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In this study, an essential application of remote sensing using deep learning functionality is presented. Gaofen-1 satellite mission,
developed by the China National Space Administration (CNSA) for the civilian high-definition Earth observation satellite
program, provides near-real-time observations for geographical mapping, environment surveying, and climate change moni-
toring. Cloud and cloud shadow segmentation are a crucial element to enable automatic near-real-time processing of Gaofen-1
images, and therefore, their performances must be accurately validated. In this paper, a robust multiscale segmentation method
based on deep learning is proposed to improve the efficiency and effectiveness of cloud and cloud shadow segmentation from
Gaofen-1 images. +e proposed method first implements feature map based on the spectral-spatial features from residual
convolutional layers and the cloud/cloud shadow footprints extraction based on a novel loss function to generate the final
footprints. +e experimental results using Gaofen-1 images demonstrate the more reasonable accuracy and efficient compu-
tational cost achievement of the proposed method compared to the cloud and cloud shadow segmentation performance of two
existing state-of-the-art methods.

1. Introduction

Cloud and cloud shadow are among the causes of disruption
in processing passive sensors’ images in remote sensing [1].
+e presence of cloud and cloud shadow in remote sensing
images disrupts the processes that involve segmentation,
classification, matching, and the production of 3D models
[2–4]. +e accurate detection of cloud and cloud shadow is a
significant step in the multispectral image preprocessing [5].
+e most important studies on the cloud detection, such as
the Global Cloud Monitoring Project [6], have used an
Advanced Very High-Resolution Radiometer (AVHRR),
AVHRR processing program for ice, snow, and cloud
monitoring [7], and the International Satellite Cloud Cli-
matology Project [8] has used the thermal channel data with
low spatial resolution.

Monitoring Earth using the high-spatial resolution re-
mote sensing images has been of great interest during the
recent years. Most remote sensing satellites with high spatial

resolution imaging have limited spectral channels (e.g., red,
green, blue, and near-infrared) due to device considerations
[9]. +e remote sensing images with limited spectral
channels, such as Gaofen-1 images, often lack complete
radiometric calibration parameters due to the absence of the
thermal and the water vapor absorption channels [10]. +e
process of identifying clouds accurately and separating them
from some features, i.e., coastlines or buildings, is highly
complicated [11]. In this context, providing a solution to
detect and eliminate clouds and cloud shadows from images
with high spatial resolution in different scenes is of great
importance. +e process of eliminating the cloud and cloud
shadow from images depends on the accuracy of the cloud
and cloud shadow detection [12]. To improve the accuracy of
cloud and cloud shadow detection in high-spatial resolution
images, several studies have been carried out using the
statistical methods of pattern detection [13], common
methods of machine learning such as support vector ma-
chines [14], and deep learning methods [15–18]. +e results
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of recent studies using deep learning methods on visible and
near-infrared channels images of Zi-Yuan 3 satellites with a
spatial resolution of 5.8 meters, Gaofen-1 with a spatial
resolution of 16/8 meters, and Gaofen-2 with a resolution of
4 meters indicate an improved cloud detection accuracy with
a mean accuracy of 92%, while revealing the margin details
of clouds and cloud shadows due to various complications at
this level of image resolution is still a significant challenge
[19, 20].

In this study, a new method based on the deep con-
volutional neural network was proposed for automatic near-
real-time cloud and cloud shadow segmentation from
Gaofen-1 satellite images. +e proposed method is based on
the theory of recurrent and deep convolutional networks in a
multiscale structure. +e most important innovations and
contributions to the development of problem solving are as
follows:

(a) A deep convolutional neural network with a mul-
tiscale structure was presented for the better seg-
mentation of the marginal details of clouds and
cloud shadows from other complications.

(b) +e design of residual convolutional blocks based on
the depth dropout method in the multiscale struc-
ture aimed at reducing calculation costs and im-
proving the accuracy of segmentation results was
another innovation of this study.

(c) In this study, a weighted cross-entropy function was
used for solving the imbalance of target pixels.

(d) +e comparison of the proposed method with an
advanced statistical method and an advanced deep
learning method which aimed at the automatic
clouds and cloud shadows detection had the best
results using Gaofen-1 satellite images.

