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In the last three decades, the analysis of heart rate variability by nonlinear

methods demonstrated the complexity of cardiovascular regulation. Additionally to the

observations of periodic heart rate regulation by the autonomic nervous system, the

long-term statistics of the heart rate has been determined to reminisce a tempered

Lévy process. A number of heuristic arguments have previously been made to support

a tempering conjecture, using exponentially truncated waiting times for the time intervals

between heart beats. Herein we use the fractional probability calculus to frame our

arguments and to parameterize the control process that tempers the Lévy process

through a collective-induced potential. We also determine that the hypothesis of a

self-induced nonlinear potential control resulting in such a tempered Lévy process is

consistent with the hypothesis of disease being the loss of physiologic complexity made

over 25 years ago.

Keywords: heart beat variability, inverse power law, scale invariance, Lévy process, fractional Fokker-Planck

equation

1. INTRODUCTION

The cardiovascular system forms a complex structure, where nonlinear control mechanisms shape
the cardiac activity at the scales of seconds, minutes and hours (Iyengar et al., 1996; Goldberger,
2006). Over the past thirty years, fluctuations in heart rate, referred to as heart rate variability
(HRV), have become a central topic in physiological signal analysis, serving as a vital non-invasive
indicator of the performance and physiological state of the cardiovascular system. Both decreased
statistical and spectral indices of HRV have been linked to poor outcomes in patients with e.g.,
myocardial infraction (Kleiger et al., 1987), coronary artery disease (Huikuri, 1995) and heart-
failure (Guzzetti et al., 2000), while distinct peaks in the power spectrum of HRV have been
attributed to autonomic, sympathetic and vagal modulation.

Furthermore the analysis of HRV demonstrated the complexity of cardiovascular regulation,
revealing non-linear and non-Gaussian nature of heart rate series (Beckers et al., 2006). Identified
nonlinear fluctuations in HRV entailed important physiologic advantages associated with the
ability of the cardiovascular system to respond to unpredictable stresses and stimuli, since
nonlinear responsiveness offers greater flexibility than a linear reaction (Goldberger and West,
1987; Shlesinger and West, 1991). The work of Peng et al. (1993) was the first of many studies
focusing on the scaling properties of HRV time series, showing the spectrum of the inter-beat time
increments to scale as an inverse power law (IPL) in frequency:

S(f ) ∝
1

f 2H−1
. (1)
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Observed lack of characteristic scale in heart rate fluctuations was
attributed to various control processes which occur at different
time scales in the cardiovascular system. As a result, the HRV
time series fluctuate in a complex, erratic manner in healthy
individuals, even those at rest. However, this IPL scaling has
a surprising consequence for the behavior of the variance of
heart rate time series, suggesting that the second moment of this
signal increases with the progression of time. This corresponds to
increasing time intervals between consecutive heart beats, which
in the long time limit results in an unphysiological condition.
We will revisit this puzzling conclusion in details further along
in this paper.

The correlations, captured by the spectral analysis,
characterizing temporal ordering of beat-to-beat differences,
I(n) = B(n + 1) − B(n), where B(n) denotes the length of heart
beats for the beat number n, are interpreted to be anti-correlated
in normal healthy individuals. Correspondingly, this correlation
was determined to vanish in patients with heart disease (Peng
et al., 1993). However, the loss of correlation in diseased
individuals was determined to not influence the probability
density function (PDF) of the heart beat increments. Both
healthy and diseased individuals were described by a Lévy stable
PDF and it was not possible to statistically distinguish between
them. This observation demonstrated that the distribution of
inter-beat fluctuations does not uniquely characterize HRV time
series, since it is their time ordering that accurately captures the
fractal nature of heart beat time series.

The analysis of HRV performed by Peng et al. (1993) indicated
that the statistics of the changes in heart beat intervals are
Lévy stable. This observation challenged the assumption that
cardiac activity observed in healthy individuals is normal in
statistical sense. Peng et al. (1993) demonstrated that rather
than following a bell curve of Gaussian distribution, statistics
of heart beat intervals is characterized by heavy tails, signifying
that deviations from the average are more likely than expected
from a Gaussian process. However such functional dependence
shares an undesirable property with one observed through the
HRV spectrum, namely a diverging secondmoment. This implies
that the heart beat of a healthy individual would be asymptotically
unstable, a conclusion that is physiologically unacceptable. A
number of suggestions have been made to overcome this
unrealistic divergence of the HRV. Herein we adapt some of the
ideas from control theory as a means of resolving the issue.

