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Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic

approaches that overlay diverse data types and analyses to identify functionally important

genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant

mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling

parturition and birth timing remain poorly understood. Integrative approaches that overlay

datasets derived from comparative genomics with function-derived ones have potential to

advance our understanding of the genetics of birth timing, and thus provide insights into the

genes that may contribute to PTB. We intersected data from fast evolving coding and non-

coding gene regions in the human and primate lineage with data from genes expressed in

the placenta, from genes that show enriched expression only in the placenta, as well as

from genes that are differentially expressed in four distinct PTB clinical subtypes. A large

fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical

subtypes (23–34%) are fast evolving, and are associated with functions that include adhe-

sion neurodevelopmental and immune processes. Functional categories of genes that

express fast evolution in coding regions differ from those linked to fast evolution in non-cod-

ing regions. Finally, there is a surprising lack of overlap between fast evolving genes that

are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially

those that incorporate evolutionary perspectives, can be successful in identifying potential

genetic contributions to complex genetic diseases, such as PTB.

Introduction
Complex genetic diseases derive from evolutionary and mutational processes that generate seg-
regating variants conferring susceptibility to disease [1–5]. The challenges for identifying dis-
ease genes have been well-documented: different approaches traditionally used to identify
them can produce large numbers of candidates that explain only modest amounts of variation
in risk, and often lack replication [6, 7]. Moreover, the disease itself may constitute a poorly
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defined or understood phenotype, which means that hypotheses regarding potential contribu-
tors to disease are made in the absence of a sufficient understanding of traits in their normal,
non-disease states.

One promising approach that has the potential to reduce the number of candidates and
increase replication, while identifying broad features of the genotype-to-phenotype map, is the
integration of diverse datasets [8–12]. Several integrative approaches have been developed to
interrogate the rapidly growing body of high-throughput genomic datasets for identifying
genes that may either directly harbor causal variants, or else be involved in complex syndromes
[13, 14]. Convergence in identifying disease genes across different data types defines features of
the genetic architecture and the functional associations between loci that underlie complex
phenotypic traits, and potentially highlight important pathways and gene sets that may be
overlooked within the framework of a single data type because of weak effect sizes or because
they only indirectly affect the trait of interest [14–18]. Convergence-based approaches have
been successful in identifying genetic networks underlying certain cancers, as well as a number
of other diseases, including lung, autoimmune and neurodegenerative diseases, type 2 diabetes
[15, 17, 18], and even well-studied polygenic traits, such as human height [19].

Pregnancy maintenance and parturition are complex reproductive processes that involve
interactions between the fetal, paternal and maternal genomes, and maternal physiology and
environment. Complications associated with pre-term birth (PTB) are among the leading
causes of mortality worldwide of children under the age of five [20]. PTB is a heterogeneous
phenotype that includes nine different obstetrically defined clinical manifestations: infection/
inflammation, maternal stress, decidual hemorrhage, uterine distention, cervical insufficiency,
placental dysfunction, premature rupture of the membranes, maternal comorbidities, and
familial factors [21]. While PTB results from a complex set of causes, various studies have indi-
cated that PTB exhibits moderate heritability [22–27], motivating efforts to identify the genetic
factors that confer risk for PTB. Like other human complex genetic traits [28,29], the genetics
that characterize PTB most probably involve both coding and non-coding variation at many
loci, with causal alleles displaying a range of effect sizes and population frequencies [30–36].
Candidate gene analyses and studies of patterns of differentially expressed genes across various
tissues have implicated many variants and numerous differentially expressed genes across vari-
ous tissues, although few have been replicated or confirmed by genome-wide association stud-
ies (GWAS) [37–41]. To date, integrative approaches have not kept pace with the proliferation
of new data and data types on PTB, hampering identification of genes and pathways that
underlie birth timing (e.g., [41]).

