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Abstract
Acetaminophen (APAP) induced hepatotoxicity involves activation of c-Jun amino-terminal kinase (JNK), mitochondrial dam-
age and ER stress. BGP-15, a hydroximic acid derivative, has been reported to have hepatoprotective effects in APAP overdose
induced liver damage. Effect of BGP-15 was further investigated on mitochondria in APAP-overdose induced acute liver injury
in mice. We found that BGP-15 efficiently preserved mitochondrial morphology, and it caused a marked decrease in the number
of damaged mitochondria. Attenuation of mitochondrial damage by BGP-15 is supported by immunohistochemistry as the
TOMM20 label and the co-localized autophagy markers detected in the livers of APAP-treated mice were markedly reduced
upon BGP-15 administration. This effect, along with the observed prevention of JNK activation likely contribute to the mito-
chondrial protective action of BGP-15.
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Introduction

Acetaminophen (N-acetyl-p-aminophenol, APAP) is the most
common painkiller, antifebrile and one of the most frequently
used drugs in the world [1]. However, APAP is a dose-
dependent hepatotoxin, with approximately 50% of all acute
liver failure cases in the USA and UK attributed to APAP
overdose [2]. The toxicity of APAP is a complicated process
and it is not fully understood. Several organelles and

molecules have been shown to contribute to APAP toxicity.
A series of experimental and clinical data have been published
on the pathomechanism of APAP-induced liver injury [3–6].
At a cellular level, it is generally accepted that mitochondrial
damage is a key element of the pathology induced by APAP
overdose [7, 8], however, endoplasmic reticulum (ER) stress
also develops [4]. The mitochondrial injury occurs in at least
two steps [3]. Conversion of APAP to N-acetyl-p-
benzoquinone imine (NAPQI) is catalyzed mainly by
CYP2E1 in hepatocytes [9]. NAPQI causes oxidative stress
through increased ROS generation and adduct formation with
proteins and glutathione. The formation of mitochondrial pro-
tein adducts due to APAP overdose induced NAPQI forma-
tion plays a crucial role in the initiation of APAP induced liver
injury [8, 10, 11]. Formation of the aforementioned protein
adducts is involved in the inhibition of mitochondrial respira-
tion [12], the subsequent formation of ROS [13] and
peroxynitrite in mitochondria [14]. Furthermore, the role of
the initial increase in ROS formation upon NAPQI synthesis
stimulates intracellular signaling processes [11]. Oxidative
stress triggers MAP kinase cascades that lead to phosphoryla-
tion and activation of c-Jun amino-terminal kinase (JNK),
which in turn is connected to the initial mitochondrial dys-
function. Activation and mitochondrial translocation of JNK
in the liver has also been shown to play a central role in the
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pathomechanism of APAP toxicity [15]. JNK amplifies the
already existing mitochondrial oxidant stress and largely con-
tributes to cell death by stimulating MOMP (mitochondrial
outer membrane permeabilization) and MPT (mitochondrial
permeability transition) [16], which leads to the collapse of
mitochondrial membrane potential and to the release of vari-
ous proapoptotic mediators. Nuclear translocation of AIF
(apoptosis-inducing factor) and endonuclease G from the mi-
tochondria is a well-known event of caspase-independent ap-
optosis, and it was indeed demonstrated in livers of APAP-
treated animals [5, 17].

BGP-15 is a hydroximic acid derivative. Its various
experimental effects have been demonstrated in a series
of different animal models and also in cell cultures.
These are protective effects influencing among others
heart, skeletal muscle, liver, oocytes, skin and show
the involvement of mitochondria [5, 18–24]. Hindrance
of ROS elevation and also moderation in JNK activation
by BGP-15 have been shown in different experimental
models [18]. Phase II clinical observations suggest its
antidiabetic effect [25].

We have published protective effects by BGP-15 in
acute APAP induced liver injury; it largely counteracted
MOMP [5]. In addition, mitochondrial dysfunction and
even ER stress were also affected by BGP-15 in different
experimental systems [19, 22, 23]. Therefore, the effect
of BGP-15 was further investigated focusing mainly on
morphological signs of the involvement of mitochondria
and on JNK activation. Protective mitochondrial effects
of BGP-15 in APAP overdose induced liver injury have
been shown on various pathomorphological phenomena,
and JNK activation.

