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Abstract: Hypersensitivity to galactose-α-1,3-galactose (α-gal) is an informative example of a patho-
logic IgE-mediated process. By way of their saliva, ticks are able to sensitize humans to tick dietary
elements that express α-gal. Mites, which along with ticks constitute the phyletic subclass Acari, feed
on proteinaceous foodstuffs that represent most, if not all, human allergens. Given: (1) the gross
nature of the pathophysiological reactions of allergy, especially anaphylaxis, (2) the allergenicity of
acarian foodstuffs, and (3) the relatedness of ticks and mites, it has been hypothesized that human-
acarian interactions are cardinal to the pathogenesis of allergy. In this report, a means by which such
interactions contribute to that pathogenesis is proposed.

Keywords: acari hypothesis; ticks; mites; IgE; vector; ixoderin; fibrinogen-related protein (FReP);
interspecies operability

1. Background/Introduction

Although there exists a link between human allergens and acarians [1–9], mere contact
between humans and acarians cannot account for allergic inflammation. After all, mites
are ubiquitous within the modern human habitat, existing as synanthropic organisms
within human dwellings [10], as parasites of human foodstuffs [11–16], and as permanent
ectoparasites on human skin [17]. In addition, although such ubiquity ensures near-
continuous human-acarian interaction, the low prevalence of acarian-targeted adaptive
responses seems incongruous. Nevertheless, the localization and scale of IgE-mediated
mechanical reflexes on epithelial surfaces argue persuasively that the ectoparasite is, in
fact, the target of the adaptive response [18]. Inasmuch as the principle acarian threat
to mammalian immunity is vectorial, it seems likely this threat drives the mammalian
adaptive response. More precisely, the mammalian immune system recognizes and uses
pathogen-bound acarian operators, thereby linking the pathogen to the vector and directing
an adaptive anti-vector response.

Mammalian innate immunity is orchestrated by pathogen recognition receptors (PRRs)
that identify pathogen-associated molecular patterns (PAMPs) expressed on the membra-
nous surfaces of microorganisms. Binding of PRRs to PAMPs prompts a variety of immune
phenomena, including complement activation and phagocytosis [19–21]. Sans an adaptive
arm, acarian immunity functions in similar fashion. The humoral defense of acarians,
like that of mammals, is based on the activity of PRRs and effector molecules, including
lectins, complement-like molecules and antimicrobial peptides [22]. Relatedly, the cellular
immunity of acarians involves leukocyte equivalents, i.e., hemocytes, that phagocytize,
encapsulate, and digest foreign elements in opsonin-dependent fashion [22,23].

The coexistence of pathogens and housekeeping opsonins in acarian salivary glands
and gut [22,24] makes it a certainty that complexes comprised of both are transmitted in
acarian saliva and/or stool when an acarian interacts with a human, Figure 1.
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The coexistence of pathogens and housekeeping opsonins in acarian salivary glands 
and gut [22,24] makes it a certainty that complexes comprised of both are transmitted in 
acarian saliva and/or stool when an acarian interacts with a human, Figure 1. 

 
Figure 1. An acarian transmits its opsonized pathogens. The image shows only one means by which 
such pathogens might be transmitted, here, via hematophagous route. Other means of transmission 
might include inhaling or consuming the opsonized pathogen or, alternatively, the living vector, 
allowing for continuous deposition of opsonized pathogens on an epithelial surface. Adapted from 
[25].. 

Because molecular elements derived from dietary materials also populate acarian sal-
ivary glands and gut, they, too, undoubtedly admix with the other reactants, forming 
higher order complexes. Such complexes may be attributed ‘inappropriately’ to the aca-
rian itself, Figure 2, prompting, ultimately, an adaptive response to the dietary materials 
rather than to the acarian. As elaborated next, homologies between certain acarian and 
human immune effectors provide clues as to how an adaptive, anti-vector response  ̶  
whether felicitous or specious  ̶  might be achieved. 

 
Figure 2. Pictorial representation of a proposed quaternary complex formed between an acarian 
pathogen (e.g., a gram-negative bacterium), an acarian ‘tag’ protein (e.g., tick ‘MD2′), an acarian 
opsonin (e.g., multimerized ixoderin) and an acarian foodstuff (e.g., fibrinogen expressing α-gal). 
The adaptive immune responses elicited by the complex include: (1) felicitous anti-vector, i.e., anti-

Figure 1. An acarian transmits its opsonized pathogens. The image shows only one means by which
such pathogens might be transmitted, here, via hematophagous route. Other means of transmission
might include inhaling or consuming the opsonized pathogen or, alternatively, the living vector,
allowing for continuous deposition of opsonized pathogens on an epithelial surface. Adapted
from [25].