The empirical Lévy PDF is at the center of our analysis
and suggests that the fractional calculus provides a strategy for
going beyond the random walk interpretation of the HRV time
series proposed by Peng et al. and accepted by a generation of
scientists. The probability that the dynamic variable I(t) lies in
the phase space interval (I ,I+dI) at time t is P(I , t)dI , where
the probability distribution P(I , t) is defined as a solution to the
fractional Fokker-Planck equation (FFPE) (West, 2013):

∂P(I , t)

∂t
= Kα∂α

|I|

[

P(I , t)
]

, (2)

where we have introduced the symmetric Reisz-Feller fractional
derivative ∂α

|I| [·] , whose Fourier transform is − |ω|α and Kα is

a constant. Equation (2) is a fractional diffusion equation for the
change in the heart beat intervals, whose solution is given by the
symmetrc Lévy distribution (West, 2013):

P(I , t) =

∞
∫

0

cos [Iω] exp
[

−tKαωα
] dω

π
. (3)

The PDF given by Equation (3) agrees with the histograms of the
HRV data (Peng et al., 1993) for fixed time, with α = 1.7 and
Kα > 0. The inclusion of the Fokker-Planck equation allows
defining an equation governing the evolution of probability
distribution for heart rate intervals. However it’s intrinsic value
lies in forming the connection between the equation defining the
evolution of the heart rate intervals as a time series, the Langevin
equation mentioned subsequently, and the equation observing
the evolution of its probability distribution. In terms of a random
walk-like process, the duality is that of observing evolution of a
single walker versus having information about the probability of
its location at a given time. The probability framework is thus
richer, since it allows for estimation of possible values of heart
rate intervals; e.g., prediction of a chance of a specifically long
interval between heart beats.

Herein we hypothesize the existence of cardiovascular control
mechanism which leads to a tempered Lévy distribution
characterizing HRV in healthy individuals. This mechanism
suppresses the largest changes in inter-beat intervals, those being
in the tails of the Lévy PDF, which persist in the various cardiac
disorders. The pathophysiology of the HRV PDF being Lévy
stable, therefore results from the suppression of this physiological
control process and differs from the exponential tempering of
the Lévy PDF found in the literature (West, 2014a) and used by
others (Kiyono et al., 2006). We model the HRV as a nonlinear
Langevin equation, where the nonlinear terms correspond to
the control process. The corresponding Fokker-Planck equation
takes a fractional form, whose steady-state solution is a tempered
Lévy distribution. To our knowledge this is the first attempt
at capturing the dynamics of cardiovascular system though the
framework of fractional calculus.

2. CONTROL HYPOTHESIS

The heart’s beat-to-beat time series, B(n), is a consequence of
numerous control mechanisms that shape the cardiac activity.
The most fundamental component of the HRV is formed by the
firing of the pacemaker cells in the heart’s sinoatrial node (Hall,
2016). This periodic action is continuously modulated by two
competing branches of the autonomic nervous system (ANS),
with sympathetic stimulation, respectively, increasing, and
parasympathetic action decreasing, the firinig rate (Goldberger
andWest, 1987; Goldberger et al., 1990; Peng et al., 1993). Herein
we address the significance of the heart’s primary pacemaker,
the sinoatrial node, in controlling the balance between these two
branches of the autonomic nervous system. The importance of
the response of the sinoatrial node to autonomic signaling to
heart rate and HRV has been emphasized by Yaniv et al. (2013)
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We discuss the regulation of extremes in the intermittent
fluctuations of HRV time series following the observations
of Kiyono et al. (2004, 2006) of measuring the degree of
non-Gaussianity of heart rate fluctuations. This approach is
based on quantifying the degree of deviation of empirical
data from Gaussianity, originally developed in the study of
the intermittent properties of velocity fluctuations in turbulent
flow by Castaing et al. (1990). The cascading mechanism that
determines the intermittency in turbulence was postulated to
give rise to analogous intermittent behavior in HRV time series
(Lin and Hughson, 2001). It is worth pointing out that the
intermittency observed in turbulent fluid flow can also be
described using the fractional calculus to obtain a Lévy PDF
(West, 2014a). The diffusion of passive tracers track the velocity
fluctuation in heterogeneous media and have been shown to be
exponentially tempered to capture the natural cutoff of waiting
times (Meerschaert et al., 2014).

