrew P. Dervan 2,
Matthew W. B. Trotter4, Douglas Bassett2, Robert M. Hershberg5, Adrián López García de Lomana1✉, Alexander V. Ratushny 2✉ and
Nitin S. Baliga 1,6,7✉

Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become
refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease
progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory
network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal
abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical
phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct
transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and
accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific
vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of
an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these
patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a
distinct phenotype with targetable genes and pathways.
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INTRODUCTION
Multiple myeloma (MM) is a cancer of malignant plasma cells in
the bone marrow (BM) that has a prevalence of ~86,000 new cases
per year1. Several clinical subtypes of MM have been established
on the basis of characteristic cytogenetic features, including
various translocations, gain or loss of chromosomal arms, deletion
of specific chromosomes, and hyperdiploidy2–4. Accordingly, MM
is a complex disease of great heterogeneity that exhibits subtype-
specific drivers of progression5,6. Efforts to better characterize the
biology and therapeutic vulnerabilities of MM have increased
exponentially in recent years, as can be seen from the number of
research articles, clinical trials, and public availability of matched
genomic, transcriptomic, and patient data. However, the myriad
combinations of chromosomal aberrations and somatic mutations,
coupled with the complex dependence of MM progression on the
BM microenvironment, have precluded a mechanistic under-
standing of the disease on a patient-specific level.
If the disease biology of an individual patient can be sufficiently

well characterized from experimental assays, it is conceivable that
they can be assigned the best available therapies and manage
their cancer like a chronic illness with much-improved outcomes.
However, a detailed map of the underlying biology of MM is
necessary to translate the data collected from a patient into
personalized recommendations for therapy. The development of
such a map is complicated by the great degree of heterogeneity
MM exhibits, including subtypes at the levels of gene expression,
gene mutations, chromosomal abnormalities, and clinical out-
comes. Before we can establish an era of personalized medicine
for all MM patients, we must understand how the subtypes at

these different levels relate to one another mechanistically, and
which of these features are most important for determining the
risk of disease progression. Moreover, we must characterize the
biological changes that drive escape from therapy and the onset
of relapse-refractory disease. Once we understand the subtype-
specific drivers of disease progression and biology of relapse, we
can rationalize and test which therapies are most appropriate for
which patient subtypes.
We hypothesized that a causal-mechanistic (CM) transcriptional

regulatory network (TRN) would provide a robust framework to
establish the desired map of underlying biology that relates
mutations, gene expression, and clinical outcomes in a compre-
hensible and actionable way. A CM TRN is a network inferred from
multi-omics data that identifies mechanisms by which some genes
(e.g., transcription factors (TFs)) regulate the expression of other
genes and reveals how different mutations and chromosomal
aberrations dysregulate these processes, thereby leading to
hallmarks of cancer7. Patterns in the CM TRN can be related to
clinical outcomes in order to elucidate the biological context of a
heterogeneous disease. Thus, the different levels of MM hetero-
geneity can all be linked to one another in a CM TRN. However,
there are several challenges to the development and application
of CM TRNs, including spurious correlations that arise from the
high dimensionality of gene expression data, difficulty of
detecting rare features such as condition-specific regulatory
mechanisms, complexity of inferring causal events, and the
requirement of efficient computational algorithms8–11. Moreover,
there is no generally accepted protocol to infer which features of
the network are activated or deactivated in an individual patient.
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This is of critical importance because the CM TRN represents
possible biological mechanisms across all subtypes of a disease,
such that each individual will only exhibit activity in a subset of
the network features.
Several methods have been developed for TRN inference,

including GENIE312 (and the closely related GRNboost13), ARA-
CNe11, CLR14, and cMonkey8. Some network inference methods
(i.e., mechanistic inference methods) incorporate orthogonal
biological evidence, such as the presence of TF binding sites in
the promoter regions of target genes, to increase the confidence
of inferred regulatory relationships. To complete the construction
of a CM TRN, a causal inference method can be applied to a TRN
and matched mutation data. Causal inference can be performed
either by comparing the likelihood of different structural equation
models (e.g., NEO15, FINDr16), identifying predictive features in a
machine-learning model fit to gene expression, or clustering
mutations according to common occurrence in a predefined
functional network (NBS17). The merits and weaknesses of these
approaches and a description of the specific causal inference
algorithm used in this work are detailed in the Supplementary
information.
Although gene expression networks have previously been

derived to study MM18–20, a CM TRN that elucidates causal flows
from mutations to regulators to co-regulated genes across MM
subtypes has not yet been established. In this work, we present a
new method called mechanistic inference of node-edge relation-
ships (MINER) to construct a CM TRN from multi-omics and clinical
outcomes data, infer patient-specific network activity, and identify
subtype-specific mechanisms that are likely to predispose
resistance or susceptibility to a given therapy. We apply this
method to better characterize MM, with the specific goal of
elucidating the underlying biology of high-risk clinical subtypes
and the changes that occur at relapse.

RESULTS
MINER pipeline infers CM TRN of MM
We developed the MINER pipeline to infer TRNs from gene
expression data and apply them to the characterization and
prediction of phenotypes. MINER builds upon our previous work
with the SYstems Genetics Network AnaLysis (SYGNAL) pipeline
insofar as it enables the same core functionalities of mechanistic
and causal inference, but does so with a new suite of algorithms
that enable new applications in the network-based prediction of
clinical outcomes (Fig. 1)7. Inference of the TRN begins by
clustering gene expression data into coherent sets of genes that
share a binding site for a TF or microRNA (miRNA) according to
gold-standard binding-site database information (e.g., transcrip-
tion factor binding-site database—TFBSDB). By default, the cluster
of genes and the corresponding regulator must also be correlated
(or anticorrelated) to one another. Many TFs are regulated at the
post-transcriptional level, however, so we only enforce a mild
correlation (R > 0.2), and this restriction can be lifted entirely if it
proves too stringent, e.g., in single-cell analysis. The combination
of a coherently expressed set of genes and the associated
regulator whose binding site they share represent discrete units,
called regulons, from which the TRN is assembled. Once the
regulons have been discovered, a new causal inference algorithm
(see “Methods” and Supplementary information) measures the
impact of a mutation on a regulator by comparing the changes to
downstream regulon activities with what could be expected by
random chance (Supplementary Fig. 1). Once a MINER TRN has
been inferred from the data of a patient cohort, new samples can
be analyzed to uncover the disease-relevant modules that are
over- or under-active in an individual patient.
Application of MINER to the Multiple Myeloma Research

Foundation (MMRF) Interim Analysis 12 (IA12) dataset successfully

generated a CM TRN of MM. The network features 15,192 genes
partitioned into 1233 coexpression clusters (i.e., without inferred
co-regulation), 8549 genes partitioned into 3203 co-regulated
modules (called regulons herein) that are regulated by 392 unique
TFs, and 124 causal drivers, including somatic mutations,
translocations, and cytogenetic abnormalities. We note that
miRNA-sequencing (miRNA-seq) was not performed in the MMRF
CoMMpass study, so the inference of miRNA regulation was
limited to the analysis of target gene expression (see “Methods”)
and was, therefore, less robust than TF analysis. The results of our
miRNA inference are included in the online portal, but the
remainder of this manuscript will focus on regulation mediated
by TFs.
In total, the MINER network comprises 13,587 unique CM flows