+e remainder of the manuscript is organized as follows:
In the next section, the related works are briefly reviewed.
Section 3 presents the details of the proposed method and
data used. +e results are analyzed and discussed in Section
4. Finally, the conclusions drawn from this study are
elaborated in Section 5.

2. Related Works

Signal and image processing systems can play a key role in
real-world applications, such as vehicle collision avoidance,
microdrilling monitoring, and many engineering projects.
In this regard, Castaño et al. [21] introduced a new self-
tuning method for increased obstacle detection reliability
based on Internet of +ings Light Detection and Ranging
(LiDAR) sensor models. In this method, a density-based
spatial clustering of application with a noise (DBSCAN)
algorithm was applied [22] for 3D point cloud segmentation,
which can segment the 3D point cloud for each available
obstacle at the scene. Beruvides et al. [23] proposed a study
about the correlation between the holes quality and the force
signals in the microdrilling process in a sintered tungsten-
copper alloy.

In recent decades, researchers have conducted extensive
studies on the cloud and cloud shadow detection using
different data of remote sensing as a single scene or mul-
titemporal scenes, including Moderate Resolution Imaging
Spectroradiometer (MODIS) images [24], Landsat series
images [25], and Sentinel-2 images [26]. +e methods used
in previous studies can be classified into two classes as
follows. +e first class includes the statistical methods of
pattern recognition and the process of cloud detection and,
sometimes, cloud shadow detection based on brightness
temperature through the thermal channels of remote sensing
images by determining the threshold value. +e MODIS
cloud mask [27], FMask algorithm optimization (Presented
by U.S. Geological Survey) for Sentinel-2 images [28], MAJA
method (presented by the French Space Agency) for Landsat
and Sentinel-2 multitemporal scenes [29, 30], and the
Sen2Cor processor (Presented by the European Space
Agency) for Sentinel-2 images [31] are some examples of
statistical methods for detecting clouds and cloud shadows
being proposed in the recent decades. +e methods in the
first class have no good function in the cloud and cloud
shadow detection from the images with high spatial reso-
lution because of the lack of thermal channels and a problem
in threshold value due to high spatial resolution [32]. +e
second class involves machine learning methods. Machine
learning methods based on training data often perform the
process of the cloud and cloud shadow detection with de-
sirable accuracy. Shallow artificial neural network methods
for Landsat single scene images [33], support vector ma-
chines for WorldView-2 images [34], and object-based
machine learning methods for Gaofen-1 images [35] are
among the machine learning methods. Machine learning
methods have played a more effective role in cloud detection
than the images with high spatial resolution, while the
conventional methods have no acceptable accuracy. Using
deep learning methods (in this study, deep convolutional
neural networks are considered), which are among the
complete subsets of machine learning methods, has been
highly regarded in remote sensing image processing [36, 37].
One of the fundamental needs of deep learning methods is
the need for big data [38, 39]. In the field of remote sensing,
deep learning methods have a good performance in different
fields of remote sensing due to the presence of big data.
Another challenge in deep learning is an appropriate in-
frastructure for data processing. Developing cloud com-
puting infrastructures for deep learning, such as the Google
Colab Service, is one of the best solutions of using deep
learning in image processing studies.+e results of analyzing
the research background in the field of the cloud and cloud
shadow detection of the images with high-spatial resolution
include the following:

(a) Previous methods were often developed from the
initial architecture of deep learning such as U-Net
[40] or SegNet [41]. +e initial architectures of deep
learning are currently less considered in image
processing due to the lack of optimal structure and
multiple uses of the same layers of convolution
without any justification.
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(b) Based on the results of previous studies, as the spatial
resolution is higher, the ability of algorithms in near-
real-time cloud and cloud shadow detection is sig-
nificantly reduced [42]. However, the variety of
processed scenes has highly affected the performance
of deep learning algorithms. In other words, in
studies where clouds and cloud shadows have been
considered in different scenes such as water zones,
agricultural lands, or snow-covered regions, the
overall accuracy of detection has decreased.

(c) +e studied areas in the previous studies often in-
cluded the areas with homogeneous levels [43].+us,
regarding the cloud and cloud shadow detection in
different areas in the images of the satellites such as
Gaofen-1 is of great importance.