To evaluate the convergence of different data types on PTB, we overlaid datasets that identi-
fied fast evolving genes in the human and primate lineage with datasets that identified differen-
tially expressed genes enriched for placental expression across four PTB clinical subtypes. The
rationale for this approach follows from the fact that the mechanisms that determine parturi-
tion and birth timing in humans are poorly understood [38]. The placenta mediates implanta-
tion in pregnancy, performs all of the major organ functions of the developing fetus, and forms
the metabolic, immunological and endocrinological interface between mother and fetus [39].
Placental pathologies are a leading cause of diseases of pregnancy, such as pre-eclampsia [40].
Characterizing the genetic features of placentally-expressed genes is thus a necessary step in
the effort to understand human parturition and the genetic factors that disrupt pregnancy.
Because pregnancy traits have evolved very fast in modern humans, and are obviously closely
tied to fitness, the signatures of adaptation and rapid evolution in maternal and fetal traits asso-
ciated with pregnancy must be reflected in the genes that underlie them [41]. Evolutionary-
informed discovery of the genetic contributions to human pregnancy can thus help to pinpoint
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the genes, functional mechanisms and adaptations that comprise parturition and birth timing
in modern humans, and aid in the discovery of genetic elements associated with disease [42].

Methods

Gene Expression Data
An overview of the experimental scheme is shown in Fig 1. We first downloaded a list of genes
expressed in trophoblastic and decidual placenta cells from the Protein Atlas Database (PAD)
of a Tissue-Based Map of the Human Proteome ver. 13 [43]. Most of these placentally
expressed genes, or PEGs, are expressed in various tissues in addition to the placenta. Only
genes that have official gene symbols based on the DAVID gene ID conversion tool were used,
and after excluding duplicates, the final list of PEGs from Protein Atlas consisted of 12,478
genes [44, 45]. Next, we downloaded the lists of genes from the PAD that are enriched in pla-
centa (86 genes) and those that are expressed in 23 other tissues. The PAD defines tissue
enrichment as those that are expressed at levels at least 5X higher in the focal tissue compared
to all other tissues in the body. Our list included those tissues with at least five genes or more
that are enriched. Finally, we downloaded lists of differentially expressed genes from four PTB
clinical subtypes (preeclampsia (PE), 896 genes; spontaneous or idiopathic preterm birth
(sPTB), 44 genes; preterm premature rupture of membranes (PPROM), 70 genes; and presence
of birth without labor (Labor Expressed Differentially; LED), 443 genes) compiled from 93

Fig 1. Overview of the scheme for identifying convergence between genes under positive selection and those associated with expression
differences in normal pregnancy and various syndromes. Convergence between different data set was determined by overlaying gene sets from each of
the data categories using Venn diagram. Genes that fall in overlapping sets were functionally annotated using PANTHERweb tool. Key: CAC, Coding
Accelerated Changes; EPS, European Positive Selection; HARs, Human Accelerated Regions; PEG, Placental Expressed Genes; PED, Preeclampsia
Expressed Differential; LED, Labor Expressed Differential; PPROM, Preterm Premature Rupture of Membranes; sPTB, Spontaneous Preterm Birth.

doi:10.1371/journal.pone.0144155.g001
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studies (that looked at patients with pregnancy complicated by a particular PTB clinical sub-
type relative to individuals with normal pregnancies as controls) by Eidem and co-workers
[46].

Evolutionary Data
We also collated three different lists of genes that represent both ancient and more recent sig-
natures of fast evolution in coding and non-coding regions along the human and primate line-
age. We used studies that were genome wide, reported lists of genes in the text or as
supplemental data, and that captured a range of methods that infer fast evolutionary rates, e.g.,
site frequency spectrum (SFS), linkage disequilibrium and composite methods (see the S1
Materials for explanations of the methods described below). The first list collated data from 11
different studies reporting the 1,035 genes that exhibit signatures of fast evolution in the genic
regions among primate lineages based on interspecies comparisons [42, 47–56] (S1 Table). We
call this list Coding Accelerated Changes, or “CAC”. The second list collated data from four
studies that identified short elements exhibiting accelerated lineage-specific substitutions in
conserved noncoding sequences in vertebrates (known as Human Accelerated Regions or
HARs) [57–60]. To generate the lists of 2,657 genes that correspond to 3,939 HARs, we used
the Genomic Regions Enrichment of Annotations Tool (GREAT—http://bejerano.stanford.
edu/great/public/html/) (S1 Table) [61]. The third list collated data from 19 studies that ana-
lyzed genes in regions associated with signals of positive selection (including genome wide sin-
gle nucleotide polymorphisms (SNPs), HapMap, HGDP, Perlegen data and sequence data
from the 1000 Genomes Project and Complete Genomics in European populations) [62–80].
See the S1 Materials for descriptions of analytical methods for measuring selection in human
populations, and references therein. We limited our survey to the 3,053 genes in such regions
in European populations because most analyses of pregnancy phenotypes are skewed towards
individuals of European ancestry. Fast evolving genes identified by this method occurred after
emergence of modern humans and out-of-Africa migrations in ancestral European popula-
tions. We call this dataset European Positive Selection, or “EPS” (S1 Table).