Kiyono et al. (2004) and Kiyono et al. (2006) reported
robust scale-invariant properties in non-Gaussian distributions
observed in healthy human HRV spanning a wide range of
temporal scales. However they found that a truncated or
exponentially tempered Lévy PDF could not be ruled out
as a proper descriptor of the HRV statistics, since sufficient
coarse graining of the HRV time series resulted in a Gaussian
distribution, implying that the underlying process had a finite
variance. Furthermore, in a series of papers the interpretation of
the origin of the non-Gaussian properties of HRV has been called
into question. Initial proposal connecting the HRV intermittency
to the critical state-like dynamics (Kiyono et al., 2004) has been
challenged in Kiyono et al. (2006), where PDF of the HRV has
been equally well fitted by a tempred Lévy PDF and a log-normal
cascade-typemultiplicative process (Castaing et al., 1990). On the
other hand, the cascading mechanism could not be confirmed
in the analysis of HRV by Kiyono and Bekki (2011). This is
in conflict with an earlier finding of Lin and Hughson (2001),
who found strong evidence that the cascade mechanism can
generate some of the statistics of HRV variability. In the following
sections we outline a novel interpretation of the above results, one
proposing nonlinear control of HRV.

We analyze three sets of experimental data of HRV
from the MIT-BIH RR Interval Database (Goldberger et al.,
2000) in order to illustrate motivations behind the proposed
control mechanism of HRV. Information concerning adopted
datasets and performed analysis are discussed in details in
the Appendix 5.1. The values (mean ± SD) of commonly
reported HRV indices are presented in Table 1. Figure 1 shows
the heart rate intervals, standardized time series of heart rate
increments and standardized PDF of the heart rate increments
for a representative examples of individuals belonging to three
groups: a healthy individual, a congestive heart failure (CHF)
patient of class I, II, III and a congestive heart failure (CHF)
patient of class III, IV. In line with results presented in Hayano
et al. (2011), the PDFs for the heart beat interval variability have
non-Gaussian form, with increased value of the non-Gaussianity
index λ observed in progressively worse clinical groups. The
difference between healthy individuals, CHF patients of class I,
II, III and CHF patients of class III and IV suggests that the

TABLE 1 | Measures of heart rate variability in healthy subjects and two groups of

patients with congestive heart failure.

Healthy CHF CHF

(I, II, III) (III, IV)

Time domain Mean RR, ms 785 ± 90 807 ± 107 798 ± 127

SDNN, ms 122 ± 29 109 ± 40 86 ± 37

rMSSD, ms 31 ± 15 28 ± 18 22 ± 14

Frequency domain VLF power,

ms2
1,650 ± 900 1,347 ± 945 836 ± 750

LF power,

ms2
1,150 ± 534 501 ± 690 389 ± 512

HF power,

ms2
540 ± 723 268 ± 425 243 ± 275

LF/HF ratio 2.1 ± 1.2 1.8 ± 1.3 1.6 ± 0.9

Nonlinear measures DFA α1 1.25 ± 0.18 1.09 ± 0.11 0.96 ± 0.13

DFA α2 0.89 ± 0.14 0.85 ± 0.16 0.78 ± 0.12

Non-Gaussianity

index

λ25 0.33 ± 0.08 0.56 ± 0.11 0.63 ± 0.16

Values are reported as mean ± SD. SDNN, SD of normal RR intervals; rMSSD, square

root of the mean of the squared differences between adjacent normal RR intervals; VLF,

very-low-frequency power; LF, low-frequency power; HF, high-frequency power; LF/HF,

ratio of low- to high-frequency power; DFA α1, short-scale index of detrended fluctuation

analysis; DFA α2, long-scale index of detrended fluctuation analysis; λ25, non-Gaussianity

index.

last group could be modeled by a Lévy PDF, whereas healthy
patients might be modeled by a truncated or tempered Lévy PDF.
This interpretation is consistent with the results of Kiyono et al.
(2006), but would not have been evident from the limited data
available to Peng et al. (1993).