(d) Based on the results of previous studies, as the spatial
resolution is higher and the scenes are more com-
plex, the overall accuracy of the cloud and cloud
shadow detection decreases significantly.

3. Proposed Method

In this study, the proposed method is a new architecture in
deep learning. +e most significant features of the proposed
method include the following:

(a) Using convolutional filters with different dimensions
in an encoding/decoding structure for better sepa-
ration of the marginal details of clouds and cloud
shadows from other terrestrial features is one of the
innovations of this study

(b) Designing the residual convolutional blocks based
on the deep dropout method, unlike conventional
residual blocks that operate in the identical way

(c) Developing a cross-entropy loss function for in-
creasing the uniformity and equilibrium among
pixels and improving the accuracy of the cloud and
cloud shadow detection is one of the initiatives of
this algorithm

Figure 1 illustrates the architectural structure of the
proposedmethod.+e proposed algorithm is an architecture
with an end-to-end learning process. +e end-to-end
learning process refers to learning all the extracted features
in the model training process and testing it without any
postprocessing method. +e proposed architecture is a deep
learning architecture with a network depth of 6 (network
length). In addition, a unique innovation was used in this
network instead of convolutional layers with constant filter
dimensions consecutively such as U-Net or SegNet net-
works. +is innovation includes the use of the filters with
different dimensions for the training process. Based on the
results of this study, using the filters with different di-
mensions in the convolutional neural networks has the
following advantages:

(a) +is network generates new features and automat-
ically integrates them along with the network, which
is an appropriate method for reinforcing the data
(Figure 1 displays the number of features in each
layer in red and the number of filters in blue).

(b) +e access to global-local features is provided si-
multaneously. For example, if the objective is
extracting cloud shadows, there may be some
structures in the shadow part, and if a filter with fixed
dimensions is used, the structures will cause a dis-
turbance in the extraction process. However, bigger
filters can used to eliminate their effect in this area.

Our criterion for determining the network depth and the
number of layers with various filter dimensions is the
maximum Random Access Memory (RAM) available in the
Google Colab environment. In other words, based on
infrastructural limitations, the network has developed the
most in terms of length (network depth) and width (number
of filters with different dimensions). In this study, imple-
menting the proposed method was performed using the
Python programming language and deep learning open-
source programming library called Keras [44], being de-
veloped in the Python language in the Google Colab cloud
computing environment. One of the features of using the
Keras library is running deep learning models on the
Tensorflow processing unit. +e Tensorflow processing unit
is the strongest processor for deep learning studies which
can be used in the Google Colab cloud computing
environment.

3.1. Residual Convolutional Layer Based on Depth Dropout
(RCDD). Using the residual blocks in deep learning ar-
chitectures, despite the improvement of classification ac-
curacy, significantly increases the cost of calculations. +e
increased cost of calculations significantly affects the inte-
gration of the residual blocks with the convolutional layers.
Assuming that the convolutional block includes two con-
volutional filters, the input value passes through two filters
and, then, is added to the initial value (Figure 2(a)). As the
theory suggests, the processed value is added to the initial
value merely for preventing the reduction of the features
created by the convolutional filters. +is process makes it
difficult to employ these blocks in deep encoding-decoding
architectures. In order to promote the use of residual blocks
in deep encoding-decoding architectures, a new method
called convolutional residual blocks based on deep dropout
method was used in this study (Figure 2(b)). Deep dropout
method was used for the first time for 56-layer ResNet
network with the aim of classifying objects on the CIFAR10
and ImageNet sets (two image sets known in computer
sciences) [45].

+e results indicated an increase in processing speed up to
17.5% in comparison to the normal 56-layer ResNet structure.
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In general, a typical residual block is calculated using equation
(1). However, the residual block is determined based on the
deep dropout method using equation (2).

In � fn In− 2( 􏼁 + In− 2, (1)

In � anfn In− 2( 􏼁 + tn In− 2( 􏼁, (2)

where In represents the residual block output; fn represents
the transfer function of convolution. In addition, In− 2, an,
and tn represent the residual block input, generalization

scale following the Bernoulli distribution, and training
function (in the initial form of the random descending
gradient).

