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Purpose: Statistical shape modeling provides a powerful tool for describing and

analyzing human anatomy. By linearly combining the variance of the shape of a population

of a given anatomical entity, statistical shape models (SSMs) identify its main modes

of variation and may approximate the total variance of that population to a selected

threshold, while reducing its dimensionality. Even though SSMs have been used for over

two decades, they lack in characterization of their goodness of prediction, in particular

when defining whether these models are actually representative for a given population.

Methods: The current paper presents, to the authors’ knowledge, the most extent lower

limb anatomy shape model considering the pelvis, femur, patella, tibia, fibula, talus, and

calcaneum to date. The present study includes the segmented training shapes (n = 542)

obtained from 271 lower limb CT scans. The different models were evaluated in terms of

accuracy, compactness, generalizability as well as specificity.

Results: The size of training samples needed in each model so that it can be considered

population covering was estimated to approximate around 200 samples, based on the

generalizability properties of the different models. Simultaneously differences in gender

and patterns in left-right asymmetry were identified and characterized. Size was found

to be the most pronounced sexual discriminator whereas intra-individual variations in

asymmetry were most pronounced at the insertion site of muscles.

Conclusion: For models aimed at population covering descriptive studies, the number

of training samples required should amount a sizeable 200 samples. The geometric

morphometric method for sex discrimination scored excellent, however, it did not largely

outperformed traditional methods based on discrete measures.

Keywords: morphometric analysis, sex discrimination, shape modeling, PCA data analysis, validation and
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INTRODUCTION

The increasing use of and ease of access to 3D and 4D imaging
technologies has had a tremendous impact on understanding the
complexity of human anatomy by enabling detailed non-invasive
exploration of the human body. With improved modalities,
such as Multi-Detector/Multi-Slice Computed Tomography
(MD/MSCT) and Magnetic Resonance Imaging (MRI) to
visualize and describe skeletal anatomy, a growing interest
in the description of the anatomical variation has emerged
and scientific findings have been reported in numerous areas
including anthropology, evolutionary biology, forensics, implant
design, anatomy, epidemiology, and last but not least clinics,
for the distinction of physiological vs. pathological anatomical
variation (Audenaert, 2014).

This area of research has grown enormously since the
description of geometric morphometrics (Slice, 2007). Geometric
morphometrics uses homologous landmarks, defined as “a point
of correspondence on an object that matches between and within
populations” (Slice, 2007). This has resulted to the development
of statistical shape models (SSM) that realistically describe
anatomy and its variation in any population by conventional
multivariate statistics of dense sets of homologous landmarks
representing the shape of the underlying structures (Heimann
and Meinzer, 2009; Audenaert, 2014). Unlike before, these
techniques have the potential for accurate parameterization
of complex data such as an individual’s morphology or the
description of the distribution of anatomy in the population.

SSMs have proved to be extremely valuable in all of the
previously defined research areas, especially those involving the
human skeleton. For instance, themodels can be used to precisely
describe skeletal maturity in children (Thodberg et al., 2009),
forensic researchers can estimate age, gender, and many other
features from skeletal findings (Gehring et al., 2001; Hauser et al.,
2005), dysmorphism in rare clinical syndromes can be linked
to genetic information and even used for identification of the
specific condition (Claes et al., 2012a; Khanduja et al., 2016)
automated detection and description of bones and organs in
medical images can be performed (Seim et al., 2008; Almeida
et al., 2016; Audenaert et al., 2019), detailed 3D images can be
generated from sparse radiographical data (Fleute and Lavallee,
1999) reducing radiation exposure in surgical planning, and
allowing for individualized clinical and mechanical models of
high complexity to be generated from simple routine images.

While there is no doubt on the added value of SSMs in
numerous application domains, several limitations in dense
geometric morphometry studies of skeletal anatomy do exist.
Probably the most relevant, and although applications of SSMs
have been increasingly published in the literature, never a model
has been effectively studied in terms of sample size properties
and a statistical significance in terms of population coverage
and generalization properties was similarly never obtained.
Furthermore, and directly related to the difficulty in reaching
statistically relevant sizes of training samples, issues like sexual
dimorphism, or analysis of the left/right asymmetry have not
previously been studied in detail, for one exception being the
pelvis. The obstetric specialization of the female pelvis is reflected

in an unquestioned interest in metrics based sex determination,
particularly in forensic, and evolutionary sciences. Geometric
morphometric studies are to be expected to increase the
robustness of such analysis (Krishan et al., 2016).

