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17b-Estradiol (E2) may
be involved in the mode
of crustacean female sex
hormone (CFSH) action in the
blue crab, Callinectes sapidus

Tao Wang1,2, Ke He3, Lee Blaney3 and J. Sook Chung2*

1Department of Marine Biotechnology & Institute of Marine and Environmental Technology,
University of Maryland Baltimore County, Baltimore, MD, United States, 2Institute of Marine and
Environmental Technology, University of Maryland Center for Environmental Science, Baltimore,
MD, United States, 3Department of Chemical, Biochemical, and Environmental Engineering,
University of Maryland Baltimore County, Baltimore, MD, United States
17b-estradiol (E2) has been proved to control reproduction, sexual

differentiation, and the development of the secondary sexual characteristics

of vertebrate females. In decapod crustacean species, crustacean female sex

hormone (CFSH), a protein hormone, is required for developing adult-specific

ovigerous setae for embryo brooding and gonophores for mating at the blue

crab Callinectes sapidus puberty molting. However, it is unclear that whether

the mode of CFSH action involves a vertebrate-type sex steroid hormone in

crustaceans. To this end, E2 levels were first measured using a competitive

ELISA in the hemolymph and the potential CFSH target tissues from both

prepuberty and adult females; the presence of E2 was further confirmed with a

liquid chromatography tandem mass spectrometry method. Then, the cDNAs

of the following genes known to be associated with vertebrate steroidogenic

pathways were isolated: StAR-related lipid transfer protein 3 (StAR3); 3b-
hydroxysteroid dehydrogenase (3bHSD); two isoforms of 17b-hydroxysteroid
dehydrogenase 8 (17bHSD8); and, estradiol-related receptor (ERR). RT-PCR

analysis revealed that these genes were widely distributed in the eyestalk

ganglia, hepatopancreas, brain, ovary, spermathecae, ovigerous and plumose

setae tissues of adult females. The 17bHSD8 transcripts were localized in the

follicle cells, the periphery of the nuclear membrane of primary oocytes, and

yolk granules of the vitellogenic oocytes using in situ hybridization, and the

corresponding protein was detected in the follicle cells and ooplasm of primary

oocytes using immunohistochemistry. Furthermore, the adult females injected

with CFSH-dsRNA (n = 30 times) had E2 and StAR3 transcripts levels lower in

the ovigerous and plumose setae, spermathecae than controls. These results

suggested that the mode of CFSH action in C. sapidusmight involve E2 in these

adult-female-specific tissues.

KEYWORDS

17b-estradiol (E2), crustacean female sex hormone (CFSH), steroidogenesis, sexual
differentiation, Callinectes sapidus
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Introduction

17b-estradiol (E2) is a female-dominant sex steroid

hormone in vertebrates that exerts critical functions in

reproduction and sexual differentiation (1, 2). The presence of

E2 has been documented in various crustaceans, including the

Norway lobster Nephrops norvegicus (3), the black tiger prawn

Penaeus monodon (4), the kuruma prawn Marsupenaeus

japonicus (5), the mud crab Scylla paramamosain (6) and the

Chinese mitten crab Eriocheir sinensis (7), where E2 functions

are implicated in reproduction including vitellogenesis (8, 9),

oocyte development and ovary maturation (4, 10, 11). Moreover,

E2 induces feminization in amphipods, such as Gammarus

duebeni celticus, G. pole, and G. pseudolimnaeus (12).

However, the evidence for de novo synthesis of E2 in

crustaceans needs to be further confirmed as E2 is taken up

via the diet because many plants contain vertebrate-like sex

steroids (13).

On the other hand, the cytochrome P450 (CYP) proteins,

hydroxysteroid dehydrogenase (HSD) enzymes, and sex steroid

receptors known to be involved in the vertebrate steroidogenic

pathway (14, 15) were identified from transcriptomic analyses of

several crustaceans. For example, 3bHSD and 17bHSD

transcripts were found in the gonad tissues of Portunus

trituberculatus (16) and the patopancreas, ovary, and central

nervous systems of Macrobrachium rosenbergii together with

steroidogenic acute regulatory protein (StAR)-related lipid

transfer protein and estradiol receptor (ER) (17). In M.

japonicas , the enzyme activity of 17bHSD and 17a-
hydroxylase/C-20–22-lyase (P450c17/Cyp17a) was detected in

the ovary, and 3bHSD and 17a-hydroxylase activities were

identified in the hepatopancreas (18). These findings indicate

the presence of a vertebrate-like steroidogenic pathway and

possibly endogenous sex steroids in crustaceans.

Decapod crustaceans are in general sexually dimorphic in

that adult-related features develop at the puberty molt.

Crustacean female sex hormone (CFSH), identified from the

eyestalk of the female blue crab Callinectes sapidus, regulates

developing adult-female-specific reproductive phenotypes of

ovigerous setae for embryo brooding and gonopores for

mating at the puberty-terminal molting (19). Like P. pelagicus

(20) and P. spinimanus (21), C. sapidus females tend to produce

several spawns during their adulthood (22) and re-utilize the

brooding ovigerous setae for each spawning. However, the

action mode of CFSH is unknown in these adult-female-

specific tissues. Considering the prominent functions of E2 in

female reproduction and sexual differentiation, we proposed that

the action mode of CFSH may involve E2 in the adult-female-

specific tissues that are required for developing brooding and

maternal care.

Herein, E2 levels were measured in the hemolymph and

potential/putative CFSH target tissues using a competitive
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ELISA, and the presence of E2 was further confirmed with a

liquid chromatography tandem mass spectrometry (LC-MS/MS)

method. Subsequently, several steroidogenesis genes, including

StAR3 (StAR-related lipid transfer protein 3), 3bHSD, two
isoforms of 17bHSD8, and ERR (estradiol-related receptor) that

were initially identified from the blue crab C. sapidus

transcriptomes, were analyzed for the tissue distributions by RT-

PCR and localized 17bHSD8 mRNAs and its protein in the ovary

by in situ hybridization and immunohistochemistry, respectively.