Materials and Methods

In this report, in vivo hepatoprotective effects of BGP-
15 in APAP-induced liver injury are shown in mice.
The animals (male NMRI BR SPF mice of 25–30 g
body weight) were starved for 18 h prior to the admin-
istration of a single sub-lethal dose of APAP (450 mg/kg
bw, i.p.). APAP was added with or without 100 mg/kg
body weight BGP-15; the controls received vehicle or
BGP-15 only. The mice were sacrificed after 6 h, blood
samples were withdrawn and the livers were dissected
(for Western blot, RT-PCR, electron microscopy, immu-
nohistochemistry and metabolic analysis). These studies
were conducted in accordance with the laws and regu-
lations of governing authorities, and they were approved
by the Epidemiology and Animal Protection Division of
the Governmental Directorate of Food Chain Safety and
Animal Health.

Histology, Immunohistochemistry

Samples from mice livers were fixed in formalin and embed-
ded in paraffin (FFPE). 3–4 μm thick sections were prepared
and stained by hematoxylin-eosin (H&E).

Immunohistochemistry (IH)

FFPE sections were used after deparaffinization and endoge-
nous peroxidase blocking applying 1% hydrogen peroxide.
For retrieving antigens Target Retrieval Solution (DAKO,
Glostrup, Denmark) was used for 30 min in microwave oven,
followed by incubation with the primary antibodies against
TOMM20 (mAb, 1:200, Santa Cruz Biotechnology Inc.,
CA, USA), JNK (Phospho-SAPK/JNK, Thr183/Tyr185,
81E11, rabbit mAb, 1:100, Cell Signaling Technology Inc.,
Leiden, The Netherlands), Beclin1/ATG6 (1:200, Novus
Biologicals Europe, Cambridge, UK), LC3 (1:200, polyclonal
rabbit NB-100-2331 Novus Biologicals Europe) and p62
(1:1000, monoclonal mouse ab56416, Abcam, Cambridge,
MA, USA).

The reactions were carried out with Ventana Benchmark
XT automated immunohistochemical staining system
(Ventana Medical System Inc., Tucson, AZ, USA) with
HRP Multimer based, biotin-free detection technique accord-
ing to the protocol provided by the manufacturer. Reagents
and secondary antibodies were obtained from Ventana and
the reactions were visualized by UltraView™ Universal
DAB Detection Kit (Ventana). Nuclear staining was per-
formed using hematoxylin. For negative control, primary an-
tibodies were substituted with Antibody diluent (Ventana).

Electron Microscopy

Samples from liver were fixed in 2.5% glutaraldehyde,
followed by 1% OsO4. After dehydration in graded ethanol,
the samples were embedded into epoxy resin. Semithick sec-
tions were used for the selection of the proper areas, followed
by ultrathin sectioning. The uranyl acetate and lead citrate
contrasted sections were analyzed and photographed in a
JEM 1011 electron microscope (JEOL).

Sample Preparation and Western Blot Analysis

Approximately 1 mg of the liver was homogenized with
Elvehjem tissue grinder in lysis buffer. The lysis buffer
contained 0.1% SDS, 5 mM EDTA, 150 mM NaCl, 50 mM
Tris, 1% Tween 20, 1 mM Na3VO4, 1 mM PMSF, 10 mM
benzamidine, 20 mMNaF, 1 mM pNPP and protease inhibitor
cocktail. The lysates were centrifuged with benchtop centri-
fuge (10 min, 10.000 rpm, 4 °C). Protein concentration of the
supernatant was measured with Pierce BCA Protein Kit Assay
(Thermo Scientific), and then stored on −20 °C until use.



Samples (50 mg protein) were electrophoresed on 10%
SDS polyacrylamide gels and transferred to PVDF membrane
(Millipore). Primary and secondary antibodies were applied
overnight at 4 °C and for 1 h at room temperature, respective-
ly. Equal protein loading was validated by detection of
GAPDH as a constitutively expressed reference protein.
Mouse monoclonal anti-GAPDH (Santa Cruz, sc-32,233) an-
tibody was used at 1:20,000 dilution. Primary antibodies: rab-
bit anti-phospho-SAPK/JNK (THR183/Tyr185) antibody
(#9251S), anti-SAPK/JNK antibody (#9252S). Secondary an-
tibodies: Horseradish peroxidase (HRP)-conjugated goat anti-
rabbit IgG-HRP (#7074) fromCell Signaling and donkey anti-
goat IgG-HRP (sc-2020) from Santa Cruz. HRP was detected
with chemiluminescence using Western Lightning Plus-ECL
(Perkin Elmer).