Finally, an additional limitation in most studies has been the
absence of cortical shape and medullar anatomy. The definition
of cortical morphology is clinically and functionally important
as not only it is an integral part of lower-limb computational
musculoskeletal models, cortical thickness is as well a crucial
parameter in stress simulations and the medullar anatomy is
crucial for implant design optimization, surgical planning and
fitting, and mechanical prosthesis testing and design (Zhang
et al., 2016).

The aim of the present work is to develop and describe
a detailed statistical shape model of the lower limb skeleton,
based on a cohort of 542 samples obtained from 271 CT
scans. Secondly, by analyzing such a significant data set,
we aim to define the necessary standards for statistical
work on human anatomy in terms of appropriate samples
sizes to accurately describe a population. Thirdly, we aim
to provide improved understanding of sexual dimorphism
and asymmetry issues in skeletal anatomy of the lower
limb bones.

MATERIALS AND METHODS

A total of 542 training data sets (left and right combined)
were considered, originated from 271 CT scans. All scans
were processed on a Dell Precision M6800 Laptop (Intel
Core i7−4910MQ, 16 GB RAM, 64 bit). Each scan data set
consisted of an average of 1864 slices with a pixel size between
0.575 and 0.975mm. Every image domain included the full
lower limb anatomy ranges from rib 12 to toes. The imaging
database was constructed from living subjects receiving angio-CT
scanning for vascular work-out between 2012 and 2016. CT data
demonstrating metallic implants (e.g., hip and knee prosthesis)
was excluded from the data base. The participating subjects were
not exposed to additional radiation for the present study. This
study involving human participants was reviewed and approved
by the ethics committee of the Ghent University Hospital (under
reference B670201111480). The patients provided their written
informed consent to participate in this study.

In-vivo clinical imaging of the human skeleton, and
more specifically the lower limb anatomy, through detailed
tomographic imaging modalities such as X-ray Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI)
allows the most complete non-invasive depiction of the
morphology of the structures involved in loco-motor function.
However, accurate and robust extraction of these structures
from a large image database requires automated procedures.
The segmentation task for the different bones included in the
present study was described in detail in the work by Audenaert
et al. (2019). Comparing automatic with manual segmentations
demonstrated rooted mean squared differences ranging from
0.53 to 0.76mm with the largest differences found in the pelvic
bones (Audenaert et al., 2019).
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Starting from the segmented structures, a dense set of
correspondences between homologous structures in the data
set were automatically established by a non-rigid mapping
of an anthropometric mask (quasi-landmarks) onto the
original 3D reconstructions using a selection of readily
available point/surface matching techniques (Claes et al., 2012b;
Audenaert et al., 2019). Upon completion, all relevant structures
in all images were represented as a homologous series of
dense landmarks as required for the geometric morphometric
analysis and the development of the final statistical analysis
of shape of the lower limb anatomy. Homologous defined
as each quasi-landmark occupying the same position on
each structure relative to all the other quasi-landmarks.
Following robust Least Squares (Procrustes) superimposition
of these homologous series of dense landmarks to account
for uninteresting positional, rotational and, possibly, scale
differences, the variance/covariance of morphological differences
within a body part over a population can be established (Claes
et al., 2012a).

For each sample a right and a left morphology were
available. Considering these are coupled data sets with similarities
among bony anatomies, right and left morphologies were
superimposed using a Procrustes analysis and a perfectly
symmetrical consensus configuration was defined. Each single
shape is then further decomposed into its bilaterally symmetric
part (i.e., the mean consensus shape) and its asymmetric
part (i.e. the residue) (Mardia et al., 2000). Model evaluation
was than performed following Principal Component Analysis
(PCA) of the symmetrical Euclidian data set (n = 271),
whereas left-right asymmetry was studied following PCA of the
asymmetry residuals.