In summary, CAC genes therefore correspond to fast evolution in exonic regions (largely
determined by ratios of nonsynonymous to synonymous substitutions or dN/dS), and tend to
be genes with more ‘ancient’ signatures of fast evolution. In contrast, HARs and EPS genes cor-
respond largely to genes linked to fast evolving non-exonic elements, and constitute genes that
tend to be associated with more recent signatures of selection. Below, for simplicity, we gener-
ally refer to any genes emerging from these three lists as being “fast evolving”, and we use the
terms “coding” CAC genes and “non-coding”HARs and EPS genes to mean the genomic local-
ization of the fast evolving allele, and not the protein coding potential of the genes themselves.
Thus, for example, a “fast-evolving EPS gene” is one in the genomic neighborhood of a SNP
identified in a scan for accelerated evolution. Possible evolutionary interpretations for genes
identified by these different methods are provided in the S1 Materials.

Visualization and Statistical Analysis
CAC, HAR-associated, and EPS genes were overlaid with those from the different gene expres-
sion data sets described above. We visualized these data with Venn diagrams using Venny v.
2.0 [81]. We evaluated statistical significance of the overlap between pairs of gene sets by a
hypergeometric distribution test as implemented in http://nemates.org/MA/progs/overlap_
stats.html [82]. We summarized the overlap using a simple index known as the representation
factor (RF), which is the number of overlapping genes divided by the expected number of over-
lapping genes drawn from two independent groups [82]. An RF> 1 indicates more overlap
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than expected, whereas an RF< 1 indicates less overlap than expected [82]. We only present
significant results for RF> 1, as we are interested in those genes that overlap more than
expected by chance. The representation factor (RF) was calculated using the GENCODE ver.
22 estimate of 19,814 genes in the human genome [83].

For the genes we collated, we summarized patterns of biological, molecular, protein and
pathway annotations using PANTHER ver. 10.0 (Protein Annotation Through Evolutionary
Relationship—http://www.pantherdb.org/) [84]. We evaluated patterns of overrepresentation
for overlapping genes in PANTHER, using lists of overlapping genes as tests, and reference
lists appropriate to the relevant comparison. For example, for placentally expressed genes
derived Protein Atlas, we summarized functional annotations and overrepresentation of those
successfully mapped to the ENSEMBL genome archived in the PANTHER database as 2014–4.
Alternatively, for analysis of overrepresentation in PANTHER classes of fast evolving genes
among all placental genes, our reference gene list was placental genes only, rather than all
human genes. Significance was evaluated using a binomial distribution test corrected for multi-
ple tested, as implemented in PANTHER. There were few or no genes that were differentially
expressed in sPTB and PPROM that were also fast evolving, probably due to the small numbers
of studies that looked at genes differentially expressed in these two PTB clinical subtypes [46].
Therefore, evaluation for overrepresentation was not done for these two phenotypes.