Motivated by the fundamental role the sinoatrial node plays
in maintaining the balance between opposite actions of the
autonomous nervous system, we hypothesize that the activity
of this node acts as a cardiovascular control mechanism that
produces a tempered Lévy PDF in healthy individuals. This
activity suppresses the largest changes in heart-beat intervals,
ones forming the tails of a Lévy PDF observed in the severe CHF
group. The presence of the Lévy distribution in the HRV PDF
of pathological cases is thus a result of a disease process which
affects and reduces action of the sinoatrial node. Loss of this
control mechanism leads to the imbalance between sympathetic
and parasympathetic activity of ANS, what has been documented
in numerous cardiac diseases (Luo et al., 2018).

In section 3 the mathematical form of the tempered Lévy
hypothesis is introduced in the form of a nonlinear potential in a
stochastic differential equation to describe HRV dynamics. Note
that this model does not correspond to the exponential tempering
of the Lévy PDF found in the literature (West, 2014a) and used by
others (Kiyono et al., 2006) to account for the observed properties
of the HRV time series. In section 4 the control mechanism is
interpreted in terms of the disease being the loss of complexity in
medicine. Some conclusions are also drawn.

3. HYPOTHETICAL CONTROL

Control theory is not usually discussed in the physics literature,
in part, because it is thought to give an anthropomorphic
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FIGURE 1 | Representative examples of the non-Gaussianity index analysis of the HRV in a healthy individual (Top row), CHF patient of class I, II, III (Middle row),

and CHF patient of class III, IV (Bottom row). Left column shows time series of inter-beat intervals, middle column displays corresponding time series of standardized

heart rate increments. Right column shows standardized PDFs of heart rate increments. Estimated values of the non-Gaussianity index λ25 are show in each PDF

panel. In a solid red line we show the PDF approximated by the non-Gaussian model (Equation 22 in Appendix). The black line represents the Gaussian distribution.

tinge to the discussion. We believe this is because control is
what engineers introduce into a process to obtain a desired
outcome, whereas natural selection accomplishes the same task,
in terms of enhanced fitness, but with more subtlety, if less intent.
Biological macro-evolution selects for the most robust dynamics
that emerges out of physical laws. Consequently, we assume
a hypothetical dynamic equation for the inter-beat intervals,
formally expressed as a nonlinear stochastic differential equation

dI(t) = F(I, t)dt + dξ (t) , (4)

where F(I, t) is a deterministic driver and dξ (t) is a stochastic
driver. The forms of the two drivers, the deterministic piece being
defined by the dynamics of the sinoatrial node and the random
piece being determined by the autonomic signal, are consistent
with the arguments of Yaniv et al. (2013) and can be made
functionally specific by what is known about HRV time series.

First and foremost, the statistics of the heart beat time series
have a non-Gaussian PDF and multi-fractal scaling properties
(Kiyono et al., 2004). As mentioned in the Introduction, the HRV
time series is the result of competing neuroautonomic inputs.
The competition between these two branches of the involuntary
nervous system is the mechanism assumed here to provide the

erratic variability recorded in healthy subjects (Goldberger and
West, 1987; Goldberger et al., 1990) and therefore determines the
statistics of the stochastic driver. Thus, we assume the statistics
of the autonomic inputs in the inter-beat interval Langevin
equation dξ (t), resulting from the competition between the two
neuroautonomic inputs, to be Lévy stable.

Last, but not least, the form of the deterministic driver
emerges from the intrinsic dynamic properties of the sinoatrial
node pacemaker cells. These properties are modeled herein
using the recent observation that biological systems are poised
at criticality (Mora and Bialek, 2011), which can in principle
produce the cooperative oscillations, as well as erratic variability,
observed in rhythmic heart beat time series. However, the
fluctuations arising from such chaotic dynamics can reasonably
be assumed to be overwhelmed by the Lévy statistics of the
autonomic input and therefore ignored in the model. The
deterministic force is therefore modeled by the cooperative
behavior of the pacemaker cells.