—links from mutations to regulators to co-regulated genes. Every
mutation or chromosomal aberration that occurred in at least 2%
of the patient population is represented within the network, such
that its inferred causal effect on the regulation of gene expression
is described. This includes a recapitulation of the known
transcriptional effects, such as the upregulation of NSD2 by
t(4;14), MAF by t(14;16), and CCND1 by t(11;14). Moreover, the
regulons that associate with the risk of disease progression in the
CM TRN are enriched with upstream mutations that have
previously been implicated in MM. We tested this by filtering
the network to only include regulons whose activity was greater
than a minimum Cox hazard ratio (HR) threshold (see online portal
for detailed analysis). As we increased the threshold from 2 to 6,
the percent of upstream causal mutations that were validated as
associated to MM in the literature monotonically increased (|HR| >
2: 31% validated; |HR| > 3: 33% validated; |HR| > 4: 36% validated; |
HR| > 5: 41% validated; |HR| > 6: 46% validated). The complete
MINER network is provided as an interactive web portal and
available for download at https://myeloma.systemsbiology.net/.
We benchmarked the performance of MINER against SCENIC13,

which is the closest alternative mechanistic inference method to
our knowledge. Although SCENIC was originally developed for
single-cell analysis, its algorithms also work for bulk RNA-seq data
(e.g., its network inference algorithm was originally developed for
bulk RNA-seq), and the mechanistic inference pipeline design is an
even closer match to MINER than is SYGNAL. In particular, SCENIC
identifies regulons from gene expression data and TF binding-site
information and provides a measure of each regulon’s activity in
each sample. We prioritized benchmarking metrics that address
evidence for co-regulation and quantify the amount of informa-
tion lost when moving from gene expression to regulon activity.
We evaluated the evidence for co-regulation by measuring the
regulon coherence (i.e., variance of gene expression) and the
percent of genes sharing a regulator binding site in the promoter
region according to the TFBSDB7. We chose the TFBSDB because it
includes evidence for chromatin accessibility in addition to the
presence of TF binding site motifs. The preservation of information
upon reducing gene expression to regulon activity was quantified
by Spearman’s rank correlation coefficient of pairwise Euclidean
distances between samples in the gene expression space versus
regulon activity space21.
Supplementary Fig. 2 shows that MINER outperforms SCENIC in

all three benchmark measures of mechanistic inference. Because
MINER uses TFBSDB as a reference database, it is not surprising
that 100% of MINER regulons are enriched (i.e., hypergeometric p
value < 0.05) with TFBSDB targets. However, <40% of SCENIC
regulons are significantly enriched with TFBSDB targets, which
may result from the inclusion of genes that have a TF binding
sequence but no chromatin accessibility. Permutation analysis
showed that only 47% of SCENIC regulons had gene expression
variance significantly lower than expected by random chance,
compared to 78% for MINER. Finally, the preservation of gene
expression topology measured by Spearman’s rank correlation
coefficient was significantly greater (p= 3.5 × 10−289, Wilcoxon’s
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rank-sum test) in regulons discovered by MINER (R= 0.84 ± 0.06)
versus SCENIC (R= 0.36 ± 0.09).
The improved topology preservation by MINER versus SCENIC

can be further appreciated when viewing the regulon activity
heatmaps. For each regulon, MINER classifies its status as

overexpressed, underexpressed, or neither using a p value cutoff
of 0.05 for each patient sample as described in the “Methods”
section. A heatmap of the regulon activities across all patient
samples reveals distinct patterns of co-regulated gene expression
(Fig. 2a). The presence of activated and repressed regulons and

Fig. 1 Mechanistic inference of node-edge relationships (MINER). MINER applies a gene expression clustering algorithm and gold-standard
gene interaction databases to infer sets of co-regulated genes called regulons. Each regulon has an associated regulator and edge direction
(i.e., activation or repression), as well as an activity in each sample (e.g., overexpressed, underexpressed, etc.). When the coordinated activity of
regulons changes in the context of a mutation, a causal relationship is inferred through the associated regulator. A causal and mechanistic
transcriptional regulatory network is generated by evaluating the influence of all potential causes (e.g., mutations, translocations, copy-
number abnormalities, etc.) on all regulons. Prediction of phenotypes such as responsiveness to therapy or risk of disease progression is
achieved by training machine-learning algorithms on regulon activities. The predictive signatures are then placed into a meaningful biological
context by identifying their associated mechanisms and putative causes within the network.
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the clear existence of patient subtypes (i.e., transcriptional states)
can be seen in the MINER regulons, but not in those discovered by
SCENIC (Supplementary Fig. 3). Inspection of a representative TF,
MAF, and its regulons identified by SCENIC versus MINER sheds
light on the regulon-level differences in activity and topology
preservation (Supplementary Fig. 4). SCENIC identifies a single

regulon with all inferred target genes of MAF that are activated
(i.e., no repressed target genes identified). MINER, on the other
hand, identifies several distinct MAF regulons, some of which are
activated by MAF and others that are repressed. The different
regulons are distinguished by distinct activity patterns across
samples (i.e., biclustering).
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Fig. 2 Programs and states. a Heatmap of regulon activity across patients reveals distinct transcriptional states wherein patients have very
similar regulon activity across the entire network. b, c Kaplan–Meier survival curves relating overexpression of each program (b) and state (c)
to the observed progression-free survival in the CoMMpass study. The highest risk (red) and lowest risk (blue) programs are highlighted in (b).
The four lowest risk (blue) and three highest risk (red) states are pooled to generate the highlighted curves in (c). d The risk distribution of
each state according to the GuanRank of the survival data. States with fewer than five patients represented in the survival data were omitted.
Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. e Patients with t(4;14) or t(11;14) fall into several
distinct transcriptional states with varying risk of disease progression. f Program activity sub-stratifies t(4;14) into standard and extreme-risk
groups. g Kaplan–Meier plot of substratified t(4;14) groups.
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MM gene expression exhibits a hierarchy of genetic programs
and transcriptional states
Clusters of regulons, called genetic programs (or simply programs)
herein, were observed to have similar activity across patient
samples (Fig. 2a). In total, we discovered 141 programs, with an
average of 90 unique genes and 21 unique TFs (i.e., 21 distinct
regulons) per program. We evaluated the coherence of these
genetic programs in two independent test datasets of MM
(GSE2408022 and GSE1978423) by comparing the variance of the
genes in each program against that of random selections of the
same number of genes (500 permutations). 94.3% of the programs
were coherent (variance < random, p < 0.05) in GSE24080, and
92.2% were coherent in GSE19784, despite the fact that the
training data (MMRF IA12) was collected via RNA-seq and the
validation was microarray-based. The high degree of program
coherence in multiple test datasets validates the generality of
genetic programs discovered by our approach.
Regulon activity was also observed to cluster patients into

subtypes of similar overall gene expression, which we call
transcriptional states (Fig. 2a). Using our default clustering
algorithm (see “Methods” section), we discovered 25 distinct
transcriptional states that accounted for 95% of the total patient
population. The remaining 5% of patients did not match any of
the states sufficiently well. We tested alternative clustering
algorithms and found similar results (Supplementary Fig. 5). The
presence of individual mutations or chromosomal abnormalities
was insufficient to predict a patient’s transcriptional state. The
only mutations that occurred in at least 80% of the patients in a
transcriptional state were t(4;14) and t(11;14). However, these
translocations occurred in several states, so their presence alone
did not determine to which state a patient belonged. Gene set
enrichment analysis of the differentially expressed genes in each
transcriptional state indicates that differences in the activity levels
of cell cycle progression and immune response pathways are
responsible for the classification of t(4;14) and t(11;14) patients
into several distinct states (Supplementary Fig. 6).

