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Abstract: Combined pituitary hormone deficiency represents a disorder with complex etiology.
For many patients, causes of the disease remain unexplained, despite usage of advanced genetic
testing. Although major and common transcription factors were identified two decades ago, we still
struggle with identification of rare inborn factors contributing to pituitary function. In this report,
we follow up genomic screening of CPHD patient cohort that were previously tested for changes
in a coding sequences of genes with the use of the whole exome. We aimed to find contribution of
rare copy number variations (CNVs). As a result, we identified genomic imbalances in 7 regions
among 12 CPHD patients. Five out of seven regions showed copy gains whereas two presented
losses of genomic fragment. Three regions with detected gains encompassed known CPHD genes
namely LHX4, HESX1, and OTX2. Among new CPHD loci, the most interesting seem to be the region
covering SIX3 gene, that is abundantly expressed in developing brain, and together with HESX1
contributes to pituitary organogenesis as it was evidenced before in functional studies. In conclusion,
with the use of broadened genomic approach we identified copy number imbalances for 12 CPHD
patients. Although further functional studies are required in order to estimate its true impact on
expression pattern during pituitary organogenesis and CPHD etiology.
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1. Introduction

The combined pituitary hormone deficiency (CPHD) represents a challenge for clinicians.
The complex background of the disease could make diagnostic assignment difficult. The genetic causes
for majority of cases are linked to founder mutations in PROP1 transcription factor gene, and are
typical for familial cases [1–3]. Mutations in four other transcription factors genes namely POU1F1,
LHX3, LHX4, and HESX1 represent a canonical set of defects accounting for significant portion of
patients [4,5]. In the era of massive parallel sequencing methods, the number of genes involved in
pituitary functioning was broaden dramatically, evidencing a huge complexity of developmental
processes [6]. Even though, for numerous cases with clinical features indicative for CPHD, the causative
genetic background cannot be identified [7]. Recent research provided new evidence on the cumulative
effect of mild variants and oligogenicity, indicating a great abundance of possible contributors affecting
pituitary organogenesis, but also evidencing unusual non-mendelian transmission [8,9]. So far, bigger
genomic rearrangements bearing multiple genes are responsible for more severe phenotypes, usually
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syndromic or accompanied with dysmorphisms [10]. Several rearrangements were linked to the
pituitary phenotype. The 2p25 duplication with co-existing 2q37 distal deletion was identified in a
patient presenting GH deficiency and pituitary abnormalities (hypoplasia, pituitary stalk interruption
syndrome (PSIS), posterior lobe ectopy) [11]. In another patient presenting PSIS, the 17q21.31 loss was
also found [12]. Significant variability encompassing the SOX3 gene on Xq26, was detected in familial
cases presenting X-linked transmission of hypopituitarism [13,14]. Finally, pathogenic copy number
variations of 3q13.31-q13.32, 8q23.1-q24.11, 2p25.3-p24.3, and 4q35.1-q35.2 were found in patients
presenting congenital hypopituitarism associated with severe complex phenotypes [15].

In this work, we aim to look for CNVs in milder and less variable phenotype of CPHD. The patients’
cohort was previously screened for pathogenic point mutations (PROP1 founder mutations and WES
study [16]) and we included only patients with so far unexplained causes of the disease.

2. Patients

The patient cohort was reported before, in previous publications [16,17]. Briefly, we examined
32 CPHD patients, recruited from the Department of Endocrinology, Metabolism, and Internal
Diseases at Poznan University of Medical Sciences. All patients are sporadic, and no familial cases
were examined. All showed deficiencies of GH, gonadotropins and TSH. Adrenocorticotrophic
hormone deficiency was diagnosed for 14 out of 32 individuals. Prolactin deficiency was diagnosed
in four patients. Magnetic resonance imaging (MRI) revealed pituitary malformation in all cases
(22 presenting hypoplasia and 10 PSIS). An average age at diagnosis was 10 years (+/−5,3 years) and
gender ratio 13F/19M (females/males). We looked for dysmorphic features and abnormalities associated
to pathogenic mutations in pituitary genes like craniofacial abnormalities, optic nerve hypoplasia,
or vision defects. No such symptoms were diagnosed. The comprehensive information regarding this
study as well as genetic examination was provided to all participants and signed informed consent
was obtained. In a previous study, we examined this cohort for mutations in pituitary related genes
and whole exome. The presented cohort did not reveal any convincingly pathogenic mutations that
could be responsible for CPHD phenotype. In order to exclude population specific CNVs, we used
a population control cohort with microarray data. All individuals are originated from the same
country. The Bioethical Committee of Poznan University of Medical Sciences approved the study
(number 441/11, 12 May 2011).