Because molecular elements derived from dietary materials also populate acarian
salivary glands and gut, they, too, undoubtedly admix with the other reactants, forming
higher order complexes. Such complexes may be attributed ‘inappropriately’ to the acarian
itself, Figure 2, prompting, ultimately, an adaptive response to the dietary materials rather
than to the acarian. As elaborated next, homologies between certain acarian and human
immune effectors provide clues as to how an adaptive, anti-vector response—whether
felicitous or specious—might be achieved.
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Figure 2. Pictorial representation of a proposed quaternary complex formed between an acarian
pathogen (e.g., a gram-negative bacterium), an acarian ‘tag’ protein (e.g., tick ‘MD2′), an acarian
opsonin (e.g., multimerized ixoderin) and an acarian foodstuff (e.g., fibrinogen expressing α-gal). The
adaptive immune responses elicited by the complex include: (1) felicitous anti-vector, i.e., anti-acarian,
IgE directed against the tag protein, (2) specious IgE directed against the foodstuff, (3) felicitous Ig
directed against the pathogen. See text for details.

Although the immune system of mites is not yet well-characterizedthat of ticks is,
especially that of ticks of the genus Ixodes, including I. ricinus, a causative agent of α-gal
hypersensitivity in Europe [26]. Contained within both saliva and hemolymph of these
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ticks are ixoderins [27], well-described members of a family of acarian PRRs that function
as opsonins [24]. Analysis of the genome of Ixodes ticks reveals 27 genes encoding three
groups of ixoderins, i.e., A, B and C [24]. The ixoderins are well-conserved, with homologs
identified in other tick genera, including Amblyomma [28], the tick responsible for α-gal
sensitization in the United States. In Ornithodoros moubata, the opsonin, Dorin M, is a
homolog of Ixoderin A [24,29,30].

The ixoderins have significant homology with ficolins, Figure 3 and Table 1, a family of
human PRRs. Both are members of a larger group known collectively as fibrinogen-related
proteins (FRePs) [31], the shared feature of which is a C-terminal domain homologous
with the C-terminus of the γ-chain of the eponymous fibrinogen. Indeed, the fibrinogen-
related domain (FReD) of Ixoderin A (aa44–271) is more nearly identical to that of Ficolin
1 (aa109–326, 42.54%) than it is to that of either Ixoderin B (aa47–276, 30.04%) or Ixoderin C
(aa231–463, 31.12%). The FReD confers to FRePs the ability to recognize and bind to interfacial
PAMPs [31]. Some invertebrate FRePs have lectin activity, others have immunoglobulin-
like domains that facilitate recognition of specific proteins [31,32]. Because FRePs opsonize
and agglutinate invasive microorganisms, their primary function in invertebrates appears
to be defensive [33]. Twenty-four human FRePs have been identified [34], and just as
do invertebrate FRePs, many/all appear to play a role in innate immunity [34–39]. Both
ficolins and ixoderins are oligomeric proteins, with higher order oligomerization integral
to biologic activity [40,41].
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Figure 3. Sequence alignments of human ficolins and acarian ixoderins. Ficolins are paired with
ixoderins with which they have greatest homology. (See Table 1). (A), Ficolin 1/M (O00602) and
Ixoderin A (I6LAP5); (B), Ficolin 2/L (Q15485) and Ixoderin C (GCJO01000224); and (C), Ficolin 3/H
(O75636) and Ixoderin B (Q5IUW6). An * (asterisk) indicates a position at which a single residue is
fully conserved, a : (colon) indicates a position at which a substitution has strongly similar properties,
and a . (period) indicates a position at which a substitution has weakly similar properties.
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Table 1. Homologies Between Ficolins of Homo sapiens and Ixoderins of Ixodes ricinus.

Protein 1 Sequence
Length 2

Identical
Positions

Similar
Positions

Global
Identity, 2 %

Tissue
Expression

Ficolin 1
(O00602) 326

110 80 32

Monocytes,
lungs and spleen

Ixoderin A
(I6LAP5) 277

Hemocytes and
Malpighian

tubule

Ficolin 2
(Q15485) 313

100 83 21

Liver (serum
protein)

Ixoderin C
(GCJO01000224) 463

Ubiquitous
expression in all
tissues; highest

in gut and
trachea

Ficolin 3
(O75636) 299

71 89 21

Gallbladder and
lungs

Ixoderin B
(Q5IUW6) 286 Salivary glands

1 Uniprot primary accession number or European Molecular Biology Laboratory accession number. 2 Including
signal peptide.