Moreover, the effects of CFSH on E2 and steroidogenesis gene

transcript levels were determined using CFSH-dsRNA injection.
Materials and methods

Animal culture

Animals were reared in the blue crab hatchery, Aquaculture

Research Center [Institute of Marine and Environmental

Technology (IMET), Baltimore, MD]. After reaching

prepuberty, the females were monitored for their molt stages,

early premolt and late premolt (23). For the mating study, an

individual prepuberty female at the E0 stage (24) was placed into

a 30-liter container, holding 10 liters of 20 ppt artificial seawater

(ASW), with an adult male to allow for mating immediately after

puberty molting. After mating, adult females with carapace

widths of 132.4 ± 3.5 mm (n = 10) were kept in five tanks in a

closed circulating aquaculture system (91 cm W × 112 cm H ×

58 cm D). Each tank held 300 liters of ASW under the following

conditions: 16 hours dark, 8 hours light at 18-20°C (22). The

water quality was monitored daily by ZooQuatic Lab (Baltimore,

MD). Animals were fed about 10% of their body weight with a

piece of frozen squid, shrimp, or mussels daily at 8–9 A.M.

during the experimental period (Oct. 2019-Feb. 2020).
Tissue collection

The experimental and prepuberty animals were sacrificed in

the afternoon (2–6 P.M.). A hemolymph sample (200 µl) was

withdrawn directly into an insulin syringe containing crab

anticoagulant solution (i.e., 450 mM NaCl, 10 mM KCl, 10

mM NaHCO3, 1 mM EDTA, 10 mM HEPES, pH 7.3) in a 1:1

ratio (v:v). The animals were then placed on ice for 10 min

before dissection. The eyestalk ganglia, brain, and ~100 mg of

the hepatopancreas, ovary, spermatheca, ovigerous setae, and

plumose setae tissues were dissected in ice-cold DEPC-treated

crustacean saline (19) under a stereomicroscope (Leica). After

two rinses in fresh saline, the tissues were briefly blotted with

Kimwipes, collected into a 1.5-ml tube, and placed on dry ice.

The wet weights of tissues were measured, and then the tissues

were stored at -80°C until further analysis.
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Steroid extraction

The steroid extraction was carried out by following the

procedure described in Chao etal. (25). In brief, a single

eyestalk ganglion, brain, or 10 mg (wet weight) tissue

samples were homogenized in 135 µl ice-cold phosphate

buffer saline (PBS). The steroid was extracted by adding 635

µl diethylether to the homogenized sample. The tubes were

vigorously vortexed for 1 min, and then centrifuged at 14000

rpm for 10 min at room temperature. The tubes were gently

placed in an ethanol/dry ice bath to freeze the aqueous phase,

and the lipid phase was transferred to a 4-ml glass tube

(Fisher Scientific). The extraction steps were repeated four

times with the aqueous phase of each sample. The pooled

lipid phase was either dried by air or with a SpeedVac (Jouan).

Samples were kept at -20°C for E2 measurement using ELISA

or LC-MS/MS.
E2 measurement

E2 levels in the tissues were estimated using an ELISA kit by

following the manufacturer’s protocol (Enzo Biochem). The

standard curve was generated using E2 solutions with known

concentrations of 29.3 – 30,000 pg/ml. The standards and

experimental samples were assayed in triplicate, and the plate

was read at an absorbance of 405 nm using a SpectraMax M5

reader (Molecular Devices). The EC50 values of ELISAs were 534

± 12 pg/ml (n = 6). Data were presented as follows: mean ± SE

pg/tissue (n = 5) for the eyestalk ganglia and brain; mean ± SE

pg/10 mg wet weight (n = 5) of the hepatopancreas, ovary,

spermathecae, ovigerous setae, and plumose setae tissues; and,

mean ± SE pg/10 µl (n = 5) of hemolymph.
Liquid chromatography with tandem
mass spectrometry analysis

The presence of E2 in the brains (adult females) was

confirmed by an LC-MS/MS method modified from previous

protocols (26–28). First, 100 ng (100 µl × 1 µg/ml) of the E2-d3

surrogate standard (Sigma-Aldrich) was added to the dried lipid

phase collected from brain samples (section 2.3) and incubated

overnight. After reconstitution in 205 µl PBS, the sample

solution was passed through a Sep-Pak® C18 solid-phase

extraction (SPE) cartridge (Waters) to remove interfering

substances (26). The SPE cartridges were washed with 5 ml of

100% isopropanol and then conditioned with 5 ml MilliQ

(Waters) or Hydro water. After loading the 200-µl sample

onto the SPE cartridge by gravity, the column was washed

with 5 ml of water. Next, E2 and the E2-d3 surrogate standard

were eluted from the SPE cartridge with 3 ml of 40%
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isopropanol, and the first five drops of eluate were removed as

void volume. The extracts were dried at 40°C in a vacuum

centrifuge (Juan), reconstituted in 220 µl PBS, and diluted to 300

µl with 50% methanol containing 200 ng/ml of the 17-

ethinylestradiol-2,4,16,16-d4 (EE2-d4; CDN Isotopes)

internal standard.

E2, E2-d3, and EE2-d4 were measured using an UltiMate

3000 LC coupled to a Thermo TSQ Quantum Access Max MS/

MS (Thermo). Briefly, 50 µl of the reconstituted SPE extracts

were injected onto a Waters XBridge C18 guard column (2.1×10

mm, 3.0 µm) connected to an analytical column (2.1×150 mm,

2.5 µm) with the same material. The mobile phase was

comprised of (A) LC-MS grade water with 0.1% NH4OH (pH

10.5) and (B) methanol with 0.1% NH4OH. Isocratic elution was

conducted with 30% A at a flow rate of 200 µl/min. The column

compartment was maintained at 40°C, and the overall method

run time was 8 min. Negative electrospray ionization mode was

employed for LC-MS/MS analysis, and two characteristic

product ions were used to quantify and confirm each analyte.

The surrogate standard recovery was 89% in the brain sample.

The detailed analytical parameters are available in Table S1 of

the supporting information.
Cloning of the full-length cDNA
sequences of StAR3 and 3bHSD

The total RNA (~1-1.5 mg) from the eyestalk ganglia was

subjected to 5 ’ and 3 ’ rapid amplification of cDNA

ends (RACE) cDNA synthesis using the SMART cDNA

amplification kit (BD Bioscience) according to the

manufacturer’s protocol. Gene-specific primers for 5’ and 3’

RACE (Table 1) were designed using NCBI Primer-BLAST

based on transcripts pulled from our transcriptomes. The

amplified products were purified using a QIAquick gel

extraction kit (Qiagen) and ligated to a pGEM-T easy

vector (Promega). The recombinant vector was used for

transforming E. coli competent cells. Clones containing the

inserts were isolated and cultured at 37°C overnight for

subsequent DNA sequencing (ABI).
Sequence analyses

The open reading frames were identified using ExPasy

(https://web.expasy.org). The conserved domain was searched

via SMART (http://smart.embl-heidelberg.de/). ClustalW

(www.genome.ad.jp) was used to align the amino acid

sequences, which were then modified by ESPript 3.0 (https://

espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). The phylogenetic

tree was constructed using the neighbor-joining method

(MEGA X).
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Tissue distribution in an adult female
C. sapidus

Total RNA was extracted from the tissues using QIAzol

Reagent (Qiagen) following the manufacturer’s procedures.