PCA was originally described by Pearson and later adopted
by $$Fisher and MacKenzie (Jolliffe and Cadima, 2016). It is
one of the oldest and most widely used dimensionality reduction
techniques, decomposing a multivariate data set into its mean
and corresponding covariance matrix. The eigenvectors of the
covariancematrix are usually referred to as principal components
or eigenmodes, whereas the eigenvalues indicate there relative
importance. The first principal component is usually called the
main mode of variation, as it represents the direction of maximal
variance within the data. In the particular case of anatomical
data this component nearly always defines size differences
between subjects. Accordingly, the second principal component
represents the direction that maximizes the variance in the data
under the constraint that it is orthogonal to the first principal
component, and so on. As such, it is a descriptive tool that allows
for a systematical exploration of shape variation in a model.

PCA was accordingly used to determine the (co-)variance of
morphological differences within the symmetrical data set and
for each structure a statistical shape model (Cootes et al., 1995)
was generated, described as

S = S+ Pb (1)

with S the shape vector represented as the ordered list of vertex
coordinates (following Generalized Procrustes Alignment). S
defines the corresponding average shape, P =

(

p1, p2, . . . pt
)

the

matrix of eigenvectors of the covariance matrix
(

S− S
)T

(S− S),

and b =
(

b1, b2, . . . bt
)T

a vector of weights.
In order to quantitatively evaluate the obtained SSMs several

properties were studied. First, for geometric representations
of a person’s anatomy made from a series of spatially
sampled primitives, there needs to be sound correspondence of
the primitives across training cases. Reduced correspondence
can introduce noise to training samples that can mask
existing variation between bone shapes, resulting in an
untrustworthy estimation of the shape probability distribution
(model specificity) (Styner et al., 2003). Second, geometric
depictions need to be efficient and compact, so that they can
describe the shape of a structure with a minimal number of
parameters (model compactness). Finally, such a model needs
to be able to accurately describe members of the population
outside of the training sample (model generalization) (Styner
et al., 2003; Gollmer and Buzug, 2010). More specifically, and
following Styner et al., we implemented the following “goodness”
measures: rooted mean squared distance to in-training-set
landmarks (accuracy) for different amounts of explained model
variance, accumulated variance (compactness), approximation
error (RMSE) to each training sample in a leave-one-out setting
(generalization) and the average (RMSE) distance of uniformly
distributed, randomly generated objects in the model shape space
to their nearest member in the training set (specificity) (Styner
et al., 2003).

Model Accuracy
The first test analyzes how well-osteological entries within the
set used to create the model, are described in terms of accuracy
using models capturing different amounts of total variance
expressed in percentage. The question to be answered is: How
much percentage variance is sufficient or what is disregarded
by not including the remaining variance? For clinical usage
we defined accuracy as the number of principal components
necessary to reach an accuracy for surface definition of 0.6mm,
which is basically below the average resolution of the scanned
images. In a first instance, the number of principal components
needed to describe a certain amount of variance is determined
to construct model descriptions of the osteological entries within
the training set. Subsequently, the accuracy of the shape is
computed by calculating the Root-Mean-Squared-Error (RMSE)
of the distances between corresponding points of the model
description Si

′ (M) and an original osteological entry of the
training set (Si). The accuracy is computed as the average absolute
difference between the model description and the osteological
entry. The property value accuracy is the absolute difference
between both.

Accuracy (M) =
1

K

K
∑

i=1

∥

∥

∥
S
′
i (M) − Si

∥

∥

∥

2
(2)

Model Compactness and Size Dominance
A compact shape model is a model that can accurately
reconstruct new shape instances with as little shape parameters
as possible. Thus, the compactness is defined as the cumulative
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explained variance of theMth eigenmode obtained by the models
covariance matrix decomposition (Wang and Shi, 2017).

Compactness (M) =
1

∑

λ

M
∑

m=1

λm (3)

where λm is the mth eigenvalue. For compactness, the higher
the value is, the lesser variables are required for the constructed
shape model to describe its population variance. Considering the
variable impact of size of bones on the total population variance,
in particular in long bones like femur and tibia, size dominance
was reported as the percentual variance described by the first
principal component.