Results

Effect of BGP-15 Administration on APAP- Induced
Liver Injury Seen by Light and Electron Microscopy
and Immunohistochemistry

Fig. 1 Histology of mouse livers
6 h after treated with APAP (a),
with BGP15 (b), untreated
control (c) and APAP+BGP15-
treatment (d). Severe cellular
injury in APAP-treated livers,
while no alterations in the other
samples (formalin fixation,
paraffin embedding, hematoxylin
and eosin staining). (a, c, d: 150X,
b: 250X)

Fig. 2 Electron micrographs of
mouse livers treated with APAP
(a), BGP15 (b), untreated control
(c) and APAP+BGP15 (d) for 6 h.
Severely degraded organelles,
some mitochondria lost their
cristae, mitophagy in a damaged
hepatocyte after APAP-treatment
(a). Hepatocyte with large
number of mitochondria with
normal ultrastructure in BGP15-
treated (b), control (c) and
APAP+BGP15-treated liver (d).
(Glutaradehyde+OsO4 fixation,
resin embedding)
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After 6 h of APAP administration, severe liver cell injury, main-
ly in centrolobular localization was observed (Fig.1a). In con-
trast, no sign of liver injury as necrosis or apoptosis was present
in the BGP15-treated (Fig.1b) or in the control (Fig. 1c) and
APAP+BGP16-treated (Fig.1d) samples. The severe cellular
injury was well presented by electron microscopy (Fig. 2).
Distorted, vacuolated mitochondria were observed, many with
lost cristae (Fig. 2a), some of them localized in lysosomes. The
BGP-15-treated (Fig. 2b), control (Fig. 2c) and APAP+BGP-



15-treated (Fig.2d) hepatocytes demonstrated normal mito-
chondrial morphology. Immunohistochemical reactions using
anti-TOMM20 antibody, demonstrated large numbers of

positively-stained brown granules with variable sizes in the
injured hepatocytes after APAP-administration (Fig. 3a), main-
ly located in the centrolobular zones, while the BGP-15-treated

Fig. 4 Strong granular
immunohistochemical reaction
with antibodies to TOMM20 (a),
beclin1 (b), LC3 (c) and p62 (d)
after APAP-treatment. No
reaction in the control, untreated
livers (e) and few granules can be
seen after APAP+BGP15
treatment (f). (formalin fixation,
paraffin embedding,
hematoxylin-staining). (250X)
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Fig. 3 Immunohistochemical
reaction with TOMM20 antibody.
Mice were treated with APAP
(450 mg/kg) and BGP
(100 mg/kg) alone, or in
combination for 6 h. Intensive
granular reaction is detected in the
hepatocytes after APAP-treatment
in the centrolobular area (a). No
reaction in the BGP15-treated (b)
and control livers (c) and few
granules can be seen after APAP+
BGP15 treatment (d). (formalin
fixation, paraffin embedding,
hematoxílin-staining) (150X)



(Fig. 3b) livers weremore like those of the control animals (Fig.
3c) and only very few brown granules were observed in the
APAP+BGP15-treated livers (Fig. 3d).

Parallel FFPE sections were used to detect autophagy
markers in APAP-treated livers as compared to TOMM20
(Fig. 4a). Immunohistochemical reaction to autophagy
markers beclin1 (Fig. 4b), LC3 (Fig. 4c) and p62 (Fig. 4d)
presented granular positive reaction in the hepatocytes, in sim-
ilar centrolobular localization as TOMM20. In contrast no
positive reactions could be detected in the control livers

Effect of BGP-15 Administration on JNK Activation

The level of JNK phosphorylation as an indicator of the activa-
tion of stress kinases was investigated in the liver samples by
western blot analysis (Fig. 5a). Consistent with previous obser-
vations, a dramatic, nearly 20-fold increase in phosphorylated
JNK level was found in the livers of mice after a sub-lethal