In this study, a major change was made in the structure
of the deep dropout method to develop this method for the
convolutional filter. Such a change includes the use of the
comparative moment estimation training method instead of
the random reduction gradient training method. Since the
random reduction gradient method is a method with high
computational cost and the training process is not optimized
properly, a new and optimal method of estimating the
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Figure 2: Schemes are illustrated for different residual convolutional layers based on (a) the general structure and (b) depth dropout
(RCDD).
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Figure 1: +e proposed network for cloud and cloud shadow segmentation. “Conv2d (k× k)” stands for the convolutional kernel with the
size of k× k; “Batch Norm.” denotes batch normalization; “LReLU” denotes the leaky rectified linear units; and “RCDD” denotes the residual
convolutional layer based on depth dropout.
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comparative moment, the performance of which was studied
in many studies, was used. Hyperparameters in the com-
parative moment estimation method are considered as 0.01,
0.9, 0.999, and 10(− 8) for the learning rate, beta-1, beta-2, and
epsilon, respectively. In addition, the he_norm method is
used for initializing the network. +e he_norm method is
one of the most appropriate weighting methods in deep
learning [46, 47].

3.2. Weighted Cross Entropy. +e role of an appropriate loss
function in deep convolutional neural networks is of great
importance [48–50]. Because of the large amount of training
data in deep learning, many loss functions have poor per-
formance because of the incorrect (even low) data. Most deep
learning methods used in previous studies have used the least
squares error (L2) for calculating the network error. One of
themain disadvantages of using the least squares error in deep
convolutional neural networks is the weak performance for
dealing with incorrect data. +e data used in remote sensing
are not often without any error (such as noise in image), and
the segmentation issues have often an imbalance in target
pixels, thus designing an appropriate loss function is inevi-
table. In the field of image segmentation, increasing the
uniformity of the loss function and creating a balance between
the target and nontarget pixels improves the architectural
performance in the updating process and final output by
using deep learning methods (such as cloud and cloud
shadow detection). +e updating process is often based on
gradients. For this purpose, if the loss function has more
uniformity, the derivation process is facilitated for achieving
an optimal training (optimal convergence of error values).

+e first cross-entropy method was introduced for
probability estimation of rare events. In this regard, Haber
et al. [51] introduced a new multiobjective optimization
based on the cross-entropy method with only four pa-
rameters. In this study, the weighted pattern of the cross-
entropy function was used for developing the cross-entropy
error function. In the weighted cross-entropy function, a
weight close to one is considered for all target pixels. +is is
obtained by dividing the number of nontarget pixels by the
total number of pixels, which is called the equilibrium pa-
rameter. In this study, it is necessary to use the equilibrium
parameter since the number of nontarget pixels is higher in
some samples. +e weighted cross-entropy function for
multiclass classification is defined as follows:

H(p, 􏽢p)k � − (β log(􏽢p) +(1 − p)log(1 − 􏽢p)), (3)

where H represents the output value in the known class; k
represents the class type (cloud class, cloud shadow class,
and nontarget class). p, 􏽢p, and β represent the probability
condition for target output, probability condition for non-
target output, and equilibrium parameter, respectively. +e
loss function designed at the end of the proposed archi-
tecture is used for classifying the predicted classes.

3.3.Dataset. In this study, 100 images taken by the Gaofen-1
satellite with Red-Green-Blue composite images at

dimensions of 1024×1024 pixels and 2-A products were
used for evaluating the proposed method. +e level of 2-A
products in the Gaofen-1 satellite involves the products with
partial radiometric correction and systematic geometric
correction. +e used images are a subset of [13]. +e ground
truth for clouds and cloud shadows was prepared by a
specialized human agent using the proposed method in [52].
In order to evaluate the distribution of training and ex-
perimental samples in the research data set, Figure 3 is
presented.

In order to increase the reliability of results in terms of
the generalizability of the proposed method, the used set of
images has the following challenges:

(a) +e used images were taken during 2013–2016. +e
variety of time for taking the images leads to various
clouds in different seasons of the year.

(b) +e used images were provided from different cities
in China, the Philippines, Malaysia, the USA, and
Brazil.

(c) +e used images in different scenes are agricultural
lands, water zines, coastal regions, and semiurban
areas.