Mutations and environmental factors drive the states via TF
networks
In order to better understand the drivers of a transcriptional state,
we considered the use case of transcriptional state 15 (TS-15)—
the highest risk state. We determined the set of activated and
repressed regulons characteristic of TS-15 by performing differ-
ential regulon expression analysis (see “Methods”). Because each
regulon is matched to one regulator, this process also provides a
list of TFs that regulate the characteristic regulons of TS-15. We
used this list of TFs to generate a TF-TF network (Supplementary
Fig. 7; see “Methods”) in order to identify putative master
regulators of TS-15. By linking the TFs to upstream causal
mutations in the CM TRN, we found that specific TF-TF subnet-
works were activated by different mutations (Supplementary Fig.
8). For example, the most common mutations in the patients of
TS-15—NRAS (48%), Amp 1q (47%), and TP53 (26%)—directly
activated complementary TF-TF subnetworks; the consequences

of which propagated indirectly through the dense TF-TF network
to generate the same global pattern of gene expression
characteristic to TS-15.
In addition to mutations, we note that microenvironment

features can be causes of specific gene expression profiles (e.g., by
activating TF-TF networks). MINER enables gene set enrichment
analysis of the differentially expressed genes in each state with
any reference database as a means to identify potential
nonmutation causes of gene expression patterns. The results of
gene set enrichment analysis of TS-15 using the Molecular
Signatures Database Hallmark pathway database as an example
are included in Supplementary Fig. 6. The hallmark targets of E2F
and MYC are highly enriched in TS-15, which is consistent with the
presence of E2F1 and MYC in the TS-15 TF-TF network as
influential activators of many other TFs.

The CM TRN enables robust risk stratification
We tested the ability of a patient’s network status (i.e., the list of
which regulons are activated and deactivated) to predict the risk
of disease progression using Ridge regression trained on the
regulon activities of MMRF IA12. The predictive performance was
evaluated in two microarray-based validation datasets of MM
(GSE24080 and GSE19784) by first applying our method of
calculating discrete activities for all regulons in each patient of
those datasets and then applying the predictor. A very strong
performance was observed in both datasets (Table 1), with
validation AUC (i.e., area under the receiver operating character-
istic curve) values of 0.70 in GSE24080 and 0.71 in GSE19784. This
performance is on par with the best predictors available for MM24

and has the benefit of associating mechanisms and upstream
causes to the predictive features. Thus, both the method of
inferring the status of the CM TRN in individual patients and the
utility of the CM TRN status as a predictor of risk for disease
progression were validated in these independent datasets.
Next, we performed Cox proportional hazards regression on the

individual programs (Fig. 2b) and states (Fig. 2c) to quantify the
extent to which these features stratify risk. Both the programs and
states exhibited high- and low-risk features, with the states being
particularly powerful determinants of risk (Fig. 2d). These
observations stand in contrast to the results of individual
mutations, which showed much less significance for stratifying
risk, due in part to how infrequently most mutations appear
(Supplementary Fig. 9). In general, the risk of a patient was better
predicted by other patients with the same transcriptional state
than by other patients with the same mutation. This is especially
clear in the example of translocations t(4;14) and t(11;14), which
exhibited distinct high- and low-risk transcriptional states (Fig. 2E).
Moreover, network-based stratification—a method to identify
subtypes of patients with functionally related mutations—did not
result in groups of significantly different risk for disease
progression (Supplementary Fig. 10).

Table 1. Results of Ridge regression using regulon activity as features.

Dataset N Median PFS AUC Spearman R Spearman p Cox HR Cox p

MMRF IA12a 769 631 0.86 0.59 7.2E–72 19.1 5.2E–81

GSE24080 559 1288 0.70 0.26 5.4E–10 7.4 1.1E–13

GSE19784 282 782 0.71 0.35 1.4E–9 6.3 2.7E–10

N number of samples, the median in days, Spearman correlation is predicted risk score versus GuanRank (i.e., observed risk rank), and Cox regression is with
respect to the predicted risk score.
aMMRF IA12 was used for training.
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High-risk genetic program underlies proliferation and
recapitulates predictive signatures
We analyzed the highest risk genetic program, Pr-68 (Cox HR=
8.8, p= 1.3 × 10–18), to better understand the mechanisms most
strongly correlated to the rate of disease progression. The genes in
Pr-68 were heavily enriched in DNA replication (p= 1.0 × 10–25),
cell cycle (p= 1.0 × 10–25), and DNA mismatch repair (p= 1.0 ×
10–8) functions, and the regulons comprising Pr-68 were enriched
for ten hallmarks of cancer (Fig. 3). Thus, Pr-68 is a genetic
program associated with proliferation. Interestingly, the risk
stratification of Pr-68 cannot simply be explained by its cell cycle
genes. In particular, the most closely matched cell cycle signatures
show notably weaker risk stratification (Supplementary Fig. 11;
maximum HR= 6.35, p= 2.18 × 10–10).
Several studies have identified proliferation signatures as

optimal risk classifiers, but the underlying biological drivers have
not been clearly established. We found that the genes of Pr-68
have an adjusted p value of 1 × 10–55 for enrichment in chromatin
immunoprecipitation-seq (ChIP-seq) targets of FOXM1, suggesting
that FOXM1 is an important upstream regulator and potential

therapeutic target. We note that FOXM1 has been experimentally
confirmed as an important target in high-risk MM25. FOXM1 is
most significantly activated by E2F1 in the CM TRN (Spearman
correlation: R= 0.77, p= 1.0 × 10–172; E2F1 motif in FOXM1
promoter). All high-risk subtypes, with the exception of t(4;14),
were causally upstream of FOXM1 activation via the intermediate
upregulation of E2F1 in the CM TRN.
Four published prognostic gene expression profiles of MM

demonstrated significant overlap with the genes of Pr-68. We
compared the gene sets of UAMS7026, EMC9227, M3CN20, and the
Proliferation signature of Hose et al.28 to the Pr-68 genes and
computed hypergeometric p values. The results, listed in Table 2,
show that the overlap of all four signatures with Pr-68 was highly
significant and cumulatively accounted for 108 of the 228 (47%)
genes in Pr-68. Moreover, the gene PHF19, whose expression was
identified as the best individual predictor of risk in a recent MM
DREAM challenge24, is also a member of Pr-68. It is interesting to
note that a gene module very similar to program Pr-68 can be
discovered by inferring a high-confidence protein–protein inter-
action network via application of the STRING29 database to the
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genes that are differentially expressed with respect to risk of
disease progression (Supplementary Fig. 12).