Fig. 5 Effect of BGP-15 on
APAP-induced JNK
phosphorylation in mouse liver.
A. Western blot using specific
antibodies as indicated, protein
lysate from liver tissues. Mice
were treated i.p. with APAP
(450 mg/kg) and BGP
(100 mg/kg) alone, or in
combination for 6 h. Liver
homogenates were prepared and
phosphorylation and expression
levels of c-Jun N-terminal kinase
(JNK) were investigated by
western blot analysis by using
specific antibodies against
phosphorylated (upper panel) and
total (middle panel) JNK. The
picture shows typical blot images
obtained in one of the four
independent experiments, each
including three parallels. The
results were quantified by
densitometry, normalized to
GAPDH (lower panel) and
expressed as relative band
densities in the percentage of
APAP-treated. Data are shown as
mean values ± S.D.; n = 7–12;
*P < 0.005, v.s. untreated
control;!P < 0.005, v.s. APAP-
treated. B.
Immunohistochemistry with
antibody against p-JNK. Severely
injured hepatocytes are
highlighted by dark brown
stained areas after APAP-
treatment (a) as compared to the
BGP15-treated (b) and untreated
control (c). After APAP+BGP15-
treatment only few brown
granules can be seen (arrow) (d).
(formalin fixation, paraffin
embedding, hematoxylin
staining,) (150X)
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(Fig. 4e), and only few granules could be seen in the APAP+
BGP15-treated hepatocytes (Fig. 4f).
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APAP treatment. BGP-15 alone did not cause any significant
change in JNK phosphorylation, however, co-treatment with
BGP-15 remarkably reduced the JNK activating effect of
APAP in the mouse liver, i.e. the increase in phosphorylation
was only 6-fold in the BGP-15 co-treated animals (Fig. 5a).

After APAP administration, pJNK immunohistochemical
reaction was strongly positive (Fig. 5a.), as compared with
the BGP15-treated (Fig.5b) and untreated control (Fig. 5c).
APAP+BGP-15 treatment resulted in a decreased reaction,
only few granules of various sizes were detected in the hepa-
tocytes (Fig. 5d).

Discussion

Our data presented in this paper further support the protective
mitochondrial effects of BGP-15 in acute APAP overdose
induced liver injury, which was demonstrated in our previous
paper [5]. BGP-15 greatly improves mitochondrial morphol-
ogy and causes a marked decrease in the number of damaged
mitochondria. The attenuation of mitochondrial damage by
BGP-15 is further demonstrated by immunohistochemical
methods. These changes are accompanied by the parallel in-
crease or decrease of autophagy markers.

Originally, BGP-15 was introduced as an inducer of heat
shock proteins (hsp) [26] and various recently published BGP-
15 effects were also coupled to hsp induction [18, 20]. These
BGP-15 effects make the drug potentially effective in
influencing also endoplasmic reticulum (ER) stress related
phenomena [22]. However, several effects of BGP-15 can be
hardly explained solely by its hsp inducer actions [21].

The presented findings highlight the improvement of mito-
chondrial functions as a mechanism underlying the beneficial
effects of BGP-15. As a result of the oxidative stress, JNK 1
and 2 are activated [27]. Then the phosphorylated (activated)
JNK translocates to the mitochondrial membrane and generates
further mitochondrial oxidative stress that triggers the opening
of MPT pore, which can finally lead to cell death [28, 29].

Observations published recently suggest that BGP-15 af-
fects mitochondrial fusion-fission cycle, preventing mito-
chondrial fragmentation [23]. In accordance with these obser-
vations, BGP-15 administration results in a decrease in the
number of damaged mitochondria as it has been demonstrated
in our recent study, which is accompanied with the increase in
mitophagy. The central role of mitochondria in apoptosis has
long been known, and the participation of mitochondrial pro-
apoptotic factors in ER-derived apoptosis has also been re-
vealed. The increased number of apoptotic cells without a
simultaneous activation of effector caspases highlights the
role of caspase-independent mechanisms in APAP-induced
acute hepatotoxicity [30].

Mitochondrial dysfunction and autophagy are involved in a
number of acute and chronic liver diseases, as drug induced

liver injury, fatty liver or hepatocellular carcinoma [31]. BGP-
15 has been shown to affect various model liver injuries, as
acetaminophen overdose induced liver damage and tumour
formation in murine hepatoma xenografts [5, 32, 33]. Our
recent data further confirm mitoprotective mechanism of
BGP-15 action in an accordance with parallel changes in
mitophagy in acetaminophen overdose induced liver injury.
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