Results

The overlap between fast evolving and placentally expressed (PEG)
genes
More than 60% of the protein coding genes in the human genome is expressed in the placenta
[43]. Of the 12,478 placental genes we evaluated, however, only 3,196 are fast evolving (about
26% of all placentally expressed genes and about 52% of the 6,106 fast evolving genes that we
assembled). There was no evidence that fast evolving genes are overrepresented among all
genes expressed in the placenta (hypergeometric test; RF = 0.8; Fig 2; Table 1). Although we
aggregated more HARs and EPS genes, placentally expressed, fast evolving genes are drawn
roughly proportionally from coding and non-coding gene sets (about half of each gene list;
Table 1). Of the 12,478 placentally expressed genes, only 16 genes are classified as fast evolving
in each of the three categories (S1 Table). These include 10 neurodevelopmental genes, namely
AUTS2, ASTN2, COL25A1, GFRA1,MGAT5B,MTR, NFIB, PTPRD, ROBO1 andHERC2, a
centrosomal protein gene associated with microcephaly (CDK5RAP2), two genes with possible
associations with immunity (FCRL3 and THSD7B), a cell adhesion gene associated with epithe-
lial tumorigenesis (PTPRK), and a nucleoside transporter (SLC28A3).

Placentally expressed genes (PEG) that are fast evolving in at least one category are overrep-
resented in various biological processes, especially those involving neurological processes, cell
adhesion, and various developmental processes, such as mesoderm and nervous systems (S2
Table). Proteins related to defense, immunity and receptor activity are overrepresented, as are
two signaling pathways (epidermal growth factor receptor (EGFR) (p value = 0.03) and plate-
let-derived growth factors (PDGF) (p value = 0.04)). Among the most numerous genes in the
intersection of fast evolution and placental expression are those involved in Wnt signaling and
gonadotropin releasing hormone receptor activity. There are differences between the PEG
genes that are in the coding CAC category and the non-coding categories. Coding CAC genes
are enriched for genes that code for proteins involved in immune system, including defense/
immunity and cytokines, while the placentally expressed, non-coding HARs genes are enriched
for genes that encode transcription factors, and proteins involved in development, adhesion
and extracellular matrix proteins, and those involved in receptor activity (S2 Table). Overall,
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only two pathways are overrepresented among all categories of fast evolution: placental
expressed HARs genes are enriched for cadherin and Wnt signaling (p value = 0.003, 0.001)
(S2 Table).

The overlap between fast evolving genes and genes enriched for
placental expression
For the genes enriched for tissue expression (expressed 5X more in a given tissue than other tis-
sues), only five of the 24 tissues we evaluated were significantly overrepresented in any of the
fast evolution categories, bone marrow, cerebral cortex, placenta, salivary gland and thyroid
gland (Fig 3; Table 2; S1 Table). Nearly 32.5% of placental enriched genes (30 of 86) are fast
evolving genes, more than that all tissues other than thyroid gland (39%) and cerebral cortex

Fig 2. Overlap between genes expressed in placenta and those that have undergone fast evolution.

doi:10.1371/journal.pone.0144155.g002

Table 1. Overlap between fast evolving genes and those that exhibit placental expression. Note that
some genes occur in more than one category.

Gene
categories

All fast evolving
genes

Overlap with 12,478 genes expressed in placenta (% of
category)

CAC 1,035 530 (51.2%)

HARs 2,657 1,646 (62.0%)

EPS 3,053 1,435 (47.0%)

doi:10.1371/journal.pone.0144155.t001
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(34.6%). The signature of fast evolution differed among the five tissues (Table 2). CAC genes
tended to be overrepresented among salivary gland (RF = 2.6; p value< 0.02), bone marrow
(RF = 2.3; p value< 0.03) and placentally enriched (RF = 1.6) genes, although the latter was
not significant (p value< 0.16). By contrast, genes whose expression was enriched in cerebral
cortex and thyroid tissues were significantly overrepresented among genes linked to HARs
(RF = 2.0; p value< 1.6e-10 and RF = 2.6; p value< 0.01, respectively). No EPS genes were
overrepresented in any tissues. There were no genes in the intersection of placental enrichment
and each of the three categories of fast evolution (Fig 3). A number of genes overlapped in two
categories of fast evolution, however. These include a pregnancy-associated plasma protein A
(PAPPA), a corticotropin-releasing hormone (CRH), a proteoglycan (EPYC), and a hepatocyte
growth factor (HGF) important in angiogenesis and tumorigenesis (S1 Table).