We present a detailed model of the cooperative behavior
of the sinoatrial cells, based on the micro-dynamics of a
complex network elsewhere, but here we restrict our analysis
to a hypothetical control model that is consistent with such
networking ideas.
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3.1. Linear Control
Linear dissipation has a long pedigree in the physical sciences,
including the fluctuation-dissipation relation obtained by
Einstein in his 1905 paper on classical diffusion. He was able to
relate the temperature of the ambient fluid to the ratio of the
strength of the random force, buffeting the diffusing particle,
and the linear dissipation parameter. This ratio constitutes the
first fluctuation-dissipation theorem and it was over a century
before this physical theorem was systematically interpreted in
terms of the control theory concept (Sandberg et al., 2011) of
negative feedback.

For the inter-beat interval dynamics the simplest non-trivial
deterministic driver is linear and does represents a negative
feedback process. In this case Equation (4) reduces to a linear
stochastic differential equation, which in the physics literature
goes by the name of the linear Langevin equation:

dI(t) = −λ0I (t) dt + dξ (t) . (5)

For a diffusing particle the fluctuations inject energy from the
ambient fluid into the particle motion and the linear dissipation
parameter quantifies the rate of absorption of energy back into
the ambient fluid, thereby maintaining an energy balance, on
average. The formal solution to Equation (5) is given by

I(t) = e−λ0tI(0)+ e−λ0t

t
∫

0

dξ
(

t′
)

eλ0t
′

. (6)

The statistical properties of the solution to the dynamic equation
are straight forward to determine, when the random driver is
a Wiener process; noise that is delta correlated in time, with
Gaussian statistics. These are the statistical assumptions typically
made in physical systems.

However, the historical statistical assumptions are not
appropriate for modeling HRV, with the stochastic driver being
the result of competing neuroautonomic inputs. Based on the
earlier discussion, we assume dξ (t) to be a delta correlated
Lévy stable and not a Wiener process. The analysis relating the
solution to the dynamic equation and the corresponding PDFwas
carried out (West and Seshadri, 1982) for I(0) 6= 0, but we do not
need that level of generality here and so we simplify things and
set I(0) = 0 and relegate the details of the supporting analysis to
Appendix 5.2.

In Appendix 5.2 the dynamic variable I(t) is shown to have
a probability P(I , t)dI of being in the interval (I , I + dI) at
the time t. The kinetic equation for the evolution of the PDF
corresponding to the linear Langevin equation is shown to be
given by the fractional Fokker-Planck equation (FFPE):

∂P(I , t)

∂t
=

∂

∂I

[

λ0IP(I , t)
]

+ σ 2∂α
|I|

[

P(I , t)
]

, (7)

which differs from Equation (2) in the Introduction, through the
inclusion of the linear feedback term. The solution to the FFPE is

the Lévy PDF (West and Seshadri, 1982):

P(I , t) =
1

π

∞
∫

0

dω cos (Iω) exp
[

−σ 2
α (t) ωα

]

, (8)

with a time-dependent “width”:

σ 2
α (t) =

σ 2

λ0α

(

1− e−αλ0t
)

.

This PDF becomes equivalent to the translationally invariant
Lévy distribution discussed in the Introduction when λ0 = 0,
in which case

lim
λ0→0

σ 2
α (t) = σ 2t, (9)

and the constant coefficient is identified with the diffusion
coefficient Kα .

The above argument was used (West and Deering, 1994)
to explain the earlier results (Peng et al., 1993), in the
asymptotic case

lim
t→∞

σ 2
α (t) =

σ 2

λ0α
, (10)

where the Lévy PDF becomes time independent, but with
a strength parameter different from that characterizing the
stochastic driver. However, this argument alone cannot explain
the data depicted in Figure 2. The analysis must be generalized
to include the natural physiologic control necessary to avoid
unphysiologically large fluctuations in HRV, which are a
hallmark of pathological condition.The expectation here is that
an additional dissipative tempering of the Lévy fluctuations
attenuates the extremes observed in the HRV PDF of severe CHF
patients depicted in Figure 2. Let us examine this last conjecture
more closely.

3.2. Nonlinear Control
There is no á priori reason to restrict the analysis of HRV
dynamics to linear negative feedback. In physical systems
the fluctuations and linear dissipation have a common origin
and consequently are tied together by a fluctuation-dissipation
relation. In biological systems, however, the dissipation and the
random force often have different sources and the feedback must
adapt to regulate the properties of the dynamic response to the
random force. In the case of HRV the deterministic force is here
assumed to be given by the collective behavior of the sinoatrial
pacemaker cells. Such cooperative behavior has been shown to be
generic for large classes of complex networks including members
of the Ising universality class (West, 2014a). One suchmodel near
criticality is adopted below to describe HRV dynamics.