3. Methods

All the samples were previously processed and reported showing no pathogenic mutations in
CPHD targeted panel of genes and whole exome sequencing (WES). Briefly, genomic DNA was obtained
from blood leukocytes using phenol-chloroform method. After extraction, DNA was assessed for
concentration and purity using NanoDrop spectrophotometer. Affymetrix Human CytoScanHD and
CytoScan750K Array (Thermo Fisher Scientific, Waltham, MA, USA) were used to detect rearrangements
that are undetectable using WES. For each sample, a 250 ng of genomic DNA was processed according to
the manufacturer’s protocol. First step assumed digestion with the restriction enzyme NspI, following
by ligation to short nucleotide adapters. Adapters were fixed using PCR (separate primers matching
the adapter sequence). Amplicons were inspected on a 2% agarose and afterwards purified using
Agencourt AMPure magnetic beads (Beckman Coulter, Brea, CA, USA) according to manufacturer
protocol. PCR products were than digested using fragmentation reagent (Thermo Fisher Scientific) and
checked on Hi-resolution agarose (4%). Final steps include end-labelling using biotin and overnight
18-h hybridization. For washing and staining chips we used GeneChip® Fluidics Station 450 and for
scanning GeneChip® Scanner 3000 7G (Thermo Fisher Scientific, Waltham, MA, USA). Copy number
changes were calculated after normalization to baseline reference intensities (Affymetrix model NA
33.3) and hidden Markov model (HMM) implemented to Chromosome Analysis Suite v200159 (ChAS,
Affymetrix). Gains were classified as log2ratio ≥1.3 and deletions as log2ratio ≤0.7. Artificial false
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positive CNVs were filtered out and only fragments confirmed by at least 10 consecutive probes,
exceeding 20 Kbp in size were regarded. Gains and losses were analyzed separately.

In order to confirm unbalanced alterations within known CPHD genes we used MLPA assay
conducted with the commercially available kit SALSA MLPA P216 (MRC Holland, Amsterdam,
Netherlands). This assay is design to detect structural abnormalities within selected pituitary genes:
GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1. A multiplex, quantitative PCR with
FAM-labeled primers was performed to generate fragments between 120 and 500 nt, in the presence of
nine control fragments for each patient. Products were then separated on capillary electrophoresis
and from generated chromatograms peak areas were calculated. Further analysis included two
steps of normalizations: intra-sample (relative value of peaks within one patient, regarding reference
fragments) and block-normalization (comparison of peak values between all patients and samples
from control individuals). In order to ensure proper data management, we employed Coffalyser
script (MRC Holland). A cohort of 20 healthy individuals was additionally used as a reference group
for MLPA.

Filtering Genomic Data

For the filtering the CNVs identified using microarray studies we applied following criteria:
(1) rearrangement size gathered in routine cytogenetic screening exceeding 300 Kb; (2) CNVs in between
300 Kb and 20 Kb in size (confirmed by a signal from at least 10 independent probes), fragments
shorter than 20 Kb and confirmed by less than 10 probes were filtered out; (3) analysis of CNVs
encompassing pituitary genes evidenced to cause disease; (4) focused analysis of CNVs covering
genes expressed in pituitary. Polymorphic CNVs were excluded using Database of Genomic Variants
(DGV, http://projects.tcag.ca/variation). For gene positions we used ChAS (NA 33.3, Affymetrix) as
well as genome browsers USCS (http://genome.ucsc.edu) and Ensembl (http://www.ensembl.org).
Human reference sequence was genome build 19 (hg19).

For filtering out population specific variants, we used a cohort of 100 controls originating from the
same population. Selected CNVs were confirmed using MLPA and quantitative real-time qPCR (∆∆CT
method, Thermo Fisher Scientific). The selection of 353 pituitary specific genes was accomplished with
the use of the protein atlas (https://www.proteinatlas.org/).