RNA concentrations were measured using a Nanodrop

(Thermo Scientific). Reverse transcription with 1.5 µg total

RNA was carried out using a PrimeScripRT reverse

transcriptase reagent kit with gDNA eraser (TaKaRa).

After being diluted with RNase-free water at 12.5 ng/ml,
cDNA was amplified for the arginine kinase (AK) gene to

examine the quality of each sample (19). The spatial

distribution of the steroidogenesis genes, StAR3, 3bHSD,

17bHSD8a, 17bHSD8b, and ERR, was examined in the tissues

obtained from an adult female using an endpoint RT-PCR assay

with the gene-specific primers reported in Table 2, together with

AK and eIF4A (eukaryotic translation initiation factor 4A) as

reference genes. The PCR conditions were as follows: an initial

denaturation step at 94°C for 2.5 min, followed by 35 cycles of

94°C for 30 s, 57°C for 30 s, and 72°C for 30 s, with a final

extension 72°C for 5 min. PCR products were resolved on 1.5%

agarose gel and stained with ethidium bromide for visualization.
Localizations of 17bHSD8 transcripts and
protein in the ovary

Hematoxylin-eosin staining
Ovaries were dissected and fixed overnight in Bouin’s

solution at 4°C. The fixed tissues were progressively
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dehydrated in ascending ethanol concentrations. The

dehydrated tissues were cleared in xylene and embedded in

Paraffin wax (60°C). The wax blocks were cut 6 mm in thickness

and mounted on APTES (3-aminopropyl triethoxysilane)-

coated slides. After being deparaffinized and rehydrated using

xylene and a graded series of DEPC-treated ethanol dilutions,

respectively, the sections were visualized by staining with

hematoxylin and eosin.
In situ hybridization
An in situ hybridization was carried out using digoxigenin

(DIG)-labeled sense and anti-sense probes synthesized following

T7-mediated in vitro transcription using TranscriptAid T7 high

yield transcription kit (Roche) from the clone of cDNAs

fragment of target genes. With some modifications, ISH

procedures followed previously described protocols (29).

Briefly, the deparaffinized sections were rehydrated stepwise

into PBS, and treated with proteinase K (20 mg/ml) for 20 min

at 37°C. Samples were incubated for 2 h at 58°C in

prehybridization solution (i.e., 50% formamide, 5× SSC (pH

7.0 Quality Biological), 50 mg/ml denatured yeast DNA). Sense

or anti-sense probe concentrations were 1 ng/ml, and

hybridizations were performed at 58°C overnight. Unbound

probes were removed by rinsing with a series of low-salt

solutions (e.g., 2× SSC, 0.5× SSC, 0.1× SSC). The presence of

mRNAs was localized with a DIG nucleic acid detection kit

(Roche). Specimens were photographed using an Olympus

micro/DP70 camera mounted on an Echo Revolve

microscope (Echo).
TABLE 1 List of primers that were used for 5′ and 3′ RACE, and in situ hybridization.

Primers Purpose Sequence (5’-3’)

StAR3-1R 5’ RACE TGAACCGTACAGCAGCAAC

StAR3-2R ACTGCTGACATACGACCGTT

StAR3-3R TCCTACCAGAGGAGAGCGGTGGC

StAR3-4R ATGGCTTTGCAGGTGGTGTA

3bHSD-1R AGTTGATCACTGCCTCTACGC

3bHSD-2R ACGATGACTGGATTGGCACA

3bHSD-3R ATCAATTCCCTGTTGCTCGC

StAR3-1F 3’ RACE TGGAGTGCCAACGAATGTCA

StAR3-2F GGAACAAGAGGTTTGCAAAGACA

StAR3-3F AGTTGGCAGTGATGTAGAACCT

3bHSD-1F CGGCTGTTGCCTTACTGGAT

3bHSD-2F TCTTGGATTCGCCAGTCGTC

3bHSD-3F TACTCACCGCCATACTCGTG

17bHSD8a-ishF ISH TAATACGACTCACTATAGGGGAAGGGGAAAATCGCCCTGGTTAC

17bHSD8a-ishR TAATACGACTCACTATAGGGCCACCTGTCACTTCCACACTGGCG

17bHSD8b-ishF TAATACGACTCACTATAGGGCTCCCGTCGACTTCCATGGCCAG

17bHSD8b-ishR TAATACGACTCACTATAGGGCATGCCTGATCCTCCTGTGACCT
frontiersin.org

https://doi.org/10.3389/fendo.2022.962576
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.962576
Immunohistochemistry
Ovary sections were deparaffinized, rehydrated, and rinsed

in DEPC-treated, double-distilled water before being washed in

PTX (i.e., 50 mM phosphate buffer, 0.05% NaN3, 0.5% Triton X-

100) 3-5 times for 30-60 min/wash at 20°C. The tissues were

blocked in 10% normal lamb serum and incubated with anti-

antigen serum diluted 1:1000 for 3 days at 4°C (pre-immune and

pre-absorption serum for the negative control), followed by

incubation with FITC-conjugated goat anti-rabbit IgG

(Thermo scientific) at 1:5000 for 2 days. Washing was

repeated in PTX 3-5 times, and samples were kept in 50%

glycerol and 50% PTX in the dark until photographic analysis

with a Leica SP8 confocal microscope.
Quantitative real-time PCR

Each cDNA sample containing 25 ng total RNA was assayed

in duplicate using Fast SYBR Green Master Mix (Applied
Frontiers in Endocrinology 05
Biosystems) and gene-specific primers (Table 2) by following

the manufacturer’s protocol. Gene-specific standards were

produced as described in Chung etal. (30). The coefficients of

determination (R2) and the average amplification efficiency of

samples are listed in Table 2. The expression levels of each gene

were normalized by the AK and eIF4A levels in the same cDNA

samples (29). Data were presented as mean ± SE (n = 5)

transcripts/mg total RNA.
Long-term knockdown study in vivo

CFSH-dsRNA preparation and injection were carried out as

described (19). The mated adult females were injected twice a

week with 10 mg CFSH-dsRNA in 100 ml crustacean saline

(n = 5) or saline-only controls (n = 5). These injection regimes

were continued 30 times over four months (Oct. 2019-Feb.

2020). Tissues were sampled (section 2.1) for E2 measurement

and expression analysis using RT-qPCR assays.
TABLE 2 Gene specific primers used for RT-PCR and RT-qPCR analyses.

Gene name PCR type Sequence (5’ - 3’) Size (bp) r2 Efficiency (%) Intron insertion GenBank NO.