A generic version of Equation (4) was analyzed by Chechkin
et al. (2005) in which the deterministic term was gvien by the
nonlinear force−λ (I) I :

dI(t) = −λ (I) I (t) + dξ (t) . (11)
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FIGURE 2 | The PDF approximated by the non-Gaussian model using

Equation (22) in Appendix with parameter λ being the group average listed in

Appendix 5.1 for three studied groups: healthy individuals, CHF patients of

class I, II, III and CHF patients of class III, IV.

Equation (11) reduces to the linear Langevin equation of the last
section with λ0 ≡ λ(0) and dξ (t) is again assumed to be a stable
Lévy process. In general the feedback term is a polynomial, but
we restrict the analysis to the largest-order term, since this is the
term that dominates the control process and write

λ (I) ≈ λ2nI
2n, (12)

where λ2n > 0 and n is an integer. Note the index is restricted
to even order to ensure that higher-order terms to not change
the symmetry of the control process from that of the linear
feedback term.

Note further that the sinoatrial node is comprised of a
complex network of interacting pacemaker cells, each with
its own internal clock, which acts within the collective to
coordinate the heart beat rhythm. A number of mathematical
models have been devised that manifest such collective behavior,
providing insight into critical phase transitions in non-physical
networks. One such model is the Decision Making Model
(DMM) (West et al., 2014), which near criticality reduces to the
cubic Langevin equation:

dI(t) = −λ0I(t)− λ2I
3 (t) + dξ (t) . (13)

In the DMM the linear term has the generic property of going to
zero, λ0 → 0, as the critical point is approached by adjusting
a control parameter to its critical value. In the DMM n = 1
and despite the input driver being a Lévy process, the inclusion
of a nonlinear term of order n = 1 quenches the divergence of
〈

I(t)2
〉

(West and Seshadri, 1982; Chechkin et al., 2005) and the
brackets denote an average over an ensemble of realizations of
the random driver.

Of course this investigation would be of little interest if it
depended on the details of the interaction within the network.
This is not the case with critical phenomena. Networks that

undergo phase transitions manifest scaling, which results from
the universality of the dynamics, and this is manifest in the
fractal nature of HRV. Consequently the approximate form of
the dynamic equations in the vicinity of the critical point is also
universal, see Landau’s discussion of critical slowing down when
a fluid transitions from laminar to turbulent flow (Landau and
Lifshitz, 1987). This is the kind of control processes of interest to
us for the HRV data. Note, however, that higher-order diverging
moments would require equally higher-order feedback terms to
control the process.

It is possible to use the technique presented in Appendix 5.2

to replace the Langevin equation containing the highest-order
nonlinear term in the dissipation, with a corresponding FFPE.
We present the details of the analysis in Appendix 5.3 to obtain

∂P(I , t)

∂t
=

∂

∂I

[

λ2nI
2n+1P(I , t)

]

+ σ 2∂α
|I|

[

P(I , t)
]

, (14)

the same FFPE studied by Checkin et al., where, as they point
out, the nonlinear coefficient has the role of a confining potential.
In a similar way, West et al. (2014) make the association of the
cubic term in the Langevin equation (n = 1) with a bimodal
potential, resulting from the collective behavior of the DMM
network at criticality. In the latter case I(t) would correspond to
the global variable, that being the average over all the elements of
the network.

Of course, we cannot solve Equation (14) in general, but it
is not necessary to have the exact solution in hand to obtain
the information we need to test our control hypothesis. The
asymptotic behavior of the steady-state solution is sufficient.
Consider the equation for the steady-state PDF

Pss(I) = lim
t→∞

P(I , t) (15)

given by

∂

∂I

[

λ2nI
2n+1Pss(I)

]

+ σ 2∂α
|I|

[

Pss(I)
]

= 0. (16)

We put the Reisz-Feller fractional derivative in the
convenient form

∂α
|I|

[

Pss(I)
]

=
1

π
Ŵ (α + 1) sin [πα/2]