4. Results

The research strategy assumed identification of genetic abnormalities and imbalances, undetectable
using massive sequencing approach. In the first step, we looked for bigger genomic rearrangements
(300 Kbp) that were gathered in a routine cytogenetic testing. No such findings were detected. In a
second step, we focused on known CPHD genes and looked for structural rearrangements within
those genes that would explain known pathomechanisms of the disease (51 genes, Supplementary
Materials 1). In the final step, we looked for genes that are ubiquitously expressed in pituitary.
From the Protein Atlas we retrieved a list of 353 genes that showed high expressivity in pituitary
(Supplementary Materials 2). Those genes were also thoroughly checked for structural abnormalities.
The first attempt resulted in identification of copy gains of HESX1 (one patient), LHX4 (one patient), and
OTX2 (three patients). The evaluation of pituitary expressed genes resulted in identification of gains of
SIX3 transcription factor gene in two patients. In two other patients, we identified a heterozygous
deletion of a region encompassing ASH1L gene and POU5F1P4 pseudogene. Clinical characteristics as
well as genomic coordinates are included in Tables 1 and 2, whereas microarray rearrangements are
shown on Figure 1.

http://projects.tcag.ca/variation
http://genome.ucsc.edu
http://www.ensembl.org
https://www.proteinatlas.org/
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Table 1. Genomic regions identified in CPHD patients.

Patient Type Cytoband Size (Kbp) Gene Number Gene Name HGVS

1 Loss 1q22 54.284 2 ASH1L, POU5F1P4 arr[hg19]
1q22(155,394,484-155,448,768)x1

2 Gain 1q25.2 95.535 4 QSOX1, FLJ23867, LHX4, LOC100527964 arr[hg19]
1q25.2(180,143,701-180,239,236)x3

3 Gain 2p21 23.746 1 SIX3 arr[hg19] 2p21(45,151,117-45,174,863)x3

4 Gain 2p21 27.832 1 SIX3 arr[hg19] 2p21(45,151,117-45,178,949)x3

5 Gain 2p25.3 536.643 8 TSSC1, TRAPPC12, ADI1, RNASEH1, LOC100506054, RPS7, COLEC11, ALLC arr[hg19] 2p25.3(3,232,368-3,769,011)x3

6 Gain 2p25.3 475.292 8 TSSC1, TRAPPC12, ADI1, RNASEH1, LOC100506054, RPS7, COLEC11, ALLC arr[hg19] 2p25.3(3,339,014-3,814,306)x3

7 Gain 3p14.3 131.223 3 IL17RD, HESX1, APPL1 arr[hg19]
3p14.3(57,149,424-57,280,647)x3

8 Gain 14q22.3 46.766 2 OTX2 arr[hg19]
14q22.3(57251373-57298139)x3

9 Gain 14q22.3 47.781 2 OTX2 arr[hg19]
14q22.3(5763675-57311456)x3

10 Gain 14q22.3 24.896 2 OTX2 arr[hg19]
14q22.3(57263675-57288571)x3

11 Loss 18q12.3 373.468 1 SLC14A2 arr[hg19]
18q12.3(42,689,695-43,063,163)x1

12 Loss 18q12.3 390.92 1 SLC14A2 arr[hg19]
18q12.3(42,681,091-43,072,011)x1
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Table 2. Clinical characteristics of studied CPHD patients with genes covered by detected rearrangements.

Case Gene(s) Gender Age at Diagnosis
Pituitary Hormone Deficiency

MRI of Pituitary
GH Gn TSH PRL ACTH

1 ASH1L, POU5F1P4 M 13 y.o. + + + − + Pituitary hypoplasia

2 QSOX1, FLJ23867, LHX4, LOC100527964 F 9 y.o. + + + − − PSIS

3 SIX3 M 12 y.o + + + − + Pituitary hypoplasia

4 SIX3 M 15 y.o + + + + + Pituitary hypoplasia

5 TSSC1, TRAPPC12, ADI1, RNASEH1, LOC100506054, RPS7,
COLEC11, ALLC M 12 y.o + + + − − Pituitary hypoplasia

6 TSSC1, TRAPPC12, ADI1, RNASEH1, LOC100506054, RPS7,
COLEC11, ALLC F 24 y.o. + + + − − PSIS

7 IL17RD, HESX1, APPL1 M 12 y.o. + + + − + Pituitary hypoplasia

8 OTX2 F 10 y.o. + + + − + PSIS

9 OTX2 F 6 y.o. + + − − − Pituitary hypoplasia

10 OTX2 M 15 y.o. + + + − − Pituitary hypoplasia

11 SLC14A2 F 8 y.o. + + + − − Pituitary hypoplasia

12 SLC14A2 F 8 y.o. + + + − − Pituitary hypoplasia
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Figure 1. Microarray rearrangements detected in CPHD patients. Detected regions in patients are 
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number state, gene map and cytoband (bottom section). Patient numbers correspond to those 
presented in Tables 1 and 2. 