Risk of disease progression is delineated by different genetic
programs across myeloma subtypes
The genetic program Pr-68 has the greatest average risk across
myeloma subtypes, but it is not the highest-risk program in the
context of individual subtypes. The risk of each subtype is
stratified by the activity of specific genetic programs, and many
programs are high-risk in some subtypes but not others
(Supplementary Fig. 13). However, it is interesting to note that
the average expression of Pr-68 in each state is highly correlated
to the average risk of the state (Supplementary Fig. 14).
Nonetheless, pairwise risk analysis of different program and state
activities shows that some of the highest risk combinations do not
involve Pr-68 (Supplementary Fig. 15). Further relationships
between regulons, programs, their inferred causal drivers, and
myeloma subtypes can be explored on our online portal.
Therapies associated with these risk factors are provided there
and relevant literature can be directly searched from the portal.
As a case study in subtype-specific risk analysis using the CM

TRN, we explored the features stratifying risk in patients bearing
the t(4;14) translocation. The additional mutation which most
increased risk in t(4;14) patients was KRAS. Patients bearing KRAS
mutations in addition to t(4;14) were observed to be at higher risk
(HR= 3.2, p= 1.5 × 10–3) than those with wild-type (WT) KRAS.
Program expression proved to stratify risk better than any
mutation in t(4;14) patients. Overexpression of programs Pr-72
(HR= 4.4, p= 1.2 × 10–5) and Pr-73 (HR= 4.6, p= 4.3 × 10–6) and
underexpression of programs Pr-61 (HR= 4.5, p= 6.7 × 10–6), Pr-
65 (HR= 4.3, p= 1.5 × 10–5), and Pr-94 (HR= 3.7, p= 2.0 × 10–4)
were strongly associated with risk of disease progression. The
t(4;14) patients stratified by these programs largely overlapped,
such that individual patients tended to present many of these
features simultaneously. For example, 79% of patients under-
expressing Pr-61 also overexpressed Pr-72.
Interestingly, the high-risk program Pr-68 is substratified by the

status of Pr-61 (Fig. 2F). Patients who underexpress Pr-61 while
overexpressing Pr-68 are at extremely high risk of disease
progression, with a median time to progression of ~5 months
(Fig. 2G). These patients show the greatest levels of Pr-68 activation,
suggesting highly proliferative disease and possible reliance on
DNA-repair pathways. The remaining t(4;14) patients who over-
express Pr-68 but do not underexpress Pr-61 are at standard risk,
with a median time to disease progression of ~22 months. The
extreme-risk Pr-68(+)/Pr-61(−) subset exhibit significantly higher
expression of the hypoxia-related genes ENO1 and IL-32, and the IL-
6 signaling-related genes IL-6R and IL-6ST compared to the Pr-68(+)
t(4;14) patients who did not simultaneously underexpress Pr-61.
Perhaps, most importantly, this combination of program activities
reflects high levels of MYC transcriptional activity. In particular, Pr-
72 highly correlates (R= 0.71, p= 1.0 × 10–133) to the normalized

enrichment scores of the pathway interactions database (PID)
validated targets of c-MYC transcriptional activation (i.e., “PID MYC
ACTIV PATHWAY”), and Pr-61 correlates (R= 0.57, p= 7.7 × 10–74) to
the normalized enrichment scores of the PID validated targets of
c-MYC transcriptional repression (i.e., “PID MYC REPRESS PATH-
WAY”). Moreover, Pr-72 is enriched with ChIP-seq targets of MYC
and Pr-61 is enriched with ChIP-seq targets of MAX (i.e., a MYC-
binding partner). Thus, c-MYC activation appears to be an important
element of the extreme-risk t(4;14) signature.
Biological pathways were also observed to stratify risk in t(4;14)

patients. The pathway most anticorrelated to risk is Regulation of
Autophagy (R=−0.45, p= 1.1 × 10–6), which is consistent with the
presence of DRAM1 in Pr-61 and DRAM2 in Pr-94. These genes are
critical to apoptosis via induction of autophagy in the p53 tumor
suppressor pathway30. The top three pathways most correlated to
risk involve the chaperonin TRiC/CCT (R= 0.52, p= 2.0 × 10–8). This
is consistent with the presence of CCT3 and CCT5 in Pr-72. CCT3 is
the component of TRiC/CCT responsible for regulating the function
and levels of STAT3—a critical regulator in MM that facilitates
evasion of apoptosis31–33. CCT3 also regulates CDC20, which is
required for cell cycle progression and modulates the antiapopto-
tic protein MCL134. Moreover, CCT3 and MCL1 are among the
genes whose expression is most strongly correlated to risk in
t(4;14). Finally, gene set enrichment analysis on the differential
expression of the extreme-risk Pr-68(+)/Pr-61(−) versus standard-
risk Pr-68(+)/Pr-61(≥0) showed that the mitotic cell cycle (adjusted
p= 3.5 × 10–69), DNA repair (adjusted p= 3.0 × 10–23), transcrip-
tional regulation by TP53 (adjusted p= 5.5 × 10–15), MYC activation
pathway (adjusted p= 1.8 × 10–9), and glycolysis (adjusted p=
3.5 × 10–9) were among the most significantly overactive pathways
in the extreme-risk subset.
As a final test of the information contained in the CM TRN, we

transformed the gene expression data to network activity (i.e.,
network-constrained gene activity) by applying a correction to the
measured expression value of a gene based on the expression
levels of the other genes to which it is mechanistically connected
in the CM TRN. Figure 4a, b shows that the network activity
preserves the large-scale patterns present in the gene expression
data and appears much less noisy. We compared the predictive
performance of a gene’s expression to its network activity in the
high-risk clinical subtypes to test whether the network correction
improved predictive power (see “Methods”). For all high-risk
subtypes, the network activity outperformed gene expression (Fig.
4c). The sub-stratification of progression-free survival enabled by
the network activity of single genes is shown by subtype in Fig.
4d. Finally, the genes that were most predictive of risk in MMRF
IA12 across all subtypes were evaluated in the GSE24080 and
GSE19784 test sets. In both cases, the network activity out-
performed the gene expression for predicting risk (Supplementary
Fig. 16). The ability of the CM TRN to improve the predictive
performance of individual genes and apparently filter noise from
the corresponding expression data are strong indicators that the
relationships in the inferred network reflect meaningful biological
mechanisms.

CRBN activity is linked to high-risk genetic program Pr-68
through CCNDBP1
Activation of E2F1 and FOXM1, and thus the genes of Pr-68, is
known to occur via the CCND1–CDK4 complex35–37. The cyclin D-
binding protein CCNDBP1 has previously been shown to interfere
with the CCND1–CDK4 complex, providing a putative mechanism
to prevent Pr-68 activation and thereby halt the G1/S transition of
the cell cycle38,39. We found that CCNDBP1 is strongly deactivated
in canonical MM translocation subtypes relative to other subtypes
(p= 1 × 10–73 via Wilcoxon’s rank-sum test). This suggests that the
translocations confer greater dysregulation of CCND1, facilitating
constitutive activation of the cell cycle. Moreover, the TFs that

Table 2. Existing prognostic signatures of high-risk MM map to Pr-68.

Prognostic
signature

Reference Overlap with
Pr-68

p value

UAMS70 Shaughnessy
Jr. et al.

8/65a 3.0 × 10–4

EMC92 Kuiper et al. 17/92 2.2 × 10–10

Proliferation Hose et al. 40/60 2.7 × 10–55

M3CN Liu et al. 82/178 1.2 × 10–85

PHF19 Mason et al. 1/1 2.7 × 10–2

aOnly 65/70 UAMS probes had gene names.
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drive the activation of CCNDBP1 in the CM TRN are directly linked
to the activation of the IMiD substrate CRBN (Supplementary Fig.
17), such that dysregulating the CCND1–CDK4 complex may have
the indirect consequence of decreasing IMiD sensitivity (see
Supplementary information)40.