∞
∫

−∞

Pss(I
′)dI ′

|I − I ′|1+α
, (17)

which allows us to analyze the solution to Equation (16) from the
equivalent form of the Reisz-Feller fractional derivative:

∂α
|I|

[

Pss(I)
]

= −Cα

d2

dI2

∞
∫

−∞

Pss(I
′)dI ′

|I − I ′|α−1
, (18)

with the coefficient

Cα =
σ 2

2Ŵ (2− α) cos (απ/2)
.
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Inserting Equations (18) into (16) and assuming zero flux
boundary conditions yields the integral equation for the steady-
state PDF (Chechkin et al., 2005):

λ2nI
2n+1Pss(I)− Cα

d

dI

I
∫

−∞

Pss(I
′)dI ′

|I − I ′|α−1
= 0. (19)

Here again we cannot obtain an exact result, so we estimate the
value of the integral asymptotically in Appendix 5.3.

The approximate asymptotic steady-state solution to Equation
(14) is given by the solution to Equation (19) to be the IPL PDF
(Chechkin et al., 2005):

Pss (I) =
Nµ

|I|µ
; µ = α + 2n+ 1, (20)

where Nµ is the normalization constant. In Figure 3 the steady-
state PDF given by the solution to the FFPE is the IPL (Equation
20). The steady-state PDF is fit to the numerical integration of the
nonlinear Langevin equation. In the calculation a Lévy process
with α = 1.5 is used to drive the dynamics of the sinoatrial
node modeled as a DMM network near the tipping point. The
deterministic force is selected to have either n = 0 or n = 1, or
both. It is clear from the figure that the formal solution captures
the IPL form predicted by the steady-state solution to the FFPE
with either µ = 2.5 or µ = 4.5.

It is well known that for an IPL index µ ≥ 3 the second
moment

〈

I
2
〉

is finite, implying that the central limit theorem
holds asymptotically. Consequently, for n = 1 the statistics of I(t)
have a finite second moment asymptotically and the steady-state
PDF asymptotically transitions from Lévy stable to Gaussian.
This transition explains the results obtained by Kiyono et al.

FIGURE 3 | The numerical integration of the nonlinear Langevin equation is

used to give the histograms for the PDF with the Lévy index α = 1.5. The

computational results are fit extremely well by the steady-state IPL PDF with

IPL index µ = α + 2n+ 1 for n = 0 and n = 1.

(2004, 2006), without the need to exponentially temper the Lévy
driver, relying solely on the sinoatrial dynamics to temper the
extreme fluctuations resulting from the competition between the
two branches of the involuntary nervous system.

4. DISCUSSION AND CONCLUSIONS

A quarter century ago we (Goldberger et al., 1990) hypothesized
that disease is associated with the loss of complexity, which
has been subsequently tested using HRV data. One example,
in support of this hypothesis, is a study of combat casualties
involving 70 acutely injured adults, in a U.S. Army Combat
Support Hospital (CSH) located at Ibn Sina Hospital, Baghdad,
Iraq, during the recent conflict. This study determined that the
complexity of HRV dynamics over a range of time scales was
lower in high-risk than in low-risk combat casualties (Cancio
et al., 2013), using multi-scale entropy (MSE) as a measure of
complexity. It had been determined earlier (Costa et al., 2008)
that the scaling of the data established that the MSE measure of
complexity was higher for healthy subjects than for those with
congestive heart failure or with atrial fibrillation. The greater
complexity for healthy individuals only became evident beyond
a certain level of coarse graining of HRV data.

Struzik et al. (2008) emphasize an interpretation in which
healthy heart rate represents the upper bound on HRV, and
reduced variability of heart rate fluctuations is of clinical risk.
They call into question the complexity hypothesis and its
clinical interpretation. Similar observations have been made
in an extensive study of Stein et al. (2005). In particular,
they find that there is an increase in fluctuations, which they
interpret as an increase in complexity, of heart rate in chronic-
heart failure patients, specifically those at risk of death, just
as those observed in Figure 2. Thus, it would appear from
the figure that complexity has increased in those patients
that are the more severely diseased in contradiction to the
complexity hypothesis. This interpretation adopts the perspective
that complexity is proportional to variability and therefore
is greatest in physiological processes with diverging central
moments. A more thoughtful analysis of complexity reveals
something different.