StAR3 RT-PCR Fw: AAGCGGCCAGTAATTGTGAC 872 – – Yes MT013236

Re: TCATGTCTTACCAACTTGATG

qRT-PCR Fw: CAGGAGACTGACCCACTACT 115 0.98 97.4 Yes

Re: CATCAGAAGCGAGAGGAGATTC

3bHSD RT-PCR Fw: CTTCCGCAAAGAGGATCTTG 901 – – Yes MT013238

Re: CTATAATCTTTTCCAAAAACCTCG

qRT-PCR Fw: CTTCCGCAAAGAGGATCTTG 198 0.99 83.4 Yes

Re: AGCTGTGACTCGGACACCTC

17bHSD8a RT-PCR Fw: GTACAAAGCTCCTCCCTGTCT 358 – – Yes MT762163

Re: TACACCAGCCACCATTGAAGT

qRT-PCR Fw: GTACAAAGCTCCTCCCTGTCT 191 0.99 90.0 Yes

Re: AGATGTTGACTATGGCTCCT

17bHSD8b RT-PCR Fw: CTCGTTACAGGTGGCGGTAG 556 – – Yes MT762164

Re: TTATGCCGGGCAGTACACAG

qRT-PCR Fw: CCTGTTGTGGAAATGGAGGA 108 0.97 91.9 Yes

Re: GTCTTCAGCCAGTAGTGCTTTA

ERR RT-PCR Fw: GCCCAACCTTCACCTAAACA 1146 – – Yes MT013240

Rv: TCACCGCATATGTGATTCTAAC

qRT-PCR Fw: GCCCAACCTTCACCTAAACA 207 0.98 99.9 Yes

Re: TTCACAAGATGCCACACCAT

AK RT-PCR Fw: ACCACAAGGGTTTCAAGCAG 398 – – Yes AF233355.1

Re: CCACACCAGGAAGGTCTTGTT

qRT-PCR Fw: TTCCTCCACCCTGTCCAACC 127 0.97 93.3 Yes

Re: GAAGCGGTCACCCTCCTTGA

eIF4A RT-PCR Fw: ACGTCAACATGTCCGACAAA 394 – – Yes DQ667140.1

Re: TGCGTTTCGTTTGACTTCAC

qRT-PCR Fw: CGGTGGAGACAACAAGGACT 160 0.96 94.5 Yes

Re: GGCTGATGGCTTCTCAAAAC
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Statistical analysis

All data were analyzed using SPSS 25.0 for statistical

significance. The data were analyzed in two ways. First, one-

way ANOVA was employed with multiple samples (e.g.,

different tissues), and a non-parametric Kruskal-Wallis test

followed by Dunn’s post-hoc test was used for multiple group

comparisons. Second, the student’s t-test was used when two

groups (e.g., control and test, or the tissue at different stages)

were compared. Significance at p < 0.05 was accepted and noted

by letters or ‘*’ symbols.
Frontiers in Endocrinology 06
Results

E2 levels in the tissues of prepuberty
females using ELISA

Tissues of the prepuberty females at early and late premolt

were measured for E2 using a competitive ELISA (Figure 1A).

All tissues at both molt stages had E2, ranging from the lowest

level in the hemolymph (9.5 ± 1.4 pg/10 ml, n = 5) to the highest

level in the brain (341.0 ± 30.5 pg/tissue, n = 5) at early premolt

and from 9.6 ± 1.2 pg/10 ml (hemolymph) to 256.4 ± 64.6 pg/10

mg wet weight (brain) at late premolt (n = 5).
A

B

FIGURE 1

(A) Amounts of 17b-estradiol (E2) in prepuberty female C. sapidus at early premolt stage (black bar) and late premolt stage (grey bar) based on
ELISA analysis. Immature ovaries are examined. Results are presented as the mean ± 1SE pg/EG, brain or 10 mg wet weight (n = 5). *p < 0.05;
**p < 0.01; nd, no difference. Means within group followed by different letters were different p < 0.05. Ovi, ovigerous setae; Plum, plumose
setae; Sper, spermathecae; EG eyestalk ganglia; Hep, hepatopancreas and Hemo, hemolymph. (B) Representative LC-MS/MS chromatograms of
E2 in (B.a) a 1 mg/l standard, (B.b) extract from the brains (prepuberty female). E2 was confirmed to be present in the brain, but the measured
concentration was below the method quantitation limit.
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E2 levels differed by molt stage in the following tissues:

ovigerous and plumose setae, spermathecae, and ovary.

Ovigerous setae at late premolt had E2 levels of 33.1 ± 5.0 pg/

10 mg wet weight (n = 5), significantly lower (p < 0.01) than early

premolt (104.3 ± 20.9 pg/10 mg wet weight, n = 5). The E2

content in plumose setae and ovary at late premolt significantly

decreased (p < 0.05) by about twofold to 112.3 ± 2.0 pg/10 mg

wet weight (n = 5) and 49.1 ± 2.2 pg/10 mg wet weight (n = 5),

respectively, compared to those at early premolt. Significantly

(p < 0.05) reduced levels of E2 were also observed in the

spermathecae (early premolt: 85.4 ± 30.4 pg/10 mg wet weight;

late premolt: 18.7 ± 4.6 pg/10 mg wet weight, n = 5). However,

no changes were identified for the E2 content of the eyestalk

ganglia, brain, hepatopancreas, and hemolymph at early and

late premolt.
LC-MS/MS spectrometry

According to the ELISA results, the brain contained the

highest E2 level. Therefore, this tissue was chosen for further

confirmation of E2 via LC-MS/MS. The LC-MS/MS

chromatograms for an E2 standard and the brain samples are

shown in Figure 1B. E2 was positively detected in the brain

tissues; however, the measured amount was below the method

quantitation limit (i.e., 150 pg/tissue, n =3).
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Sequence analyses of steroidogenesis
genes

Figure 2 shows the potential functions of the steroidogenesis

genes, StAR3, 3bHSD, 17bHSD8a, 17bHSD8b, and ERR, in C.

sapidus involved in the biosynthetic pathway of vertebrate

steroid hormones. The full-length StAR3 and 3bHSD

sequences were cloned from the eyestalk using PCR with gene-

specific primers (Table 1). StAR3 cDNA was 2207-bp in length

with a 188-bp 5’UTR, a 1389-nt open reading frame (ORF), and

a 630-bp 3’UTR with a poly-A tail (Figure 3A). The ORF

encoded a polypeptide of 462-aa, including a 198-aa

cholesterol-capturing domain (MENTAL) and a 177-aa StAR-

related transfer domain (START). Multiple alignment analysis

showed 32-68% (MENTAL) and 32-38% (START) homologous

between vertebrates and invertebrates (Figure S1A).

The full-length 3bHSD cDNA (1604 nt) consisted of a 527

bp 5’UTR, a 912 bp ORF, and a 165 bp 3’UTR, including the

poly-A tail (Figure 4A). The conserved domain database

identified the deduced amino acid regions from M1 to P225 as

the 3bHSD/isomerase family (3b_HSD), which illustrated 28-

60% homology to vertebrates and invertebrates (Figure S1B).