5. Discussion 

The deleterious effect of genes abundantly and exclusively expressed in the pituitary (like 
POU1F1 or LHX3) is predictable and as expected, clinically relevant. An excellent review 
summarizing molecular mechanisms governing pituitary development was published [5,6,18]. 

However, the list of such genes is short, and the strategy of finding causative factors among only 
tissue specific proteins seems to be insufficient. In contrast, the effect of a surplus copy of a perfectly 
good gene is usually not regarded as potential source of disturbances. Although, there are also 
multiple examples of devastating effect of protein aggregates (i.e., SNCA gene and Parkinson disease) 
indicating particular importance of efficacy of endogenous proteasomal apparatus within the cell 
[19]. More data are coming from embryology indicating morphogens that are acting in a 
concentration-dependent manner [20]. Eventually, a dosage sensitive genes with striking example of 
PMP22 gene, in regard to gene haploinsufficiency or an extra copy can cause varying phenotypes 
(HNPP or CMT disease respectively) [21]. For hypopituitarism, a duplication of Xq26-27 and SOX3 
gene was shown to be causative and dosage sensitive [14]. Surprisingly in this case, the authors prove 
that both copy loss and gain of the SOX3 gene result in similar clinical manifestation, including 
infundibular hypoplasia and hypopituitarism. 

Furthermore, functional studies on animal models evidencing that a delicate balance of signaling 
is crucial for pituitary cell fate specification or shaping. Expression disturbances of only one factor 
presenting loss-of-function or an opposite gain-of-function may trigger cascade of changes in 
expressivity of interacting molecules in specifically localized cells. Such developmental disturbances 
were evidenced for BMP4/SHH signaling [22], or more recently for β-catenin/WNT morphogenesis 
[23,24]. In our study, we refer to cases that have already been explored for known CPHD genes as 
well as throughout the exome. Despite this applied approach, we could not identify a causative 

Figure 1. Microarray rearrangements detected in CPHD patients. Detected regions in patients are
shown in top section (in red—deletions, in blue—duplications), followed by Log2 Ratio plot, copy
number state, gene map and cytoband (bottom section). Patient numbers correspond to those presented
in Tables 1 and 2.

5. Discussion

The deleterious effect of genes abundantly and exclusively expressed in the pituitary (like POU1F1
or LHX3) is predictable and as expected, clinically relevant. An excellent review summarizing molecular
mechanisms governing pituitary development was published [5,6,18].

However, the list of such genes is short, and the strategy of finding causative factors among only
tissue specific proteins seems to be insufficient. In contrast, the effect of a surplus copy of a perfectly
good gene is usually not regarded as potential source of disturbances. Although, there are also multiple
examples of devastating effect of protein aggregates (i.e., SNCA gene and Parkinson disease) indicating
particular importance of efficacy of endogenous proteasomal apparatus within the cell [19]. More data
are coming from embryology indicating morphogens that are acting in a concentration-dependent
manner [20]. Eventually, a dosage sensitive genes with striking example of PMP22 gene, in regard
to gene haploinsufficiency or an extra copy can cause varying phenotypes (HNPP or CMT disease
respectively) [21]. For hypopituitarism, a duplication of Xq26-27 and SOX3 gene was shown to be
causative and dosage sensitive [14]. Surprisingly in this case, the authors prove that both copy loss
and gain of the SOX3 gene result in similar clinical manifestation, including infundibular hypoplasia
and hypopituitarism.