The analysis of HRV data by Peng et al. (1993) indicated
that the statistics of the changes in heart beat intervals are Lévy
stable. The Lévy statistics have the undesirable property that
the second moment of heart beat time intervals diverge and
consequently implies that the hear beat of a healthy person
would be asymptotically unstable. This instability was shown to
be quenched by a number of investigators (Kiyono et al., 2004;
Hayano et al., 2011), through the introduction of a tempered
Lévy driver.

The data shown in Figure 2 suggest the use of exponentially
tempered Lévy statistics to explain the difference between the
healthy individuals and CHF patients. The tempering control
mechanism would suppress the largest excursions in time, which
persist in the severe CHF group. The pathophysiology of the
HRV PDFs being Lévy stable would then be the result of the
suppression of a physiological control mechanism as suggested
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in an earlier publication (West, 2014b). However, the form of this
earlier control mechanism would need to operate at the level of
the involuntary nervous system.

The scaling of the statistics for the central or Lévy part of
the tempered PDF is the same for both the healthy and CHF
patients in Figure 2. However, there is the additional scaling of
the HRV in the tempered Lévy PDF produced by the criticality
of the healthy sinoatrial node dynamics. Criticality, as manifest
in the cubic term in the Langevin equation, reduces the span of
the fluctuations from those that persist in severe CHF condition
to those present in more manageable CHF cases. This second
scaling, which is produced by the proposed control mechanism,
certainly adds to the overall complexity of the process, by
introducing a second scaling mechanism. It is the loss of this
control that lifts the restriction on the span of fluctuations in
HRV time series, resulting in cardiac pathologies. Consequently,
those that suffer from a serious cardiological condition have
greater heart rate variability, but their HRV is certainly less
complex than those whose HRV variability is restricted by the
nonlinear control process. Thus, interpreting complexity to be
proportional to the second moment (variability) in the HRV
context is too simplistic.

Complementary observations can be made through the
analysis of the HRV with the help of detrended fluctuation
analysis. The work of Ivanov et al. (1999) and Amaral et al.
(2001) have demonstrated reducedmultifractality associated with
impaired parasympathetic control and pathological condition
of CHF, respectively. This corresponds to a reduction of long-
range correlations present in the HRV of healthy individuals,
an outcome related to a loss of dynamical properties of the
cardiovascular system. However we should point out that despite
semantic similarities, the scaling exponent of DFA quantifies
temporal properties of HRV thought to be statistical fractal
time series. Contrarily, the control mechanism introduced herein
is presented in terms of a fractional Fokker-Planck equation
(Equation 14), which leads to investigations of HRV through
its PDF distribution. The methods are thus complementary, but
not directly related, as DFA characterizes temporal correlations
present in random walk-like process, while HRV control
framework focuses on the steady-state distribution of such
random walk time series. Additionally we need to point out
that the DFA is a method of data processing of individual time
series that assumes the central moments of the time series are

sufficient to characterize the process. The fractional Fokker-
Planck equation (FFDE) makes no such assumption. It is a
theoretical model that describes the evolution of the probability

density function for the physiologic process and its solution
captures the full dynamics of an ensemble of time series. When
the DFA scaling parameter is equal to that obtained from the
second moment calculated using the solution to the FFPE, the
theoretical model satisfies the assumptions necessary for the
DFA. When the two do not agree it suggests that the dynamics
are determined by more than central moment properties.

The adaptive feedback control process produced by the
collective behavior of the pacemaker cells, postulated herein, is
physiologically simpler than the exponential tempering suggested
earlier (West, 2014b) and applying Occam’s razor, is the more
likely explanation. The nonlinear potential is a collective effect
within the sinoatrial node dynamics and produces a tempered
response to the stochastic excitations. This tempering of the
extreme HRV excursions is pathologically suppressed within the
severe CHF group. The pathophysiology of the HRV PDF being
Lévy stable is then the result of a suppressed control process,
which can no longer determine the maximum size of the inter-
beat intervals, resulting in loss of control and disease.

An explanation of the source of the nonlinear control
mechanism based on the sinoatrial node dynamics being poised
at criticality is presently being developed. This was introduced
in the text as a conjecture and will be discussed in detail in a
future publication.
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