Model Generalization
The generalization ability quantifies the capability of the
constructed SSM to represent new shape instances of the same
class, which are not part of the original training set. The
generalization ability is evaluated by performing a series leave-
one-out tests on the training data. Having enough training data
we expect the model to be able of describing unseen structures
quite accurately or to generalize well (Wang and Shi, 2017).
The question then becomes: how many training samples are
sufficient? This is evaluated by comparing the accuracy evolution
to the in-training-set values. Specifically, a shape model is built
by using an increasing number of randomly selected training
shapes while excluding a target training shape Si, and then the
previously constructed model is than used to reconstruct the
excluded shape Si. The approximation error is consequently
defined as the distance (RMSE) between the excluded shape Si
and its reconstructed duplicate S

′
i (M). The generalization metric

is the average reconstruction error over all the performed K tests:

Generalization (M) =
1

K

K
∑

i=1

∥

∥

∥
Si − S

′
i (M)

∥

∥

∥

2
(4)

where the reconstructed shape S
′
i (M) is defined as a linear

combination of the first M modes of variation:

S
′
i (M) = S+

M
∑

m=1

Pmbm (5)

A smaller error in the generalization ability of the model
designates a better constructed shape model (Wang and Shi,
2017). A model is considered population covering when by
increasing the amount of training samples it does not improve
the generalization ability of the model any longer.

It is important to note that fitting the excluded shape
entries with the respective shape models comes with a number
of particular challenges. Firstly, during the alignment of the
“unknown” shapes, local dysmorphologies (e.g., a trochlear bump
up to 6mm), can lead to alignment errors during the ICP
procedure. These abnormalities are typically localized in small
areas and do not extend over the whole region of interest. To
account for general disturbance during alignment of the data
sets by these local abnormalities, the so-called “Pinocchio effect,”

iterative exclusion of outliers at the 0.05 level was performed
while using bidirectional (target to source and back) vertex
correspondences, to obtain a robust alignment prior to solving
the principal component weights needed to describe the shapes
(Besl and Mckay, 1992; Claes et al., 2012a; Audenaert et al.,
2019). Secondly, fitting the excluded shapes into the models to
define their respective PC weights is solved iteratively using a
deterministic annealing scheme by progressively increasing the
number of principal components used to describe the shape
entry of interest. Similarly to the alignment problem, using
bidirectional ICP information results into an overdetermined set
of linear equations that can efficiently be solved in a least squares
sense using the Moore-Penrose pseudoinverse matrix. Details
of the different algorithms used can be found in Audenaert
et al. (2019), further all coding used is open source and
available at Matlab R© file exchange (https://nl.mathworks.com/
matlabcentral/profile/authors/4165925-manu).

Model Specificity
The specificity measures the realistic construct of new shape
instances randomly generated by the developed shapemodel. It is
measured by generating a large set (N) of virtual shape examples
using the constructed model and calculate their difference from
real samples available in the training set (Wang and Shi, 2017).
The approximation error is defined as the distance between
the generated shape instance Sj and its most similar sample

in the training data S
′
j. The specificity metric is than defined

as the averaged approximation error of all the generated N
shape instances:

Specificity (M) =
1

N

N
∑

j=1

∥

∥

∥
Sj (M) − S

′
j

∥

∥

∥

2
(6)

where the shape instance Sj is generated by choosing random
normal distributed values n for the first shape parameter b from
the range bm ∈

[

−n
√

λm, n
√

λm
]

; with λm representing the
mth eigenvalue.

Sj (M) = S+
M

∑

m=1

bmPm (7)

and the most similar sample S
′
j is defined as:

Sj
′ = arg min

k ǫ [1,k]

∥

∥

∥
Sj (M) − S

′
j

∥

∥

∥
(8)

A value of K = 10,000 was used to obtain the results reported in
this study.