The cDNA sequences of the 17bHSD8a and 17bHSD8b
genes were isolated, encoding 247 and 256 aa, respectively

(Figure 5A). Comparison of the conserved domain sequences

of 17bHSD8a and 17bHSD8b derived by comparing sequences

with vertebrates and invertebrates showed 49-91% and 45-50%
FIGURE 2

Schematic diagram modified from Janer and Porte (14) showing the presence of several putative steroidogenic genes (marked in blue) in C.
sapidus known to be involved in vertebrate steroidogenesis. Estrogens, 17b-estradiol (E2) and estrone (E1), are marked in red. StAR, StAR-related
lipid transfer protein; P450scc/Cyp11a, P450 side-chain cleavage; 3bHSD, 3b-hydroxysteroid dehydrogenase; 17bHSD, 17b-hydroxysteroid
dehydrogenase; P450c17/Cyp17a1, 17a-hydroxylase/17, 20-lyase; P450arom/Cyp19a, P450 aromatase; 5a-red, 5a-reductase.
frontiersin.org

https://doi.org/10.3389/fendo.2022.962576
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.962576
similarity, respectively (Figure S1C). Furthermore, 51%

sequence identity was found when the amino acid sequence of

17bHSD8a ORF was compared with that of 17bHSD8b.
The ERR cDNA contained a 1482-bp ORF encoding 493 aa,

consisting of two conserved domains, namely zf-C4 (zinc finger,

C4 type) and hormone receptor (ligand-binding domain of

nuclear hormone) (Figure 6A). The amino acid sequences of

conserved regions exhibited 79-90% and 36-90% sequence

identities to those of vertebrates and invertebrates, respectively

(Figure S1D).
Phylogenetic analysis

The phylogenetic trees of StAR3, 3bHSD, 17bHSD8, and
ERR showed that all of the amino acid sequences of C. sapidus

were clustered with the invertebrate (crustaceans and insects)

clade and separated from the vertebrate (zebrafish) clade

(Figures 3–6B). The C. sapidus StAR3 most closely aligned

with Homarus americanus and then formed the decapod

subclade (100% support) with two shrimp species (Figure 3B).
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The C. sapidus 3bHSD was first clustered with P. monodon and

P. vannamei, grouped withH. americanus, and then merged into

a large branch with isopods, clearly distinguishable from insects

and a vertebrate (Figure 4B). All of the crustacean 17bHSD8
proteins formed a subclade, in which the C. sapidus 17bHSD8a
and 17bHSD8b were positioned close to the 17bHSD8 of two

crab species, P. trituberculatus and Chionoecetes opilio,

respectively (Figure 5B). The ERR protein from C. sapidus had

the closest evolutionary relationship with S. paramamosain and

was classified into an invertebrate clade with those isopods and

insects (Figure 6B).
Tissue distribution of steroidogenesis
genes

The spatial distributions of steroidogenesis genes were

examined in the various tissue cDNAs of an adult female C.

sapidus using an endpoint RT-PCR assay (Figure 7). All of the

tissues showed the presence of StAR3, 3bHSD, 17bHSD8a, and
ERR, and the expression of these genes was relatively high in the
A

B

FIGURE 3

(A) Schematic representation of C. sapidus StAR3. The conserved domains of StAR3 protein are shown in different colors (MENTAL: cholesterol-
capturing domain; START: StAR-related transfer domain). (B) Phylogenetic tree of StAR3 was constructed using neighbor-joining (NJ) approach
in MEGAX. The amino acid sequences of StAR3 of crustaceans, insects and zebrafish were retrieved from NCBI database. Bootstrap consisted of
1000 replicates.
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eyestalk ganglia, brain, and the adult-female-specific tissues but

low in the hepatopancreas. In contrast, 17bHSD8b was mainly

expressed in the brain and ovary. AK and eIF4A had high

expression in all tissues.
Localization of 17bHSD8 transcripts and
protein in the ovary

The ovary contained relatively high mRNA levels of

17bHSD8. Hence, the ovary was used for in situ hybridization

and immunohistochemistry if the transcripts of 17bHSD8a and

17bHSD8b and 17bHSD8 protein were present (ovarian stage 2)

(Figure 8). The signals of 17bHSD8a and 17bHSD8b transcripts
were localized in the follicle cells, the periphery of the nuclear

membrane of primary oocytes (Figures 8C, D), and yolk granules

of vitellogenic oocytes (Figures 8E, F); furthermore, 17bHSD8
protein was visualized in the follicle cells and ooplasm of
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primary oocytes (Figures 8G-I). Sense probes and pre-immune

serum had no positive signals in the ovary (Figure S2).
Effects of CFSH-dsRNA injection on E2
and steroidogenesis gene
transcript levels

E2
In general, the effect of CFSH-dsRNA injection on E2 levels

differed by tissue (Figure 9). E2 content was most significantly

reduced in the plumose setae of CFSH-dsRNA injected animals

with 7.1 ± 1.5 pg/10 mg wet weight (n = 5) compared to controls

(39.4 ± 1.5 pg/10 mg wet weight, n = 5). The ovigerous setae of

CFSH-dsRNA injected females had significantly lower E2 of 24.3

± 1.3 pg/10 mg wet weight (n = 5) than controls, 59.6 ± 3.8 pg/10

mg wet weight (n = 5). Moreover, CFSH-dsRNA injection

significantly (p < 0.05) decreased E2 concentrations in the
A

B

FIGURE 4

(A) Schematic representation of C. sapidus 3bHSD. The conserved domain of 3bHSD protein is marked in orange (3b_HSD: 3-beta
hydroxysteroid dehydrogenase/isomerase). (B) Phylogenetic tree of 3bHSD was constructed using neighbor-joining (NJ) approach in MEGAX.
The amino acid sequences of 3bHSD of crustaceans, insects and zebrafish were retrieved from NCBI database. Bootstrap consisted of 1000
replicates.
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spermathecae (5.2 ± 1.0 pg/10 mg wet weight, n = 5) compared

to controls (26.3 ± 3.8 pg/10 mg wet weight, n = 5).

CFSH-dsRNA injection slightly reduced E2 levels in the

ovary, eyestalk ganglia, brain, hepatopancreas, and hemolymph,

but the differences were not statistically different. The brains of

the females that received CFSH-dsRNA had E2 levels of 48.5 ±

4.2 pg/tissue (n = 5), whereas controls contained 63.8 ± 4.3 pg/

tissue (n = 5). E2 levels in the hemolymph were as follows:

CFSH-dsRNA injection, 3.8 ± 1.2 pg/10 ml; controls, 5.4 ± 1.4 pg/

10 ml, n = 5).