Drug targets show subtype-specific risk stratification
We searched for subtype-specific relationships to the risk of
disease progression in both the network activity and standard
gene expression of genes whose corresponding protein is
targeted by therapies available for MM. We considered both
network activity and gene expression because they have
complementary strengths. In theory, a gene that is well connected
in the network will benefit from this correction, but a gene that is
poorly connected (e.g., present in only 1 regulon) may be
overcorrected due to a lack of information, such that the
measured gene expression is more reliable. The correlation
between risk of disease progression to network activity and gene
expression is provided for each drug target by subtype in
Supplementary Tables 1 and 2. The network activity of these
important targets is visualized by risk decile for each subtype in
Fig. 5. Subtype-specific relationships between the risk of disease
progression and the network activity of various drug targets can
clearly be seen and may be predictive of response to therapy.
Specifically, some drug targets are highly correlated to the risk
within a subtype (e.g., AURKA/B in Amp 1q, PARP1 in t(4;14), etc.)
and others exhibit high subtype-specific activity (e.g., CRBN in
non-translocation patients, HDAC6 in t(11;14), etc.). These relation-
ships are quantified and discussed in detail in the Supplementary

information. We note also that alternative methods to map drugs
to subtypes may prove even more fruitful. For example, MINER
enables gene set enrichment analysis of subtype-specific differ-
entially expressed genes with respect to reference drug target
databases (Supplementary Fig. 18).

Relapse is characterized by the differential activity of five
genetic programs
The genes with the greatest differences in network activity
between baseline and relapse largely fall into five programs: Pr-0,
Pr-4, Pr-34, Pr-68, and Pr-134 (Fig. 6). The program with the most
extreme deactivation at relapse is Pr-34, which notably contains
the genes IKZF1 (IMiD target) and PSMB7 (bortezomib target). The
differential activity of regulons containing targets of baseline
therapies were all decreased, whereas the regulon containing the
carfilzomib target PSMB5 was increased at baseline, suggesting
plausible mechanisms for therapy escape and sensitization to new
therapies at relapse. Notably, these patterns were not discernible
through simple differential gene expression analysis. Program Pr-0
is also strongly deactivated at relapse, and notably contains
several proapoptotic genes: BCL2L11 (BIM), BBC3 (PUMA), BCL7B,
TP53BP2, and TP53INP2. On the other hand, programs Pr-68 and
Pr-134 are the most strongly activated at relapse. Pr-68 is the
aforementioned genetic program driven by FOXM1 that char-
acterizes high risk at baseline and is enriched with markers of
proliferation. Interestingly, Pr-134 is not associated with risk at
baseline (Cox HR= 1.0, p > 0.31).

Fig. 4 Network activity. a, b Heatmaps of (a) normalized gene expression and (b) network activity for all genes appearing in at least two
regulons. c Boxplots comparing the prediction of high-risk subsets using normalized expression (blue) or network activity (green) of the genes
as features. Each point overlaying the boxplots is a mean area under the ROC curve (AUC) from 5-fold cross-validation of the high-risk
prediction. One hundred iterations were performed for each condition to avoid bias in the selection of training and test subsets. Center line,
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. d Kaplan–Meier curves demonstrating the sub-stratification
of clinical subtypes based upon the network activity of the most predictive individual or pair of genes as determined by the predictions in (c).

MA Wall et al.

8

npj Precision Oncology (2021)    60 Published in partnership with The Hormel Institute, University of Minnesota



The genetic program with the highest activity at relapse
reflects the microenvironment
Whereas Pr-68 reflects mechanisms of proliferation, Pr-134
comprises many markers of the immune-suppressed microenvir-
onment. Especially noteworthy are signatures of myeloid-derived
suppressor cells (MDSCs). In addition to the characteristic surface
marker CD11b, many of the cytokines that promote the
recruitment or generation of MDSCs (e.g., M-CSF, G-CSF, IL-18, IL-
1B, IL-10, CCL2, S100A8, S100A9, PTGER4)41 are present in Pr-134.
These cytokines, and those produced by the MDSCs themselves,
are known to promote an immunosuppressive microenvironment.
Signatures of BM stromal cells (BMSCs), M2-polarized macro-
phages, mesenchymal stem cells, osteoclasts, noncytotoxic T cells,
anergic exhausted cytotoxic T cells, natural killer (NK) cells, and
cancer-associated fibroblasts are also present in Pr-134 (Fig. 7).
Finally, we note that gene set enrichment scores of PD-1 Signaling
were significantly increased at relapse with respect to baseline
(p= 3.5 × 10–7), suggesting a possible susceptibility to PD-1 or PD-
L1 inhibitors.

DISCUSSION
MM presents heterogeneity of cytogenetics, mutations, gene
expression, and clinical outcomes. Great strides have been made
to characterize and understand these features, but we still lack a
comprehensive map of the mechanistic links between them. Such
a map will elucidate the genetic programs that are dysregulated in
each subtype and provide points of actionable intervention in
their mechanisms. We developed MINER to uncover the structure
and hierarchy of patterns in gene expression from a mechanistic
and causal perspective in MM, such that cytogenetics and
mutations could be linked to their downstream effects on
transcriptional regulators and genetic program expression. The
profiles of genetic programs that are overexpressed or under-
expressed in each patient constitute robust molecular signatures
of dysregulation. By relating these signatures to their occurrence
in each subtype of MM and their relationship to clinical outcomes,
we developed a map relating the major features of myeloma
heterogeneity by mechanisms that may be susceptible to
currently approved or novel therapeutic interventions. Moreover,

Other Del 17 Amp 1q t(11;14) t(4;14) t(14;16) MYC Relapse

Risk: Low High Low High Low High Low High Low High Low High Low High Not sorted

Fig. 5 Network activity of drug targets across subtypes. a Targets of established baseline therapies. IMiDs: CRBN, IKZF1, IKZF3;
dexamethasone: NR3C1; bortezomib and carfilzomib: PSMB5. b Targets of therapies in clinical trials for relapse-refractory MM (RRMM). c Genes
associated with proliferation. d Genes directly involved in the intrinsic apoptosis pathway demonstrate subtype-specific differences in
network activity. e Risk-associated and proposed target genes. These genes either classify a subtype via their uniformly high expression or are
selectively active in the low- or high-risk subset of a clinical subtype.
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we have built an interactive web portal to facilitate a thorough but
intuitive investigation of the CM TRN.
Despite the myriad combinations of mutations and chromoso-

mal aberrations observed in MM patients, the transcriptional data
are relatively well structured into 25 transcriptional states with 141
programs that can be further divided into 3203 regulons. This
highlights a critical opportunity in the systems biology of cancer
and the development of precision medicine: The effect of the
myriad possible combinations of mutations is too great to study
with statistical power in clinical analysis because specific
combinations are too rare, but the end result is a discrete set of
transcriptional profiles that can be studied effectively. Indeed, we
see that transcriptional features such as genetic programs,
regulons, network-constrained gene activity (i.e., network activity),
and transcriptional states stratify the risk of disease progression
better than mutations in the case of MM (Supplementary Fig. 9).
Studying the transcriptional landscape of a disease in the context
of a CM TRN enables relationships between the activities of genes
and clinical outcomes to be traced to the putative causal effects of
mutations. Moreover, those mutations that are known to predict
risk can be better understood by investigating their downstream
effects in the CM TRN.