Furthermore, functional studies on animal models evidencing that a delicate balance of
signaling is crucial for pituitary cell fate specification or shaping. Expression disturbances of
only one factor presenting loss-of-function or an opposite gain-of-function may trigger cascade
of changes in expressivity of interacting molecules in specifically localized cells. Such developmental
disturbances were evidenced for BMP4/SHH signaling [22], or more recently for β-catenin/WNT
morphogenesis [23,24]. In our study, we refer to cases that have already been explored for known
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CPHD genes as well as throughout the exome. Despite this applied approach, we could not identify
a causative pathogenic mutation in almost half of cases. Hence, we looked for genome-wide copy
number variability with particular attention on pituitary expressed genes (strategy shown on Figure 2).
For nine patients, we identified genomic gains. Involvement of the region encompassing the LHX4
gene was found in one CPHD patient presenting PSIS. The LHX4 gene encodes a protein, which
contains the LIM domain, a unique cysteine-rich zinc-binding domain and is well characterized
transcription factor involved in the control of development and differentiation of the pituitary
gland [25,26]. The reported alterations indicated an autosomal dominant mode of inheritance and
significant phenotypical variability among patients [27]. With regard to pituitary morphology, LHX4
mutations were found in patients with hypoplasia, hyperplasia and PSIS [28]. Similar phenotypical
variability is linked to another CPHD gene-OTX2. To the spectrum of pituitary phenotype, mutations in
this gene brought severe ocular malformations as reported for selected cases [29,30]. In our study, none
of the patients revealed any extra pituitary malformations. An interesting finding that came out from
analysis of pituitary specific genes (Supplementary Files 2) is an involvement of copy number alteration
encompassing sine oculis homeobox homolog 3 (SIX3). A SIX3 gene includes a divergent DNA-binding
homeodomain and an upstream SIX domain, which playing a role in DNA-binding specificity and in
mediating of protein–protein interactions [31]. The deleterious effect of alterations is responsible for
severe phenotype affecting brain development, namely holoprosencephaly and schizencephaly [32].
The gene itself is short, contains only two coding exons and is showing an abundant expression in
developing and mature pituitary [33,34]. So far, the SIX3 gene has not been linked to CPHD despite a
strong evidences from experimental studies and resemblance to HESX1 phenotype [35,36]. In a study
conducted by Gaston-Massuet [37], as well as in our previous report [16], we did not find any mutations
in SIX3 among CPHD patients and an evident haploinsufficiency. Authors stated, however, that due
to limitation of sequencing method, the presence of bigger genomic rearrangements encompassing
SIX3 or its regulatory elements cannot be ruled out. In the present study, we identified duplication of
2p21 encompassing entire SIX3 in two patients with pituitary hypoplasia. Although the impact of
an extra copy of SIX3 on tissue expression pattern or interacting targets (i.e., HESX1) need further
elucidation. Vetro et al. have already reported a bigger genomic duplication in 2p25.3 [11]. This region
was linked to syndromic hypopituitarism and classified as a pathogenic in a patient presenting IGHD
and congenital defects including micropenis and bilateral cryptorchidism. The patient presented
hypogonadotropic hypogonadism and MRI of pituitary revealed anterior lobe hypoplasia, posterior
lobe ectopy, and thin stalk. The condition was caused by a complex rearrangement encompassing
14,7 Mb duplication of 2p25.3-p24.3 and 4 Mb deletion of 4q35.1-q35.2.

In two of our patients, the detected abnormality in 2p25.3 was significantly shorter (Patient 5:
0,53 Mb and Patient 6: 0,47 Mb), encompassing only eight genes (TSSC1, TRAPPC12, ADI1, RNASEH1,
LOC100506054, RPS7, COLEC11, ALLC). Regarding an overlapping phenotype of our patients and
those reported by Vetro et al. [11], we could further delineate and narrow down the loci linked to
pituitary dysfunction bearing only eight genes. In contrast to genomic gains, losses were found for
only two regions: 1q22 (1 patient) and 18q12.3 (2 patients). On chromosome 1, we identified a small
50 Kb heterozygotic deletion affecting ASH1L gene and a pseudogene POU5F1P4. The phenotype
linked to histone methyltransferase ASH1L included a broad range developmental disturbances
and intellectual disability (including autism spectrum), global developmental delay, and presenting
autosomal dominant transmission.

Solute carrier family 14 member 2 gene (SLC14A2) belongs to the urea transporter family. So far,
no abnormal phenotypes have been linked to the gene. In conclusion, we identified CNV in 12 out of 35
unrelated CPHD patients. We showed that CNVs abnormalities might be found not only in patients with
complex severe phenotypes, but also in CPHD patients. The microarray approach could be regarded
for CPHD patients, if sequencing failed in identification of causative mutations. Although these
findings need to be confirmed by analysis of a bigger cohort of patients. The dosage-sensitivity of
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presented CNVs and mechanisms of the disease required thorough functional examination that would
support causativeness and clinical relevancy of presented abnormalities.
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