Sexual Dimorphism and Asymmetry
Sexual dimorphism implies sex interactions in patterns of
underlying gene expression and function resulting in phenotypic
differences between the sexes (Claes et al., 2012c). The gender-
shape relationship was evaluated by means of canonical
correlation analysis. In particular, the PC weights of the training
data, serving as predictor variables for the observed male (+1)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 November 2019 | Volume 7 | Article 302

https://nl.mathworks.com/matlabcentral/profile/authors/4165925-manu
https://nl.mathworks.com/matlabcentral/profile/authors/4165925-manu
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Audenaert et al. Sex Discrimination by SSM

either female (−1) gender, were used. Overall explained variance
in the observed shape components by the factor gender was
evaluated by means of partial least squares (PLS) regression.
Gender differentiation potential of the models was established
by Linear Discriminant Analysis and its accuracy in a k-fold
leave-one-out simulation. As previously mentioned, PCA on the
asymmetrical residuals was used to describe the most relevant
asymmetry findings in the study population.

RESULTS

The obtained dataset of training data represents 181 male and 90
female cases with an average age of 67.8 (±10.8) and 69 (±13.3)
years, respectively. Each case was represented by its averaged
symmetrical consensus as well as the remaining asymmetry
component. Model evaluation was than performed onto the
consensus shapes (n= 271).

Segmentation of the data sets was performed fully
automatically and based on a validated segmentation protocol
for which details can be found in the work by Audenaert et al.
(2019). The segmented structures used for construct and analysis
of the respective SSMs, included the pelvis, femur, patella, fibula,
tibia, talus, and calcaneum.

Model Accuracy
The following procedure was performed for every entry in the
database and the accuracy results for the different information
parts were averaged and presented in Table 1. Considering the
relative dominance of the factor size in skeletal anatomy, in
particular for long bones, we chose to define the level of aimed
in-sample accuracy in terms of number of PCs required to reach a
minimal and clinically relevant submillimeter (image resolution -
size) distance error of 0.6mmwhile including at least 95% of data
variance. Hence, the amount of principal components needed for
such accuracy, the variance and the accuracy are reported as well
in Table 1.

Model Compactness
Figure 1 shows the cumulative compactness for the different
models, for increasing number of modes of variation included.
For all structures investigated the first and dominant PC,
as evaluated by visual inspection, involved nearly exclusively

difference in size between subjects. The amount of variance
described by this first PC is reported as well in Table 1.

Model Generalization
Figure 2 depicts the shape accuracy evolution with increasing
amount of training shapes for the different human bones
investigated. It can be seen that the accuracy errors approximate
their in-training-set values as more training samples are added.
Despite the small difference at the end of the curve (using 270
training shapes) we can conclude that the amount of training
shapes in our database seems sufficient to represented the
population described by the model. When applying an arbitrarily
measure of convergence of <10−3 mm in improvement of RMS
generalization error evolution with increasing number of training
samples, convergence was obtained ranging from 160 samples for
to calcaneum to 210 samples for the pelvic bone.

Model Specificity
Model specificity results are as well-presented in Table 1 and
range from 0.6 to 2.08mm, the highest value being obtained for
the pelvis.

Asymmetry
Pelvic asymmetry was predominantly located at the insertion
sites of muscle groups (Figure 3), namely the demonstrating
superior SIAS, hamstrings and adductor insertion regions. For
femur and tibia asymmetry was mostly pronounced at the site of
the joints, in particular hip and ankle. The smaller bones, patella,
calcaneum, and talus all presented with submillimeter left/right
differences. Asymmetry was only poorly gender pronounced,
with 1.8% of variance being explained by gender. Asymmetry of
the femur, although not pronounced, was most evident around
the femur head. On overview of average asymmetry findings is
presented in Figure 3.

Sexual Dimorphism
Gender accounted from 12.69 up to 42.31% of anatomical
variance and predominantly accounted for variation in the
first two modes of variation. Sex discrimination was robustly
performed in the pelvic bone anatomy (100% success rate),
and could be estimated with reasonable probability by the long
bones tibia and femur. On overview of gender differentiation
capabilities is presented in Table 2. The patella bone provided

TABLE 1 | Accuracy, generalization, specificity, and compactness results for the different SSMs considered.