We applied the CM TRN to investigate the influence of variable
expression of drug targets, apoptosis regulators, and proliferation
markers on the risk of disease progression. Individual genes (e.g.,
CKS1B, PCNA, E2F1, FOXM1, PHF19) and genetic programs (e.g., Pr-
68) associated with cell proliferation were found to be the best
overall predictors of risk. This agrees with previous studies but
does not address the root cause of the cellular proliferation.
However, we can use the CM TRN to see which mutations and
regulators are upstream of these proliferative signatures in each
clinical subtype of MM. We found that all high-risk clinical
subtypes except t(4;14) are causally linked to the activation of Pr-
68 by promoting activation of FOXM1 via upregulation of E2F1.
Neither expression nor network activity of E2F1 was significantly
upregulated in t(4;14), hence no causal link was established
through E2F1 downstream of t(4;14). We hypothesize that FOXM1
is a master regulator of Pr-68 given that the genes in Pr-68 are
highly enriched with confirmed ChIP-seq targets of FOXM1 (p <
1.0 × 10–55). Activation of E2F1 can occur as a direct consequence
of dysregulating the G1/S cell cycle checkpoint via the common
chromosomal aberrations observed in MM.
Although proliferation signatures are most predictive, the

network activity of drug targets within the CM TRN also stratify

Fig. 6 Network activity of genes at baseline versus relapse. a Each point depicts the mean network activity of a gene at relapse versus
baseline. The genes of programs Pr-134, Pr-68, Pr-34, Pr-4, and Pr-0 are highlighted. b, c Boxplots of (b) gene expression and (c) mean regulon
activity at baseline and relapse for target genes of baseline therapy (IMiDs: CRBN, IKZF1, IKZF3; dexamethasone: NR3C1; carfilzomib: PSMB5).
Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
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risk at baseline. This is especially noteworthy in the case of the
IMiD substrate CRBN, which is highly active in the subset of
patients without clinical high-risk features. These patients do not
exhibit strong proliferation signatures at baseline, so they likely
benefit from low baseline aggressiveness of disease and high
susceptibility to IMiD therapy. Subtype-specific differences in
network activity suggest that complementary MM treatments can
be particularly effective for specific subsets of MM patients. In
particular, HDAC6 inhibitors are rational therapies for t(11;14)
patients, as they ubiquitously express HDAC6. Although experi-
mental confirmation is required, this may signal a critical
dependency of t(11;14)-driven MM on HDAC6. Moreover, the
especially high activity of PMAIP1 in t(11;14) supports the
observed benefit of BCL2 inhibitors in this subtype (Supplemen-
tary Fig. 19). Translocation t(4;14) also exhibits actionable subtype-
specific risk signatures. The activity of PARP1 and TOP2A each
correlate with high risk in t(4;14) and enable proteasome
resistance. Thus, PARP inhibitors and liposomal doxorubicin (i.e.,
targeting TOP2A) are rational therapies for t(4;14) patients who
become resistant to proteasome inhibitors. In addition, the
correlation of APH1A activity to risk in t(4;14) and Amp 1q patients
suggests that a gamma-secretase inhibitor may be particularly
important for regimens involving monoclonal antibodies (mAbs).
This agrees with the observation that gain of 1q21 confers poor
prognosis in patients treated with Daratumamab (i.e., anti-CD38
mAb)42. Finally, we note that virtually all subtypes exhibit a
correlation between risk and the activity of the mitosis-related
targets AURKA, AURKB, and KIF11, which may indicate that
therapies against these targets will be effective in high-risk MM.
While the profile of apoptosis regulators was not strongly

predictive of risk at baseline, significant changes were observed at
relapse. Program Pr-0, which includes several proapoptotic
regulators, shows much lower activity at relapse. Although BCL2
and MCL1 did not exhibit noteworthy changes at relapse, BCL2A1

became ubiquitously active. Accordingly, we anticipate that
BCL2A1 may be an important therapeutic target in RRMM. Finally,
evasion of autophagy-mediated apoptosis appears to be strongly
predictive of risk in patients bearing translocation t(4;14). In
particular, DRAM1 and DRAM2 become underexpressed in high-
risk t(4;14) and Regulation of Autophagy pathway enrichments are
strongly anticorrelated to risk.
A surprising result of this research was the observation of a

strong signature of the immune microenvironment, despite the
RNA-seq data being obtained from CD138+-purified MM cells.
Markers of virtually all cells previously implicated in BM
microenvironment-mediated resistance to therapy are present in
program Pr-134, which becomes highly activated at relapse. This
provides support to the hypothesis of a microenvironment-driven
mechanism of resistance to therapy. The observation of these
signatures in purified MM cells suggests that the mechanism of
resistance may involve exosomes or other methods of delivering
RNA from microenvironment cells. Although it is not yet clear
which therapeutic strategies will be most effective for interfering
with microenvironment-driven resistance, we note that targets
related to nuclear factor-κB (NF-κB) signaling may be especially
important. In particular, activation of NF-κB appears to be central
to communication between the microenvironment and MM cells
in the context of the CM TRN. NF-κB signaling is known to activate
inflammasomes such as the NLRP3 inflammasome, which gen-
erates IL-18 and IL-1B43. These ligands stimulate cells of the
microenvironment, such as MDSCs44, to ultimately produce
ligands such as S100A8, S100A9, TNF, and IL-1B, all of which
stimulate receptor-mediated NF-κB signaling and thus complete a
circuit41,43,45–48. The genes of this circuit belong to Pr-134,
suggesting that NF-κB signaling is a driver of microenvironment-
induced resistance. Moreover, the Inflammasomes pathway shows
significantly greater enrichment at relapse than baseline (p=
2.5 × 10–6).

Fig. 7 Pr-134 schematic. The genes of Pr-134 include markers of cell types characteristic to the bone marrow (BM) microenvironment, NF-κB
signaling, and the NLRP3 inflammasome. The high activity of these genes at relapse suggests the engagement of the BM microenvironment to
facilitate escape from therapy and evasion of immune cell-mediated killing. The high-risk clinical subtypes are complementary to Pr-134 in
escaping therapy and immune surveillance and they promote the proliferation of multiple myeloma cells by activating Pr-68 via E2F1 and
FOXM1. Bold gene names indicate that the gene is present in the program of the corresponding color (see legend).
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We further analyzed the subtype of patients bearing transloca-
tion t(4;14) as an important use case for the application of the CM
TRN. Some features are overexpressed across virtually all patients
within this subtype and others are over- or underexpressed only in
an extremely high-risk subset. Although it is not immediately clear
which of these trends (i.e., ubiquitously overexpressed or risk-
correlated) is more relevant for successful clinical intervention, they
both provide valuable insights into the underlying biology of t
(4;14) myeloma. For example, HIF1A, a critical regulator of
angiogenesis and response to hypoxia, is overexpressed across
virtually all t(4;14) patients. Interestingly, the distinct features of the
extreme-risk group can largely be explained by the response to
hypoxic stress and paracrine IL-6 signaling with osteoclasts. In
particular, the observed high expression of IL-32 is known to occur
under hypoxic stress by a HIF1A-dependent mechanism, leading to
the secretion of IL-32, which promotes osteoclast differentiation
and stimulates the production of IL-6 in the microenvironment49–51.
IL-6 stimulates the IL-6/JAK/STAT3 signaling pathway33,52, which is
reflected in the high expression of IL-6R and IL-6ST in the extreme-
risk Pr-68(+)/Pr-61(−) subset of t(4;14) patients. Although JAK2 and
STAT3 expression is not elevated in the extreme-risk group, CCT3—
a regulator of the function and levels of STAT3—is highly
overexpressed and among the strongest correlates to risk across
all t(4;14) patients. It has been reported that STAT3mediates escape
from cytotoxic lymphocyte lysis under hypoxic conditions in a
manner dependent on HIF1A, which indicates that CCT3 may drive
survival and is thus an important therapeutic target for high-risk t
(4;14)53,54. Hypoxic stress also leads to the HIF1A-mediated
activation of ENO1 and subsequent increase in glycolysis, which
is consistent with the significant overexpression of ENO1 and
functional enrichment of the glycolysis pathway in the extreme-risk
subset1. In addition, hypoxia induces DNA damage, which could
promote further activation of the DNA-repair program Pr-68.
Indeed, the extreme-risk subset exhibits the highest levels of Pr-68
expression, which may reflect a synergistic relationship between
the underexpression of Pr-61 and overexpression of programs Pr-
68 and Pr-72.
Patients harboring t(4;14) demonstrate several additional