Steroidogenesis gene transcripts
The effect of CFSH-dsRNA injection on the transcript levels of

steroidogenesis genes was determined using a RT-qPCR assay
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(Figure 10). CFSH-dsRNA injection reduced CFSH transcripts by

99% to 2.8 ± 0.2 × 104 transcripts/mg total RNA (n = 5) compared

to the controls with 2.6 ± 0.8 × 106 transcripts/mg total RNA (n =

5). The animals injected with CFSH-dsRNA had significantly (p <

0.05) reduced StAR3 transcripts in all examined adult-female-

specific tissues compared to controls (Figure 10A). The greatest

reduction of StAR3 was observed in the ovigerous setae with 8.0 ±

1.3 × 105 transcripts/mg total RNA (n = 5) compared to controls

(32.8 ± 2.1 × 105 transcripts/mg total RNA, n = 5).

The ovigerous setae and spermathecae from CFSH-dsRNA

injected animals had significantly (p < 0.05) lower 17bHSD8a by

about 50%, namely 19.2 ± 3.9 × 105 transcripts/mg total RNA

(n = 5) and 20.8 ± 4.0 × 105 transcripts/mg total RNA (n = 5)

compared to controls with 35.7 ± 2.0 × 105 transcripts/mg total
A

B

FIGURE 5

(A) Schematic representation of C. sapidus 17bHSD8. The conserved domains of 17bHSD proteins are marked in orange (adh_short_C2: Enoyl-
(Acyl carrier protein) reductase). (B) Phylogenetic tree of 17bHSD8 proteins was constructed using neighbor-joining (NJ) approach in MEGAX.
The amino acid sequences of 17bHSD8 of crustaceans, insects and zebrafish were retrieved from NCBI database. Bootstrap consisted of 1000
replicates.
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A

B

FIGURE 6

(A) Schematic representation of C. sapidus ERR. The conserved domains of ERR protein are shown in different colors (zf-C4: zinc finger, C4
type; hormone receptor: ligand-binding domain of nuclear hormone). (B) Phylogenetic tree of ERR was constructed using neighbor-joining (NJ)
approach in MEGAX. The amino acid sequences of ERR of crustaceans, insects and zebrafish were retrieved from NCBI database. Bootstrap
consisted of 1000 replicates.
FIGURE 7

Spatial distribution of vertebrate steroidogenic genes in the tissues of an adult female C. sapidus. Each cDNA tissue sample containing 12.5 ng
total RNA equivalent was amplified by PCR. The PCR products were analyzed on 1.5% agarose gel and stained with ethidium bromide. The
tissues are noted as: 1 = eyestalk ganglia, 2 = hepatopancreas, 3 = brain, 4 = ovary, 5 = spermathecae, 6 = ovigerous setae, 7 = plumose setae.
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FIGURE 8

Localization of 17bHSD8 in the ovaries (stage 2 and 3) of adult female C. sapidus using in situ hybridization (mRNA) and immunohistochemistry
(protein). H&E staining (A, B); ISH: antisense probe hybridization (C–E: 17bHSD8a; D–F: 17bHSD8b); Whole-mount immunohistochemistry:
17bHSD8 specific antibody (G–I). The arrows point to a representative positive signal. Abbreviations: N, nucleus; Y, yolk; P, perinucleus; Fc,
follicular cell; Oc1, early primary oocyte; Oc2, late primary oocyte; Oc3, early vitellogenic oocyte. Scale bars = 100 mm.
Frontiers in Endocrinology frontiersin.org12

https://doi.org/10.3389/fendo.2022.962576
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2022.962576
RNA (n = 5) and 32.6 ± 4.9 × 105 transcripts/mg total RNA (n = 5),

respectively (Figure 10C). After CFSH-dsRNA injection,

statistically significant (p < 0.05) downregulation of 17bHSD8b
and ERR expression was only observed in the ovary (CFSH-

dsRNA injection: 5.3 ± 1.1 × 105 transcripts/mg total RNA;

controls: 16.3 ± 4.6 × 105 transcripts/mg total RNA, n = 5,

Figure 10D) and spermathecae (CFSH-dsRNA injection: 4.3 ±

0.8 × 105 transcripts/mg total RNA; controls: 9.9 ± 1.5 × 105

transcripts/mg total RNA, n = 5, Figure 10E), respectively. No

s i gn ifi c an t (p > 0 . 05 ) ch ang e s i n 3bHSD wer e

observed (Figure 10B).
Discussion

The present study described the presence and concentration

of E2 in tissues of prepuberty and adult females of blue crab C.

sapidus, the isolation of cDNA sequences and transcript levels of

several vertebrate steroidogenesis genes related to E2, the effects

of CFSH on E2, and expression analysis of steroidogenesis genes.
The presence of E2 in prepuberty and
adult females

The presence of E2 in the crustacean tissues has been

primarily reported using antibody-based assays. Our ELISA

results showed that various tissues of the prepuberty and adult

blue crab females contain E2, congruent with earlier findings that
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report E2 in the hemolymph, hepatopancreas, and ovary of H.

americanus (31), Pandalus kessleri (32), and Artemia sp. (33). In

this study, an LC-MS/MS spectrometry method confirmed that E2

measured in blue crab tissues is the genuine and endogenous E2.

The optimized LC-MS/MS analytical protocol exhibited a good

recovery (89%), and the measured E2 concentration matched that

from the ELISA analysis. Due to the higher method quantitation

limit of the LC-MS/MS method for E2, ELISA was more preferred

for E2 measurement in C. sapidus.

This study focused on E2 in early and late premolt C. sapidus

females at prepuberty, during which time the ovigerous and

plumose setae are associated with development of blue crab

females (19). These adult-specific tissues are developing at early

premolt and are fully developed at late premolt. Our data

showed a marked difference in E2 levels in a molt stage-

specific manner, with higher levels at early premolt than at

late premolt, when these tissues primarily develop the features

specific to adults for mating and maternal care systems. Based on

previous findings that CFSH is required to develop adult-specific

morphological features, it is reasonable to suggest that higher E2

levels in these tissues may be linked to CFSH function.