Percent of variance explained by

size (%)

Nr. of PCs

included

Percent of variance explained by

the included PCs (%)

Model accuracy

(RMSE mm)

Model specificity

(RMSE mm)

Pelvis 45.35 39 97.47 0.59 ± 0.08 2.05 ± 0.35

Femur 82.45 25 99.19 0.59 ± 0.06 1.91 ± 0.28

Tibia 89.09 21. 98.74 0.59 ± 0.06 1.36 ± 0.21

Patella 63.59 21 95.01 0.31 ± 0.07 0.71 ± 0.11

Calcaneum 61.02 29 95.03 0.36 ± 0.05 0.93 ± 0.15

Talus 68.37 27 95.16 0.25 ± 0.08 0.63 ± 0.08

The impact of the first component describing predominantly size in the models is, respectively, described in the first column.
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FIGURE 1 | Cumulative variance of the population by number principal components following a principal component analysis (PCA) to describe the different skeletal

models.

the least reliable predictive features. Male/female differences
as obtained following the canonical correlation analysis are
demonstrated in Figure 3, average male/female canonical scores
were amplified with a factor 2. Clearly distinguishable features

include narrower pubis in males, narrower subpubic angle and
overall narrower pelvic inlet as compared to males. For the
femur, clinical relevant particularities were as well-observed.
Although female subjects have overall smaller sizes, a relative
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FIGURE 2 | Accuracy evolution of the SSM-based shape representation (solid curve) and in-sample target accuracy (dotted curve) for different levels of prior

knowledge expressed as amounts of training data in the SSM.

narrowing of the condylar width, a decreased cortical thickness
and a relatively smaller diameters of the femoral head were
noticed. The tibia plateau in accordance with the femoral
condyles, presented smaller sizes in females as compared to
males. Similarly, the tibia pilon about the ankle presented

smaller in width in females as compared to males. The
smaller bones, patella, calcaneum, and talus all presented on
average compacter in all dimensions in females as compared
to males. An overview of the gender differences is provided
in Figure 3.
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FIGURE 3 | Heat maps demonstrating sexual dimorphism and asymmetry in the different anatomical shapes considered. PC scores describing the male and female

gender differences obtained following the canonical correlation analysis were amplified with a factor 2 when compared to the overall average shape configuration.

Asymmetry findings were projected on the average symmetrical consensus shape.

DISCUSSION

It is generally accepted that skeletal anatomy is defined by a
person’s genetic background, his environment and his functional
level. The genetic background of morphogenesis, however, lacks
a clear Mendelian pattern of inheritance and is associated with
interactions of different genes, each conferring small effects
(i.e., a polygenetic complex trait). Environmental and functional
variables in combination with a person’s genetic background
affect growth during adolescence, whereas morphology impacts
importantly on the stress distribution within biological tissue,

which in turn can be the signal or trigger for a specific gene
expression (Bastow et al., 2005; Waarsing et al., 2011; Baker-
Lepain et al., 2012; Rolfe et al., 2014). Recently, a number of
authors have successfully started to explore the potential of
genetic association analysis of multivariate/multiple phenotypes
using in depth profiling such as statistical models of shape
(Lindner et al., 2015). Clearly, such analysis requires a valid
representation of a subject’s anatomical phenotype and its
positioning within a given population.

Where any structured a priori knowledge is valuable in
applications such as medical image segmentation, claiming a
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TABLE 2 | Canonical correlation analysis and partial least squares regression results relating variation in shape with gender and sexual discriminative features of the

different SSMs described.

Correlation r

gender-shape

Percent of variance

explained by gender (%)

Percent of correct male

gender discrimination (%)

Percent of correct female

gender discrimination (%)

Pelvis 0.97 (p = 4.1e-117) 12.69 100 100

Femur 0.88 (p = 3.9e-67) 27.28 97.24 95.56

Tibia 0.89 (p = 9.8e-73) 31.71 98.34 96.67

Patella 0.75 (p =1.9e-32) 18.96 91.71 83.33

Calcaneum 0.82 (p = 4.4e-44) 33.21 92.82 85.56

Talus 0.84 (p = 3.34e-50) 42.31 93.92 86.67

shape model is valid for representation of a given population
in other medical applications (e.g., genetic studies and implant
design) is not that obvious. In the present study we aimed
to provide the boundaries in terms of sample sizes for the
description of human osteology in population covering studies.
As a rule of thumb we can conclude from our data that a
minimum of 200 training samples are required to sufficiently
cover population variance. Do note that this rule of thumb
applies for the population that was investigated, which is a
single homogenous population of EuropeanDescent. Conversely,
these numbers can further increase for heterogeneous and
admixed populations.