signatures of interaction with the microenvironment. For example,
program Pr-108, activated across all t(4;14) patients, contains
ITGA4, which can directly engage BMSCs via VCAM155. Moreover,
64% of t(4;14) patients overactivate program Pr-111, which
contains the “don’t eat me” marker CD47 that evades killing by
macrophages56,57, and BTLA, HOMER2, and HOMER3, all of which
suggest an escape from cytotoxic T cell killing58,59. The presence
of both t(4;14) and Amp 1q shows synergistic activation of Pr-52
and Pr-75, such that patients harboring both abnormalities
overactivate Pr-52 (p= 8.8 × 10–9) and Pr-75 (p= 7.7 × 10–3)
relative to patients with either Amp 1q or t(4;14) alone. Programs
Pr-52 and Pr-75 contain ANXA2, which directly promotes the
differentiation of osteoclast progenitor cells into osteoclasts60, and
contain MICB, which in soluble form has been shown to inactivate
NK cells and cytotoxic T cells, steer macrophages to the tumor-
promoting M2 phenotype, and stimulate the generation of
MDSCs61–64. Lastly, Pr-75 contains IL-6R and IL-32, which promotes
osteoclastogenesis and paracrine IL-6 signaling as previously
described49,50. Taken together, the “double-hit” combination of
Amp 1q and t(4;14) bears signatures of a microenvironment that
inactivates killing by cytotoxic lymphocytes, promotes the
formation of immunosuppressive MDSCs and M2-polarized
macrophages, and activates paracrine IL-6 signaling. This suggests
an immune-suppressive synergy as one element of the elevated
risk of t(4;14)-Amp 1q “double-hit” patients.
The coherence of inferred programs across datasets, the strong

performance of network activity-based predictions, and recapitu-
lation of therapeutic escape mechanisms all provide support for
the inferred network and methods of the analysis reported herein.
We have demonstrated that it is possible to more accurately

stratify patients into disease subtypes and predict risk based on
dysfunctional genetic programs in a patient’s CD138+ myeloma
cells relative to approaches based on just mutation or gene
expression correlates. Because these genetic programs incorpo-
rate causation and mechanism, the network activity of known
targets of Food and Drug Administration-approved therapies
within these programs can be used as a means to prioritize
therapy regimen for each patient. We envision that this approach
will shortlist standard of care and investigational therapies,
including therapies approved for other indications, that can be
screened individually and in combinations in high-throughput
drug screens using patient-derived CD138+ myeloma cells65.
Thus, the MINER network can serve as the basis to accelerate the
discovery of a personalized therapy regimen based on the unique
dysfunction underlying a patient’s disease.

METHODS
Data selection
In order to generate and test a MINER TRN of MM, we identified and
preprocessed multiple publicly available datasets. Several gene expression
datasets with associated clinical outcomes exist for MM, but the most
extensive is that provided by the MMRF as a result of their CoMMpass
study. In total, 1150 patients from 90 worldwide sites had BM samples
analyzed every 6 months for 8 years. The samples were subject to many
types of analysis, including genomic, cytogenetic, and transcriptomic
analysis via RNA-seq of CD138+-purified MM cells. However, not all data
from the CoMMpass study was publicly available at the time of this work.
Nonetheless, the 881 samples with RNA-seq and translocation calls,
769 samples with matched clinical outcomes, and 734 samples with
somatic mutation data available in the MMRF IA12 represent the richest
MM dataset at the time of our analysis.

Gene expression data processing
Gene expression data were downloaded from the IA12 data release of the
MMRF. We analyzed the influence of the most highly expressed genes on
all other gene values and concluded that special consideration was
required to avoid batch effects resulting from highly expressed genes
artificially lowering the TPM normalized expression values. In particular, the
top 10 most highly expressed transcripts account for more of the mapped
reads than the remaining 59,000+ transcripts combined, and the percent
of mapped reads attributed to the top 10 genes is strongly anticorrelated
to the number of unique transcripts detected (Supplementary Fig. 20). We
implemented a custom normalization pipeline in Python that is similar to
trimmed mean of M values (TMM)66 plus quantile normalization (see miner.
preprocess: https://github.com/baliga-lab/miner3_mwall).

Mutation data processing
Binary mutation matrices were generated such that columns were indexed
by patient identifiers, rows were indexed by mutations, and the value of
entry (i, j)= 1 if gene i was mutated in the patient sample j and (i, j)= 0
otherwise. The mutation calls used to populate this matrix were taken from
the MMRF IA12 clinical data tables provided by the MMRF.

Clinical data processing
Clinical outcomes data was downloaded from the MMRF Researcher
Gateway. We used the GuanRank67 of time to progression-free survival and
normalized the values to fall between 0 and 1. This processing optimizes
the value of censored data for regression and classification problems. The
code for this normalization is made available on our GitHub page (https://
github.com/baliga-lab/miner3_mwall).

Test dataset acquisition and processing
HOVON65 (GSE19784) and UAMS (GSE24080) datasets were downloaded
from NCBI/GEO and processed with the oligo R package to provide RMA
normalization. For gene-level files with multiple probes mapping to a
single gene, log2 intensities were combined via the geometric mean. No
quantile normalization or mean-variance scaling has been computed
between studies. The gene expression data as provided was Z-scored and
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the normalized GuanRank was applied to the progression-free
survival data.

Network inference by MINER
MINER comprises many functions for the quality control processing,
analysis, and predictive model generation from gene expression data in
the context of an inferred TRN. The TRN is generated by a multistep
pipeline that starts with unsupervised clustering of gene expression, then
integrates prior knowledge databases (e.g., TFBSDB), and performs causal
inference when the appropriate data (e.g., somatic mutations, copy-
number variation, etc.) is available. The resulting MINER TRN is composed
of units, called regulons, that comprise a set of coexpressed genes sharing
a binding site for a regulator whose expression correlates to the first
principal component (i.e., the eigengene) of the genes. Additional
informations, such as upstream causal influences or risk of disease
progression as a function of expression level, are associated with each
regulon in the network to enable a modular structure. Tutorials of the
MINER pipeline and all associated code is available on our GitHub page.
The CM TRN presented herein was inferred using the MINER pipeline with
the following parameter values: minimum number of genes in a
coexpressed set of genes= 6, minimum number of genes in a regulon
= 5, minimum magnitude of correlation between regulator and regulon
eigengene= 0.2, maximum p value of binding site enrichment within
coexpressed genes= 0.05.