Fig 3. Overlap between the genes enriched in the placenta and those that are fast evolving in the human genome. Similar diagrams are shown for
four tissues (cerebral cortex, thyroid, salivary, and bone marrow) that exhibit patterns of significant enrichment of fast evolving genes.

doi:10.1371/journal.pone.0144155.g003
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As with PEGs, those genes enriched for expression in the placenta encode diverse proteins,
many of which have catalytic, transport and signaling properties, and are involved in variety of
processes typical of placental expression, such as cell adhesion, immunity, proteolysis and hor-
mone biosynthesis (S3 Table). Probably due to small sample size, most fast evolving, placen-
tally enriched genes are not statistically overrepresented in functional categories. The exception
is HARs-associated genes where, relative to all placentally enriched genes, there is overrepre-
sented in adhesion processes (S3 Table). Among the 30 fast evolving, placentally enriched
genes, three (CGA, CGB2, CRH) encode releasing hormones (corticotropin releasing factor
receptor signaling, gonadotropin releasing hormone receptor, and thyrotropin releasing hor-
mone receptor, respectively (S1 Table)). A number of fast evolving, placental genes show
tumorigenic or tumor suppression activity (ADAM12, ADAMTS18, CAPN6, EGFL6,HTRA4,
LIN28B) and others are involved in disorders associated with epithelial and connective tissues
(FBN2) or have immune functions (IL1RL1, PRG2, SIGLEC6). Three members of the pappalsin
family are fast evolving in the placenta (PAPPA, PAPPA2, PAPPA-AS1), and altogether, seven
members of the pregnancy-specific glycoproteins are fast evolving (S1 Table).

The overlap between fast evolving genes and differentially expressed
genes in PTB clinical subtypes
Of those genes differentially expressed in the PTB clinical subtypes, the proportion of fast
evolving genes ranges from 23% to 34%, with sPTB having the largest fraction of fast evolving
genes (Table 3). The large fraction of fast evolving sPTB genes is largely driven by fact that 8 of

Table 2. Overlap between fast evolving genes and those that exhibit tissue enrichment in their expression. Only tissues with significant representa-
tion factors greater than one are shown, out of 24 tissues evaluated in the Protein Atlas database with more than five enriched genes. Values are genes, with
associated representation factors in parentheses and asterisk for values significantly > 1.

Enriched tissues N CAC (RF) HARs (RF) EPS (RF) Total unique, fast evolving (%)

Bone marrow 85 10 (2.3)* 2 8 18 (21.2)

Cerebral cortex 318 10 85 (2.0) ** 31 110 (34.6)

Placenta 86 7 (1.6) 10 15 28 (32.5)

Salivary gland 45 6 (2.6)* 1 5 11 (24.4)

Thyroid gland 23 1 8 (2.6) * 1 9 (39.1)

All genes 19,814 1,035 2,657 3,053

* p < 0.05

** p << 0.01.

doi:10.1371/journal.pone.0144155.t002

Table 3. Overlap between fast evolving genes and those that show differential expression in PTB clinical subtypes (preeclampsia, birth without
labor (LED), premature rupture of membranes (PPROM), and spontaneous pre-term birth (sPTB). RF factors greater than 1.0 are indicated in paren-
theses, and asterisks indicates statistical significance.

N Genes with fast evolution in coding
regions in interspecies comparisons

(CAC)

Genes linked to human
accelerated regions

(HARs)

Genes linked to fast evolution
in European populations

(EPS)

Total, unique fast
evolving genes (%)

Preeclampsia 896 44 141 (1.2)* 100 255 (28.5)

LED 443 20 75 (1.3)* 61 133 (30.0; 1.0)

PPROM 70 5 (1.4) 8 8 16 (22.8)

sPTB 44 1 9 (1.6) 7 (1.0) 15 (34.1; 1.1)

* p < 0.01.

doi:10.1371/journal.pone.0144155.t003
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44 genes differentially expressed in sPTB are linked to HARs, although this overrepresentation
was not statistically significant (sPTB; hypergeometric test; RF = 1.1; p value = 0.37, Table 3).
No fast evolving genes were common to the four categories of differentially expressed PTB clin-
ical subtypes, nor did any genes in the four PTB clinical subtypes overlap in each of the three
categories of fast evolution (Fig 4), perhaps reflecting real underlying differences in the biologi-
cal axes categorizing these clinical subtypes and the breadth and complexity of the phenotypes
subsumed under the various clinical subtype categories. For example, PPROM and sPTB share
no fast evolving genes in common. Nevertheless, although sample sizes are small, 14% and 39%
of the PPROM and sPTB differential expressed genes overlapped with those in differentially
expressed in PE, highlighting biological commonalities both of these clinical subtypes likely
share with PE.