4. Results and Discussion

+e condition for gaining the highest accuracy among the
previous methods is an appropriate criterion for selecting
reference methods for comparative study using the proposed
method. Two state-of-the-art methods, including Fast
Multifeature Combined (Fast-MFC) [13], and Multiscale
Convolutional Feature Fusion (MSCF) [54], were used for
comparisons. Because of their known efficiency in cloud and
cloud shadow segmentation from Gaofen-1 satellite images,
these methods were selected. +e Fast-MFC and MSCF were
tested in this study from the beginning, using the same
testing set that was applied for the testing of the proposed
method.

4.1. Fast-MFC. Fast-MFC is a statistical method of pattern
recognition for cloud and cloud shadow detection from
Gaofen-1 satellite images based on the Mean Absolute
Error (MAE) and the Mean Relative Error (MRE). +e first
step of this method is implementing a threshold for seg-
mentation based on spectral features and segmentation
refinement based on a guided filter (a bilateral filter for
improving the edge) in order to generate the cloud initial
range. +en, the geometric features are combined with the
texture features for improving the results of cloud detection
and the final production of cloud maps. Eventually, cloud
shadow maps are extracted by matching the clouds and
cloud shadows.

4.2. MSCF. MSCF is a new deep learning method based on
cross-entropy loss and mean-squared error loss for cloud
and cloud shadow detection from different remote sensing
images, especially the images with high spatial resolution,
such as Gaofen-1 satellite images. +is method is about 2%
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more accurate than other results compared to previous
methods of deep learning such as DeepLab and DCN, which
have been used for cloud and cloud shadow detection. In
addition, this algorithm has been tested in different scenes
compared to previous studies. +is method proposed a deep
convolutional encoding-decoding architecture.

4.3. Accuracy Metrics. In the field of the cloud and cloud
shadow detection of the images with high-spatial resolution,
the accurate evaluation of the location of the cloud and cloud
shadow pixels is of great importance. +us, the criteria
which are defined based on the accuracy of pixels have many
applications. In this study, two criteria were considered for
accuracy evaluation, including the F1 score and the Inter-
section over Union (IoU). Based on the recent studies, using
the F1 score and the IoU provides an appropriate evaluation
of the validation of the results in terms of the cloud and
cloud shadow detection [15]. +e F1 score indicates an
average criterion between the accuracy and sensitivity ob-
tained from the results. In other words, a kind of average is
regarded based on the accuracy of the predicted data and the
ratio of the predicted data to the total data. +e F1 score is
calculated based on the error matrix values as follows:

F1 score �
2 × TP

(2 × TP) + FP + FN
. (4)

+e IoU describes the similarity or difference in the set of
desired samples. +is criterion calculates the ratio of the two
sets’ similarity to the number of the two sets. +e IoU is
currently one of the most widely used and reliable criteria in
evaluating the image segmentation results. +e IoU is cal-
culated based on error matrix values as follows:

IoU �
TP

TP + FP + FN
, (5)

where TP represents the number of cloud pixels (or cloud
shadow) in the cloud class (or cloud shadow); FP represents
the number of cloud pixels (or cloud shadow), in the
noncloud class (or noncloud shadow); and FN indicates the
number of noncloud pixels (or noncloud shadow) in the
cloud class (or cloud shadow).

4.4. Experimental Results. Figure 4 shows the cloud and
cloud shadow segmentation results of the different methods.
Figures 5 and 6 display the numerical results of the test
performed using the proposed architecture, compared to the
reference methods. In this study, ten different samples were
selected for a challenging test. +e results obtained from the
test by the proposed method, the Fast-MFC method as a
statistical algorithm, and the MSCF method as a deep
learning algorithm are as follows.

4.4.1. Evaluating the Accuracy of the Methods in Cloud
Segmentation

+e proposed method was improved about 15% and
25% in the F1 score criteria and the IoU compared to
the Fast-MFC method
+e proposedmethod was improved about 8% and 15%
in the F1 score and the IoU compared to the MSCF
method
+e MSCF method had a better performance of about
10% and 17% in the F1 score and the IoU compared to
the Fast-MFC method

China

Philippines

Malaysia

USA

USA

Brazil

Country 
Training area
Testing area

Figure 3: Distribution of the training and testing study areas (base-map credit: Ref [53]).
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Figure 4: Continued.
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All three methods used in cloud segmentation have an
acceptable performance, while the Fast-MFC and MSCF
methods have no appropriate performance while facing small
clouds (such as the second, sixth, and seventh samples). Since
the spatial resolution of the Gaofen-1 satellite images equals
16/8 meters, small cloud detection is of importance and the
proposed method has had a good performance.