Calculation of regulon activity
For each normalized sample, the genes were ranked from lowest to
highest expression and partitioned into three equal parts: a lower, middle,
and top third. Given satisfactory normalization of the gene expression, e.g.,
by TMM normalization or the related method proposed in this work, we
can form a null hypothesis that a random selection of genes with no
coexpressed relationship will tend to distribute evenly between the top,
middle, and bottom third of the ranked genes. We can then use a binomial
distribution with p= 1/3 to model the probability that k genes fall into the
same third given a selection of N genes, where N ≥ k. A default p value of
0.05 is used as a cutoff for rejecting the null hypothesis that the chosen set
of genes are not coexpressed. Genes that pass this coherent cutoff in the
lower third are labeled “underexpressed” and those that pass in the upper
third all labeled “overexpressed”. All other cases are assigned a label of
“neither.” Accordingly, we generate a matrix with values {−1, 0, 1} for the
discrete activity of all regulons in all samples. When continuous values of
regulon activity are necessary, we prefer to use the regulon eigengene—
the first principal component of the regulon gene expression.

Differential regulon expression analysis
A matrix of regulon eigengenes was created by computing the first
principal component of the regulon gene expression for each regulon in
the network. Differential regulon expression analysis proceeds by defining
two groups, such as the patients of a transcriptional state and the
complimentary group of all other patients not belonging to that state. For
each regulon, a Wilcoxon’s rank-sum test is performed by comparing the
eigengene expression in the two groups. A p value cutoff of 0.05 is used to
determine significance.

Generation of TF–TF network
Given a list of TFs, MINER infers a TF–TF network in three steps. First, Least
Absolute Shrinkage and Selection Operator (LASSO) regression models are
generated for each TF in the list to predict its expression using a subset of
the other TFs in the list as predictors. Specifically, the TF list is a subset to
include only TFs with a binding site for the target TF in TFBSDB or a CHiP-
seq database. The second step is to prune the LASSO models to minimize
the number of TF predictors necessary to maintain the same level of
predictive accuracy. Finally, the LASSO coefficients of each predictor TF for
each target TF are defined as weighted edges to connect the TFs in a
network.

Comparison of gene expression and network activity for
subtype risk stratification
For each high-risk clinical subtype, we classified the 30% of patients who
were highest risk by GuanRank67 as truly high risk and classified the other
70% as low risk. We then randomly split the samples into a training set and

a test set (i.e., for each high-risk subtype), identified the gene that best
stratified risk in the training set, and quantified its predictive performance
in the test set by the area under the ROC curve (AUC). We repeated the
prediction 100 times with random patient selections to generate a
distribution of AUC scores.

Inference of miRNA regulation
The effects of miRNA regulation were inferred by the Framework for
Inference of Regulation by miRNAs (FIRM)68. The MINER pipeline can be
directly applied to miRNA regulators in the same fashion as for TFs, but the
lack of miRNA-seq data severely limited the reliable quantitative detection
of miRNA transcripts. In this case, MINER defaults to testing for the
enrichment of miRNA targets in coexpressed clusters, but does not enforce
correlation of the miRNA expression. FIRM enables enrichment analysis to
infer miRNA regulation when coexpressed gene sets are available, but
reliable miRNA-seq data are not. We used the default parameters and
significance thresholds of p= 0.05.

Analysis of patients at first relapse
There are only 39 patients with baseline gene expression, first relapse gene
expression, and clinical outcomes data in MMRF IA12. Thus, pairwise
comparisons are feasible, but limited in sample size. Of these 39 patients,
21 had no translocations or high-risk features at baseline, 8 were t(11;14)
subtype, 7 exhibited Amp 1q, 4 were t(4;14) subtype, 2 exhibited MYC
overexpression, and 1 exhibited Del 17. Therefore, pairwise comparisons
by subtype are statistically underpowered, with the possible exception of
patients with no translocations or other high-risk features. Moreover, these
39 patients were significantly at higher risk (p < 3 × 10–7) than the
remaining baseline patients who did not have matched relapse profiles
in MMRF IA12, presumably because these patients relapsed faster and thus
were the ones with data available. Given the limited relapse data available,
we pooled all relapse samples (N= 56) with expression, even though
17 samples did not have matching baseline expression and clinical
outcomes, and compared these profiles against the pool of all baseline
expression profiles.

Differential pathway analysis
A matrix of normalized pathway enrichments versus patient sample ID was
generated by applying gene set enrichment analysis to each patient gene
expression sample in MMRF IA12. Statistically significant differences in the
pathway enrichments between two groups (e.g., baseline versus relapse)
were calculated by the Wilcoxon’s rank-sum test.

Risk prediction
We performed Ridge regression (scikit-learn) against the normalized
GuanRank of PFS. The MMRF regulon activity was subset to include only
the 20% of patients with the highest risk and 50% of patients with the
lowest risk. We omitted moderate patients only when training the
predictor. Many of the patients who we omitted during the model training
had censored survival data, so they could have been anywhere from
intermediate-risk to very low-risk. We excluded them during training to
enable a comparison of patients who were clearly low- or high-risk. The
reported performance metrics were evaluated on all patients of a dataset,
so there is no risk of misevaluating due to omitting patients with moderate
outcomes. The 20% of patients with the highest risk (i.e., GuanRank score)
in each dataset were labeled as high-risk and all others were labeled as
low-risk for calculation of AUCs. The regularization parameter was selected
by randomly splitting the regulon activity into a training and test set, then
training a Ridge model on the training set, and finally calculating the AUC
of the test set prediction. This was repeated 500 times and the optimized
regularization parameter was selected as that which maximized the mean
AUC of the 500 tests.

Validation of univariate risk prediction
The top 100 genes that stratified risk in MMRF IA12 via gene expression
were intersected with the top 100 genes that stratified risk via network
activity, yielding 39 genes. These 39 genes were evaluated by area under
the receiver-operating characteristic (ROC) curve (AUC) using their gene
expression or network activity values as predictors of risk in GSE24080 and
GSE19784. Random permutations of network activity values were used as a
reference for random prediction.
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Association of additional information to causal flows
For each causal flow, we integrated additional information by using a custom
pipeline (miner_output_merge.py) that included the following processing
steps: (i) For a given regulon in each causal flow, gene members were collected
and queried against OpenTargets database (https://www.targetvalidation.org/)
to collect all drugs associated with a given gene for MM (get_opentargets.py).
(ii) Similarly, functional enrichment with Gene Ontology (GO) biological process
terms (Benjamini–Hochberg-corrected p value ≤ 0.05) was performed for each
regulon (GO_enrichment.R), followed by (iii) association with Hallmarks of
Cancer by using semantic similarity (Lin semantic similarity score >0.4)7,69,70

(goSimHallmarksOfCancer.R). (iv) Putative miRNA regulators via the FIRM
pipeline were also associated with each causal flow as described before.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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