Fig 4. Overlap between genes differentially expressed in four PTB clinical subtypes (large diagram; collated by Eidem et al. 2015), and the
overlaps between each of these clinical subtypes and fast evolving genes.

doi:10.1371/journal.pone.0144155.g004
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In terms of their functional annotations, no fast evolving PTB clinical subtype genes are
overrepresented in PANTHER categories (S4 Table). However, these genes fall in categories
that are consistent with recognized disease pathways in pregnancy, including the P53, 5-hydro-
xytreptamine (serotonin or 5-HT) degradation, and TGF-β signaling pathways, and various
pathways involved in neurodevelopment and immune system processes. As was the case with
placental enriched, fast evolving genes, a number of fast evolving genes that are differentially
expressed in PTB clinical subtypes express tumor-proliferative or suppressive activity. These
includedWWOX (common to preeclampsia, HARs and EPS), a gene that play a role in apopto-
sis and act as tumor suppressor [85, 86]. KDR (common to LED, HARs and EPS) is a gene
involved in mediating endothelial proliferation, survival, migration, tubular morphogenesis
and sprouting [87, 88]. Also common to that group is ITPR1, which is a gene that mediates cal-
cium release from the endoplasmic reticulum and triggers apoptosis [89, 90]. As well, two of
the three genes play roles in neurogenesis [91–95], while KDR has been implicated in recurrent
pregnancy loss [96]. A number of genes that are differentially expressed in PTB clinical sub-
types and fast evolving are immune related or involved in angiogenesis, such as CFB which is
involved in complement activation, and CXCR4, which is a chemokine receptor. Finally, two
genes differentially expressed in PTB clinical subtypes and classified as fast evolving in each of
the three categories, NFIB (preeclampsia and LED) and CXCR4 (sPTB) (S1 Table).

Discussion
Common heritable diseases are evolutionary conundrums. Debates about disease models
that can account for alleles that segregate at appreciable frequencies hinge on population
genetic assumptions about evolutionary history, effect sizes, and demography, and whether
the loci that underlie diseases ultimately will conform to modeling constraints [6, 7, 97]. One
alternative method that has emerged in recent years is a “nonparametric” approach, which is
based on the assumption that different data types can converge on the loci underlying com-
mon diseases, even if the data do not readily conform to contemporary disease categories or
disease models.

In this study we asked, to what extent do placental gene sets derived from evolutionary-
based analyses converge on those derived from expression analyses, and what light can the
intersection of such data shed on our understanding of the genetic basis of PTB clinical sub-
types? We found that when fast evolving genes and elements are aggregated by evolutionary
rate variation in coding and non-coding regions and partitioned by differential expression in
the placenta, they converge on a small number of genes that may be candidates for PTB. For
example, fast-evolving PEG genes typically encode membrane-bound proteins with functions
related to binding and signaling between cells and the extracellular matrix. Disruption of mem-
brane formation and rupture are well-characterized pathologies of normal pregnancy [98].
Likewise, of the genes that are enriched for placental expression, nearly 35% are fast evolving,
greater than all but two of the other tissues we evaluated (thyroid gland and cerebral cortex).
Many of these placental genes are evolving rapidly in coding regions. By comparison, the fast
evolving genes expressed in the brain tend to be associated with HARs, possibly reflecting fun-
damental differences in how selection has acted on the human brain and placenta [99]. A third
of these placentally enriched fast evolving genes have well-characterized roles in pregnancy
and differentially expressed in PTB clinical subtypes (EPYC,HGF, PSG2, PSG3, PSG4, CRH,
PAPPA, PSG1, PSG5, PSG11), and as with fast evolving PEG genes, are signaling or extracellu-
lar molecules with roles in inflammation, neurodevelopment, and inflammation. Despite per-
forming pregnancy related functions, most of the 16 PEG genes that exhibit pattern of fast
evolution in all selection categories (10/16) were not differentially expressed in PTB clinical
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subtypes. Thus dysregulation in these genes might contribute to pregnancy pathologies by pro-
cesses that do not involve expression modulation.