As one might expect, ficolins and ixoderins are similar functionally in that they
both bind to, and facilitate the phagocytosis of, shared pathogens [24,39]. By virtue
of their affinity for carbohydrates, both are categorized as lectins [24,35,38,39]. Their
mirrored functionality is further supported by similarity of tissue expression [24,39], as
seen in Table 1. Per the model espoused herein, oligomerization and lectin activity have
special relevance: oligomerization, because it facilitates complexation of multiple molecular
species, and lectin activity, because it confers specificity to that complexation. It comes as
no surprise that antigen glycosylation influences allergenicity [42–47].

2. Discussion

Given the striking similarities of acarian and mammalian immune effectors, it is
reasonable to propose the human immune system recognizes acarian PRRs, using them
to direct responses against both the acarian, as vector, and its pathogenic payload. In
fact, interspecies immune signaling applicable to humans and acarians has already been
demonstrated. The well-described PRR and allergen Der p 2 from the common dust mite,
Dermatophagoides pteronyssinus, shares structural and functional homology with human MD-
2 [48]. In humans, MD-2 complexes with lipopolysaccharide (LPS) and LPS-binding protein
(LPBP) to activate Toll-like receptor 4 (TLR4)/CD-14 expressed on leukocytes [49,50]. Der
p 2 can substitute for MD-2, facilitating the binding of TLR4 to LPS [48]. Analogous
interoperabilities likely exist for other structurally- and functionallyrelated molecules, e.g.,
human ficolin and acarian ixoderin, of phyletically distant species.

The presence of an acarian PRR on a pathogen surface conveys at least two meaningful
bits of information to the mammalian system. Firstly, it signifies the underlying surface is
foreign. Secondly, it informs that the source of the foreign surface is an acarian vector. This
latter, in turn, enables an adaptive anti-vector response directed against the acarian and/or
any vector-associated material perceived by the system to be acarian. According to this
scheme, potential allergens will be ones that participated—either as intended or otherwise—
in pathogen complexation. In fact, this has been shown for some acarian proteins. Der
p 2 and Der p 7 are analogs of MD-2 and LPBP, respectively [48,51]. Inasmuch as MD-2
and LPBP bind LPS, Der p 2 and Der p 7 are likely bound to gram-negative bacteria in tick
saliva and stool. The implication is that mammals with an IgE-mediated response against
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Der p 2 or Der p 7 had previously been exposed to gram-negative bacteria transmitted in
the saliva or stool of D. pteronyssinus.

3. Closing

The Acari hypothesis derived from a sense that both the scale and the localization
of IgE-mediated reflexes is most applicable to gross targeting of acarians, i.e., mites and
ticks [18]. Given their polyphagous nature, acarians are positioned to incorporate a very
significant number of dietary proteins into allergenic complexes. That said, humans
are parasitized by many phyletically-distant ectoparasites, some of which are vectors.
Accordingly, any ectoparasite with PRRs similar to those of man might influence human
immunity by the mechanism proposed here. Review of phylogenic emergence estimates of
human ectoparasites [52–58] and of IgE [59], however, indicates most ectoparasites could
not have supplied the evolutionary pressure leading to the formation of IgE, Figure 4. The
Acari, on the other hand, predate emergence of IgE [58]. The only other ectoparasites
predating IgE are helminths [52]. Interestingly, persons living in coastal communities
where undercooked fish are consumed often have allergic responses against both fish and
the piscine helminth, Anisakis simplex [60,61].

Pathogens 2021, 10, x FOR PEER REVIEW 6 of 10 
 

 

the mechanism proposed here. Review of phylogenic emergence estimates of human ec-
toparasites [52–58] and of IgE [59], however, indicates most ectoparasites could not have 
supplied the evolutionary pressure leading to the formation of IgE, Figure 4. The Acari, 
on the other hand, predate emergence of IgE [58]. The only other ectoparasites predating 
IgE are helminths [52]. Interestingly, persons living in coastal communities where under-
cooked fish are consumed often have allergic responses against both fish and the piscine 
helminth, Anisakis simplex [60,61]. 

 
Figure 4. Relative emergences of IgE and ectoparasites of mammals. Intervals of estimated emer-
gences are given both in the left-hand column and in the light gray shaded areas of the horizontal 
bars. Dashed lines and dark gray shading indicate temporal overlaps of the emergence estimates. 
Representative ectoparasites are given in the right-hand column. 