In both prepuberty and adult females, maximum E2 levels

were present in the brain. In vertebrates, E2 affects the structure

and function of the nervous system (34) and provides positive

feedback on the development and function of the gonadotropic

axis (35–37). The function of E2 in the brain of crustaceans is

poorly understood. Considering that mating occurs immediately

at the onset of puberty-terminal molting, E2 in the brain of the

prepuberty females may be linked with sexual behaviors and
FIGURE 9

Amounts of 17b-estradiol (E2) in the tissues of the adult female C. sapidus at ovarian stage 2 (black bar: saline-injected group; grey bar: CFSH-
dsRNA-injected group). Results are presented as the mean ± 1SE pg/EG, brain or 10 mg wet weight (n = 5). The data are analyzed two ways for
statistical significance: Student’s t-test was calculated when two groups were compared. A non-parametric Kruskal-Wallis test followed by
Dunn’s post-hoc test was used for multiple group comparisons (letter or *p < 0.05; **p < 0.01; nd, no difference). Ovi, ovigerous setae; Plum,
plumose setae; Sper, spermathecae; EG eyestalk ganglia; Hep, hepatopancreas and Hemo, hemolymph.
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involved in the reproductive neuroendocrine responses that

occur in the brain of crustaceans (38).

In comparison to the vitellogenic ovaries (ovarian stage 2) in

adult females, the undifferentiated ovaries in prepuberty females

had higher E2 levels. This finding appears to be rather different

from those reported in other decapods, in which E2 levels in the

ovary significantly increased with ovarian development and

oocyte maturation (7, 39, 40). One plausible explanation is

that season affects E2 synthesis in female gonads. In the
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present study, ovaries were sampled from the prepuberty and

adult females during summer and winter months, respectively.

Thus, warmer temperatures may stimulate reproductive

activities and biosynthesis of E2, while these processes are

slowed or halted in colder temperatures.

The levels of E2 measured in the tissues were converted and

presented as pg/tissue type, with the same 10 mg wet weight

wherever possible. In the present study, E2 levels were lowest in the

hemolymph of the prepuberty and adult females, but hemolymph
A B

D

E

C

FIGURE 10

Effect of CFSH-dsRNA injection on the expression of steroidogenesis-related genes using qRT-PCR assay. (A) StAR3, (B) 3bHSD, (C) 17bHSD8a,
(D) 17bHSD8b, and (E) ERR. Expression levels are represented as mean ± SE (n = 5) transcripts/mg total RNA. The data are presented as mean ±
SE (n = 5). *p < 0.05; **p < 0.01; nd, no difference. Ovi, ovigerous setae; Plum, plumose setae; Sper, spermathecae.
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accounted for ~15% of body weight (e.g., 70 ± 10 g for prepuberty,

160 ± 20 g for adult, n = 10); therefore, the hemolymph contained

the greatest amount of E2 compared to other tissues, suggesting

that E2 may act as a hormone in this species.

The presence of CFSH protein was consistent throughout

the female life cycle. Considering the vital role of CFSH in

developing adult female-specific tissues, the following question is

asked if this hormone has any functions in these tissues, possibly

involving E2. Indeed, our data showed that the tissues specific to

adult females contained E2. The E2 levels measured in adult

tissues were compensated with the increment of their size

through the puberty-terminal molting, i.e., a maximal molt

increment of 50%, compared to those of the late premolt stage.

Interestingly, the ovigerous setae of adults contained E2 levels

similar to those of the late premolt prepuberty females, but the

other adult tissues had lower E2 contents than at late premolt,

which might stem from the lower E2 in the adult hemolymph.
Identification of steroidogenesis genes in
C. sapidus

To further examine the involvement of putative E2

steroidogenesis genes to confirm the presence of endogenous E2

in female C. sapidus, several cDNAs encoding these orthologues

were isolated and characterized. The blue crab cDNA sequences of

steroidogenesis genes were grouped and formed a clade with other

crustacean sequences. The sequences of invertebrates, including

insects and crustaceans, were separated from a vertebrate

sequence, zebrafish Danio rerio, as an out group.

StAR was chosen due to its involvement in the translocation

of cholesterol from the outer to the inner mitochondrial

membrane, a process that is regarded as the first and rate-

limiting step in the steroidogenic pathway of vertebrates (41).

Therefore, StAR plays a vital role in the regulation of

steroidogenesis. In this study, we identified the presence of

StAR3 but not StAR, indicating that a StAR-independent

steroidogenic pathway may be adopted by C. sapidus. A

similar phenomenon was reported in M. rosenbergi (17).

3bHSD and 17bHSD regulate two different steps in vertebrate

steroidogenesis. The former is responsible for both the reduction

and oxidation of the 3-keto/hydroxyl and the D5-D4-isomerization

that generate progesterone and androstenedione, while the latter is

involved in the synthesis of active sex steroids that catalyze

androstenedione to testosterone, estrone to E2, or vice versa

(14). To date, 3bHSD and types 2, 3, 4, 6, 8, 11, and 14 of

17bHSDs were identified in M. rosenbergii and P. trituberculatus

(16, 17). In the present study, a 3bHSD and two isoforms of

17bHSD8 were identified in C. sapidus.

Due to the high structure and sequence similarity and close

phylogenetic relationship to ERs, the orphan nuclear receptors,

ERRs, were identified (42). Unlike ERs, ERRs are not activated

by E2 but bind to anthropogenic estrogenic ligands, estrogen,
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and ERR response elements and, thus, play a physiological role

in embryonic and gonadal development (43, 44). In crustaceans,

ERRs were detected in Daphnia magna (45), D. pulex (46), and

Diaphanosoma celebensis (47), and may be involved in estrogen

signaling and metabolism pathways.

The most important cytochrome P450 enzymes, including

the P450scc/cyp11a (P450 side chain cleavage), P450c17/cyp17a,

and P450arom/cyp19a (P450 aromatase), were not identified in

this study. The presence of P450c17 has been documented in

echinoderms (48), mollusks (49), and some decapods (17), while

P450scc and P450arom have not yet been identified outside of

vertebrates (14). However, the conversion of cholesterol to

pregnenolone and aromatase-like activity were detected in

some invertebrates (50–53), indicating the orthologues of

P450scc and P450arom that function in cholesterol catabolism

and estrogen synthesis may also exist in invertebrates.
Tissue distribution of steroidogenesis
genes and localization of 17bHSD8 in
the ovary

A broad tissue distribution of vertebrate steroidogenesis

genes was found in adult female C. sapidus using RT-PCR,

possibly explaining the widespread presence of E2. The relatively

high expression levels of all steroidogenic genes in the brain were

consistent with the ELISA results, wherein the brain had the

highest E2 levels among tested tissues. Similarly, most of the

enzymes involved in steroidogenesis were highly expressed in

the central nervous system of mammals (54), scallops (49), and

prawn (17). On the other hand, the low E2 contents in the

hepatopancreas may be caused by the relatively low transcript

levels of StAR3 and 3bHSD, which are related to E2 synthesis,

and the high level of 17bHSD8a, which is associated with E2

metabolism. Interestingly, 17bHSD8 presented two isoforms

with different expression patterns: 17bHSD8b was mainly

expressed in the brain and ovary, implying its prominent role

in E2 metabolism in these tissues; and, 17bHSD8a was

ubiquitously expressed in all tissues. An extensive tissue

distribution pattern of 17bHSD8 was also found in humans

(55), mice (56), and scallops (57). Similar to StAR3, ERR was

expressed in all of the examined tissues, and the relatively low

levels in the hepatopancreas and plumose setae may corroborate

ERR involvement in the transcriptional regulation of StAR (58).