Pathways enriched in PEG and fast evolving PEG genes
In terms of pathways in which they are expressed, dysregulation of any of the genes uniquely
enriched for placental expression will conceivably underlie pregnancy related pathologies. Rel-
ative to all genes in the human genome, PEG genes are enriched for two pathways (EGF and
PDGF signaling). Fast-evolving PEG genes (those associated with HARs) are enriched for two
additional pathways (cadherin and Wnt signaling). Interestingly, all four pathways play critical
roles in regulating growth, proliferation and differentiation of mammalian cells [100, 101],
roles that are indispensable for normal development and functioning of the placenta. In addi-
tion, EGFR signaling has been shown to stimulate angiogenesis, promote cytotrophoblast
migration and invasion, and block apoptosis [102, 103], while PDGF is important in regulating
trophoblast angiogenesis [104, 105]. The Wnt signaling pathway is facilitator of cell-cell signal-
ing events during embryogenesis [106, 107], and plays several roles in human placentation
[107, 108]. Cadherins are a group of transmembrane glycoproteins involved in cell adhesion
and tissue formation [109–113]. Most of the genes from the cadherin superfamily are expressed
in the embryonic and adult nervous system and have been implicated in diseases of the central
nervous system. Wnt and cadherin signaling share a key component that facilitates normal cas-
cades within both pathways, and several studies have shown cross talk between the two [114–
117]. Overall, the four pathways are crucial for successful implantation and development of
early pregnancy [118, 119]. Furthermore, dysregulation of the EGFR, PDGF and Wnt genes
have been implicated in several pregnancy pathologies: complete hydratidiform mole (a rare
mass or growth that forms inside the uterus at the beginning of a pregnancy), low birth weight,
intrauterine growth restriction (IUGR), recurrent abortions and PE [108, 120–126].

Fast evolving genes of interest in PTB clinical subtypes
While there was no functional enrichment of fast evolving genes among genes differentially
expressed between preeclampsia or birth with labor and normal or birth without labor, respec-
tively, a number of genetic pathways differs between fast evolving PE and LED genes (S1
Table), possibly highlighting contrasting axes along which these two clinical subtypes segregate
(there were too few PPROM and sPTB fast evolving genes for meaningful comparisons). For
example, genes in the TGFβ signaling and 5-hydroxytryptamine degradation pathways are fast
evolving in coding regions in PE, but not in LED. 5-HT is thought to interfere with the hor-
monal mechanisms responsible for the maintenance of gestation by hindering the production
of progesterone needed for the maintenance of gestation in mice [127]. It is thought that many
crucial fetal neurodevelopmental processes are regulated by 5-HT, both from the maternal sys-
tem early in development and later from the fetal system. 5-HT has been shown to induce
labor by stimulating contraction of human uterine smooth muscle myometrium through spe-
cial contractile receptors expressed in pregnant human myometrium [128, 129]. The contrac-
tile effects by 5-HT in myometrium have been identified in species that have discoidal
placental types like rabbit, rat and guinea pig, while in contrast, 5-HT inhibits myometrium
contractions of a species with diffuse placental types like pig [129, 130]. Thus, 5-HT may have
played an important role in the differentiation of placental forms. The TGFβ signaling path-
way, an evolutionarily conserved pathway that plays a fundamental role in cell growth and dif-
ferentiation [131], has been implicated in regulating vascular endothelia growth factors that
have been shown to underlie PE [132]. The genes in the TGFβ pathway play roles in prepara-
tion of the endometrium for implantation, embryo development and pregnancy [133].