4.4.2. Evaluating the Accuracy of Methods in Cloud Shadow
Segmentation

+e proposed method was improved about 47% and
56% in the F1 score and the IoU compared to the MFC
method

+e proposed method was improved about 22% and
31% in the F1 score and the IoU compared to theMSCF
method
+e MSCF method had a better performance of about
30% and 29% in the F1 score and the IoU compared to
the MFC method

+e Fast-MFC method had no good performance
compared to the proposed method and MSCF methods in
cloud shadow detection and, sometimes, detected the first,
second, fifth, ninth, and tenth samples, as well as the cloud
and cloud shadows, wrongly. +e MSCF method had a
weaker performance than the proposed method in partial
cloud shadow detection (e.g., Figures 4(e)–4(h)).

(g)

(h)

(i)

RGB Fast-MFCGround truth MSCF Proposed method

(j)

Figure 4: Visual comparison with the Fast-MFC, the MSCF, and the proposed method across ten images (light red: cloud; and dark red:
cloud shadow).
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4.4.3. Evaluating the Accuracy of Methods in Challenging the
Presence of Dense Fog in Scene. +e fourth example
(Figure 4(d)) in this test has the challenge of the presence of
dense fog in scene. Since the purpose of creating an algo-
rithm for the cloud and cloud shadow detection is using
these results in the recovery phase of the effects covered by
clouds and cloud shadows, dense fog was considered in the
cloud class in this test.

+e Fast-MFC method and the proposed method
have better results compared to the MSCF method. +e

results indicated that the Fast-MFC method, as a sta-
tistical method, had a desirable performance in dis-
tinguishing between the dense and sparse fog and cloud
shadows.

+e objective of using deep learning methods is
achieving the same function as the expert human factor with
the least error. +e proposed method had a good perfor-
mance in cloud detection in the challenge of the presence of
dense fog in scene. In addition, cloud shadows were iden-
tified accurately in this challenge.
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Figure 5: Accuracy assessment of the cloud segmentation for different sample images with the Fast-MFC, the MSCF, and the proposed
method. (a) Mean F1 score. (b) Mean IoU.
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4.4.4. Processing Cost. Calculating the cost of processing is
raised between the proposed method and the MSCF
method as a deep learning method. Processing cost refers
to the time spent on training deep learning architecture
and its criterion is based on the number of repetitions of
the time spent for each repetition.+e processing costs for the
proposed method and the MSCF method for 200 repetitions
of training equal 2000 and 2570 minutes, respectively. +e
proposed method has a less computational cost of about 570
minutes compared to the MSCF method.

4.4.5. Comparative Studies Using SVM and Fuzzy k-Means.
For the benchmark, in addition to the Fast-MFC and MSCF,
two effective methods, including Support Vector Machine
(SVM) [55, 56] and Fuzzy k-means [57], were used for
comparisons. +e qualitative comparison of the proposed
method prediction with SVM and Fuzzy k-means can be
seen in Figure 7. +e qualitative results show the ability of
the proposed method to segment smaller cloud/cloud
shadow regions in scene while producing a perfect result of
the overall scene.
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Figure 6: Accuracy assessment of the cloud shadow segmentation for different sample images with the Fast-MFC, the MSCF, and the
proposed method. (a) Mean F1 score. (b) Mean IoU.
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5. Conclusions and Further Research

+is study presents a novel multiscale deep learning method
for near-real-time cloud and cloud shadow segmentation
using Gaofen-1 images. +e proposed model performs well
and is comparable in accuracy to existing the cloud and
cloud shadow segmentation methods that were developed
for Gaofen-1 images. In addition, the proposed model was
applied to extract the cloud and cloud shadow for ten scenes
of crucial challenges in remote sensing. +e advantage of the
proposed method is that it takes into account the spectral-
spatial relationship of the multiscale data and eliminates the
need to consider additional parameters for its task.

In the future study, the proposed method can be ex-
tended for real-time applications. Our future research will
address real-time cloud and cloud shadow segmentation in
the different sensors.
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Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References
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