The secondary aim of this study was to evaluate gender
differences, as well as to describe common patters of asymmetry
within subjects. While sex prediction is a common problem
in anthropology and forensic sciences, these areas have
mainly focused on discrete measures, lines and distances
between landmarks, in particular of pelvis and proximal femur,
whereas the exact description of shape variation has rarely
been the focus. In particular, the pelvis, given its obstetric
relation, has been the focus in several studies. Studies of
sexual dimorphism in the human pelvis show that while,
in general, many pelvic characteristics reflect full body size,
and are therefore larger in men than in women, other
dimensions of the pelvic canal follow the inverse model (Tague,
2000; Kurki, 2011). The use of geometric morphometrics
provides an unmet means to investigate and describe sexual
dimorphism as to differentiate based on relevant shape
predictors between genders. Interestingly, from our results it
appeared that the geometric morphometric method for sex
discrimination did not largely outperformed traditional methods
based on discrete measures. It appears that size dominance
in the data variation, an excellent discriminator on its own,
importantly weakens the magic of geometric morphometrics.
Traditional methods, however, are fast, applicable in the
field and can be used when specimens are incomplete or
even fractured. Based on their ease to use and the results
found in this work we can only conclude they still stand
as valid alternatives. Novel techniques are in the phase of
development that might be readily applicable in the field with
the same advantages of geometric morphometrics including

promising neural network applications such as geometric deep
learning (Bronstein et al., 2017).

Our findings also seem to support some relevant clinical
findings. In particular, gender differences around the knee
have been a recent subject of interest in knee arthroplasty. A
significant difference in knee width was demonstrated between
male and female samples and presented the most pronounced
component of variation (excluding size). This is in agreement
with previous clinical reports (Chin et al., 2002; Hitt et al.,
2003) and the industry has even adopted this concept for the
development of gender specific implants. Although interesting
from a commercial point of view, no evidence of any outcome
advantage in the gender-specific design could be demonstrated
in randomized clinical trials (Thomsen et al., 2012).

Yet another interesting finding that asymmetry in subjects
coincides with the attachment site of muscles, clearly present
in the pelvis for example, might be attributed to differences in
left-right dominance. Obviously further studies are required to
substantiate such claims. Probably of more clinical importance
are the pronounced asymmetry findings around the femoral head
and by extension the position and orientation of the natural
center of rotation. While for several years it has been common
clinical practice to use the contralateral hip for surgical planning
and templating in case of hip arthroplasty for reason of severe
deformity by trauma or bone necrosis, recently several authors
have warned for important asymmetry to exist in the proximal
femur. Our findings strongly support this finding and confirm
that asymmetry may lead to inaccurate anatomical restoration of
the hip if the templated sizes are routinely implanted (Dimitriou
et al., 2016; Laumonerie et al., 2018).

An important limitation of the present works relates to the
population under investigation, namely Belgian people and
the unknown extent of which findings can be extrapolated
to other populations. The complex interaction between
environment, culture, and the genes, results in a population-
based variation, with numerous studies demonstrating that the
appropriate evaluation of this variation necessitates specific
standards for each population (Rissech et al., 2013; San-
Millán et al., 2017). Nevertheless, in general terms we expect
our results to be representative by extension for a Western
European population.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 November 2019 | Volume 7 | Article 302

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Audenaert et al. Sex Discrimination by SSM

CONCLUSION

In conclusion and based on the quantitative results of the
employed model valuation metrics, we dare to claim that the
overall quality of the constructed shape models is high and that
therefore the presented models can be employed for effective
clinical, forensic, and population wide applications.
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