Integrating Genomic Approaches to Diseases of Pregnancy

PLOS ONE | DOI:10.1371/journal.pone.0144155 December 7, 2015 11 / 21



Furthermore, TGFβ is an angiogenetic factor, and variants in several angiogenetic factors such
as eNOS and FLT1 have been implicated in PE [35]. That we identified genes the TGFβ signal-
ing pathway supports the view that PE may be a pathological legacy of the human pattern of
interstitial implantation [52, 134, 135]. Recent work has suggested that there might be conver-
gence of genetic factors that underlie placental diseases like PE and larger evolutionary patterns
in placental traits in mammals [136]. If so, genes involved in mechanisms that distinguish dif-
ferent placentation types and placental phenotypes in mammalian species are prime candidates
for involvement in human pregnancy pathologies.

The evolutionary framework for discovering genes underlying pregnancy
related phenotypes in humans
Human have evolved a distinct ensemble of traits relative to our close primate relatives. The
four most cited ones, bipedalism, large brain size, metabolism and immune system have been
used to formulate hypotheses to explain unique features of human pregnancy [137–145]. From
a clinical perspective, the goal is to understand both unique and shared features of gestation
timing in humans (normally ~38–42 weeks and vary by up to 37 days), and the mechanisms/
pathways that underlie these traits [146]. The central issue is that the genetics that underlie
such traits as bipedalism have yet to be discovered, but may provide crucial insights into
human pregnancy. For example, genome-wide scans of individuals that suffer from Unertan
syndrome, a rare quadrupedal gait phenotype, implicated the VLDLR gene which encodes the
very low-density lipoprotein receptor, a component of the Reelin signaling pathway involved in
neuroblast migration in the cerebral cortex and cerebellum [147]. Interestingly, this gene is
moderately and highly expressed in normal trophoblastic and decidual cells, respectively [43],
and is linked to HARs. Moreover, EPS genes that are expressed in the placenta are enriched for
categories such as anatomical structure morphogenesis, and two of three genes from TGF-β
signaling pathway identified in genes differential expressed in PE cases are involved in bone
formation. Thus, an evolutionary perspective on identifying genes involved in pregnancy
pathologies also broadens the scope for understanding the genetics of bipedalism.

Finally, the human brain has undergone rapid evolution, and the genes involved in brain
development and their regulatory elements exhibit strong patterns of accelerated evolution [99,
148–151]. The majority of fast evolving, placentally enriched genes (18 of 30) have neurodevelop-
mental functions, and a number of fast evolving genes in overlapping gene sets is in pathways
that either perform brain related functions or have been implicated in diseases of the central ner-
vous system (S5 Table). Three fast evolving genes (NBPF11, NBPF12 and NBPF15) that are dif-
ferentially expressed in both sPTB and PE are part of a neuroblastoma breakpoint (NBPF) gene
family that has been shown to exhibit neuron-specific expression and copy number variations.
These NBPF genes have been implicated in both evolutionary and contemporary variation in
brain size among primate and human lineages, and an array of pathologies of the central nervous
system, including microcephaly, macrocephaly, autism, schizophrenia and mental retardation
[152–159]. Coupling these results regarding the developmental genes with the fact that genes
involved in inflammatory/immune response and membrane homeostasis also emerged in our
study, a general implication is that evolutionary history has potential to not only inform our
understanding of pregnancy pathologies, but also generate hypotheses regarding how changes in
neurogenesis, immunity, and membranes have influenced the evolution of human pregnancy.

Conclusions
Changes in our evolutionary past might have made us susceptible to some pathologies of preg-
nancy. Despite numerous studies on the genetics of pregnancy and its many diseases and
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syndromes, our understanding of the genetic factors at play remains incomplete and biased
towards much-studied genes that generally underlie feto-maternal interaction in anti/pro-
inflammatory pathways [160]. This study highlight both the extent to which there is limited
integration of disparate pregnancy related genetic data, and the promise of such integration.
Integrative approaches such as these, especially those that incorporate evolutionary, compara-
tive perspectives can be successful in identifying promising avenues for research on complex
heritable diseases that have emerged out of the unique changes in our evolutionary past.
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