The localizations of 17bHSD8 mRNAs and protein were

visualized by in situ hybridization and immunohistochemistry to

indirectly support the existence of endogenous E2 inC. sapidus. The

positive signals of 17bHSD8 transcripts and protein were clearly

visible in the follicle cells and oocytes of the ovary, consistent with

results from a previous study conducted at both the gene and the

protein levels (57). However, positive hybridization signals were

also detected in granulosa cells of growing follicles and luteal cells in

the mouse ovary (56). We speculate that the discrepancy may be
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attributed to the differences in ovary structures between mammals

and crustaceans. The 17bHSD8 transcripts were obviously visible in
the yolk granules of vitellogenic oocytes, implying the physiological

role of 17bHSD8 in vitellogenesis and ovarian development. In

mollusks, changes in the expression of 17bHSD8 appear to be

related to the maturity of female gonads (57). The high transcript

abundance of 17bHSD8 and protein levels may be required to

maintain the optimal E2 concentrations for oocyte development

and ovarian maturation in C. sapidus.
Effects of CFSH-dsRNA injection on E2
and steroidogenesis gene
transcript levels

After finding E2 in the adult-specific tissues of adult females,

along with the presence of CFSH protein in adult eyestalks (19),

the function of CFSH in these tissues was examined with E2 and

steroidogenesis genes using CFSH-dsRNA injection. The

dsRNA-mediated RNA interference has been used to define

the function of a specific protein. In many decapod species, the

injection of a gene-specific dsRNA significantly decreased the

target transcripts and protein levels (19, 59–62). Therefore, if

CFSH function involves E2, CFSH-dsRNA was expected to

reduce E2 and steroidogenesis gene transcript levels in these

adult-specific tissues compared to controls.

This hypothesis was confirmed by our data, because E2 levels

in the adult-specific tissues were lower than in controls, while the

E2 contents in other tissues, such as ovary, brain, eyestalk ganglia,

hepatopancreas, and hemolymph, exhibited no differences.

Among the examined steroidogenesis genes in the control

animals, 17bHSD8a and StAR3 transcripts were the highest,

followed by ERR, 3bHSD, and then 17bHSD8b. The most

consistent effect of CFSH-dsRNA injections was observed with

StAR3 transcripts in the adult-specific tissues, where the levels

were lower than controls, congruent with the E2 content in these

tissues. It is plausible to suggest that CFSH exerts its functions in

the adult female-specific tissues via E2 synthesis by regulating the

expression of StAR3. E2 synthesis in crustaceans is the same as

described in vertebrates, wherein StAR is required for cholesterol

movement. This step is also known to critical for

ecdysteroidogenesis in the Y-organ (63).

CFSH-dsRNA injection had no significant effects on

transcript levels of 3bHSD in adult-female-specific tissues but

decreased expression levels of 17bHSD8a, 17bHSD8b, and ERR

in a tissue-specific manner, indicating these genes were unlikely

to be directly regulated by CFSH. Previous studies demonstrated

that CFSH might not be involved in ovarian development (19,

64). However, the significantly reduced transcript level of

17bHSD8b in the ovary of adult females injected with CFSH-

dsRNA may affect the metabolic efficiency of E2 leading to

changes in ovarian differentiation. The relationship between

transcript levels and protein contents are unknown (65, 66);
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therefore, the long-term effects of CFSH-dsRNA injection on

translation of steroidogenesis genes in the adult-female-specific

tissues need to be further investigated. Moreover, the broad

distribution of testosterone in males is expected based on the

presence of E2 and steroidogenic genes in female C. sapidus.
Effect of CFSH-dsRNA injection on the
maintenance of adult-female-specific
tissues

After a long-term CFSH-dsRNA injection, notable abnormalities

were not observed in the length and abundance of ovigerous and

plumose setae, wet weight and size of spermathecae, and the

presence, position, and size of gonopores (Figure S3). These results

indicated that CFSH and/or E2 may not be required for the

maintenance of brooding and mating systems in adult females. In

addition, 30 injections of CFSH-dsRNA seemed to be lethal because

~50%mortality (3/8) was obtained, and nomortality was observed in

saline-administrated animals. The difference in mortality might have

occurred as off-target effects of CFSH-dsRNA.
Conclusion

This study reported the presence of E2 in C. sapidus using

ELISA and LC-MS/MS. E2 and the transcripts of StAR3, 3bHSD,
17bHSD8a, 17bHSD8b, and ERR were distributed in all examined

tissues. The transcripts of 17bHSD8 were visible in the follicle

cells, the periphery of the nuclear membrane of primary oocytes,

and yolk granules of vitellogenic oocytes, while 17bHSD8 protein
was mainly visualized in the follicle cells and ooplasm of primary

oocytes. Long-term injection of CFSH-dsRNA significantly

reduced E2 levels and specifically StAR3 expressions in the

adult-female-specific tissues, including ovigerous and plumose

setae and spermathecae. The results presented here suggested

that E2 might be involved in the signal transduction of CFSH in

the adult-female-specific tissues that are required for developing

brooding and maternal care.
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SUPPLEMENTARY FIGURE 1

Multiple sequence alignment of the StAR3 amino acid sequence among

species. The conserved functional structures (MENTAL and START

domains) are marked in box (A). Multiple sequence alignment of the
3bHSD amino acid sequence among species. The conserved functional

structure (3b_HSD domain) is marked in box (B). Multiple sequence
alignment of the 17bHSD8 amino acid sequences among species. The

conserved functional structure (adh_short_C2 domain) is marked in box
(C). Multiple sequence alignment of the ERR amino acid sequence among

species. The conserved functional structures (zf-C4 and Hormone_recep

domains) are marked in box (D). Identical residues are shown as white
letters with red background, and similar residues are shown as black

letters with yellow background.

SUPPLEMENTARY FIGURE 2

17bHSD8a (A, B) and 17bHSD8b (C, D) sense probe hybridization were

used as control of the antisense probe hybridization. Whole-mount

immunohistochemistry: pre-immune serum (E) was applied as control
of the 17bHSD8 specific antibody. Scale bars = 100 mm.

SUPPLEMENTARY FIGURE 3

No notable abnormalities were observed in the length and abundance of
ovigerous (A*) and plumose setae (B*), wet weight and size of

spermathecae (C*), and the presence, position and size of gonopores

(D*) after multiple injections of CFSH-dsRNA. Scale bar = 5 mm.
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