Increasingly, research is linking IgE-mediated allergy to defense against venoms 
[62,63]. Because some venoms are dietary foodstuffs of acarians [64], e.g., Varroa destructor 
and Apis mellifera, their inclusion in allergenic complexes of the sort proposed here is not 
unexpected. Furthermore, many acarians produce venoms [65,66], the paralytic activity 
of which directly opposes mammalian IgE-mediated mechanical reflexes. Because IgE-
mediated reflexes exist to defend against acarian ectoparasitism, evolution of such ven-
oms by acarians seems a natural evolutionary response. That the anti-acarian response 
evolved means of managing these venoms is fitting. Finally, because acarians are close 
relatives of other venomous creatures, e.g., scorpions and spiders, it is conceivable that 
defenses against acarian venoms protects against those of closely-related species. 

One means by which to test the validity of the Acari hypothesis might be retrospec-
tive epidemiological studies targeting formula-consuming pediatric patients newly diag-
nosed with a milk allergy. The benefits of this particular patient population are a restricted 
diet and a largely supervised and controlled environment. Careful analysis of both for-
mula stores and storage sites might yield culpable acarians, effectively relating acarian 
exposure to allergy. Subsequent testing and confirmation of IgE-mediated immunity to 
elements of the identified acarian would then imply causality. 

Figure 4. Relative emergences of IgE and ectoparasites of mammals. Intervals of estimated emer-
gences are given both in the left-hand column and in the light gray shaded areas of the horizontal
bars. Dashed lines and dark gray shading indicate temporal overlaps of the emergence estimates.
Representative ectoparasites are given in the right-hand column.

Increasingly, research is linking IgE-mediated allergy to defense against venoms [62,63].
Because some venoms are dietary foodstuffs of acarians [64], e.g., Varroa destructor and Apis
mellifera, their inclusion in allergenic complexes of the sort proposed here is not unexpected.
Furthermore, many acarians produce venoms [65,66], the paralytic activity of which directly
opposes mammalian IgE-mediated mechanical reflexes. Because IgE-mediated reflexes exist to
defend against acarian ectoparasitism, evolution of such venoms by acarians seems a natural
evolutionary response. That the anti-acarian response evolved means of managing these
venoms is fitting. Finally, because acarians are close relatives of other venomous creatures, e.g.,
scorpions and spiders, it is conceivable that defenses against acarian venoms protects against
those of closely-related species.
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One means by which to test the validity of the Acari hypothesis might be retrospective
epidemiological studies targeting formula-consuming pediatric patients newly diagnosed
with a milk allergy. The benefits of this particular patient population are a restricted diet
and a largely supervised and controlled environment. Careful analysis of both formula
stores and storage sites might yield culpable acarians, effectively relating acarian exposure
to allergy. Subsequent testing and confirmation of IgE-mediated immunity to elements of
the identified acarian would then imply causality.

As another means by which to test the Acari hypothesis, one could useIgE knock-
out rats and the tropical rat mite, Ornithonyssus bacoti, a well-described vector of several
rat pathogens. Studies comparing acarian-borne pathogen transmission rates between
wild-type rats and IgE knock-outs would likely be very informative.

The model described herein provides rationale relevant to the nature of allergic
inflammation. If, as proposed, the binding of a foreign FReP, e.g., an ixoderin, to a molecular
species directs the generation of an IgE class antibody, then it is tempting to speculate
that the binding of a native FReP, e.g., a ficolin or even fibrinogen, to a molecular species
might direct the generation of a different class of antibody, the theoretical and practical
implications of which would be significant.
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with transmitted pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 26. [CrossRef] [PubMed]
23. Inoue, N.; Hanada, K.; Tsuji, N.; Igarashi, I.; Nagasawa, H.; Mikami, T.; Fujisaki, K. Characterization of Phagocytic Hemocytes in

Ornithodoros moubata (Acari: Ixodidae). J. Med. Èntomol. 2001, 38, 514–519. [CrossRef] [PubMed]
24. Mondeková, H.H.; Sima, R.; Urbanová, V.; Kovar, V.; Rego, R.; Grubhoffer, L.; Kopacek, P.; Hajdusek, O. Characterization of

Ixodes ricinus Fibrinogen-Related Proteins (Ixoderins) Discloses Their Function in the Tick Innate Immunity. Front. Cell. Infect.
Microbiol. 2017, 7, 509. [CrossRef]

25. Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and
Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 281, Published 2017 Jun 22. [CrossRef]

26. Tjernberg, I.; Hamsten, C.; Apostolovic, D.; Van Hage, M. IgE reactivity to α-Gal in relation to Lyme borreliosis. PLoS ONE 2017,
12, e0185723. [CrossRef]
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