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A total of six conjugated polymers, namely PDBT-Th, PDBT-Th:Th, PDBT-2Th, PDBT-

Th:2Th, PDBT-2Th:Th, and PDBT-2Th:2Th, consisting of dibenzothiophene, thiophene,

and bithiophene were electrochemically synthesized. Their electrochemical and

electrochromic properties were investigated in relation to the conjugation chain lengths

of the thiophene units in the conjugated backbones. Density functional theory (DFT)

calculations showed that longer conjugation lengths resulted in decreased HOMO-LUMO

gaps in the polymers. The optical band gaps (Eg,opt) and electrochemical band

gaps (Eg,cv) were decreased from PDBT-Th to PDBT-Th:Th, however, PDBT-Th:2Th,

PDBT-2Th, PDBT-2Th:Th and PDBT-2Th:2Th displayed the similar band gaps. The

conjugation length increments significantly improved the electrochemical stability of the

conjugated polymers and exhibited reversible color changes due to the formation of

polarons and bipolarons. The results suggest that the conjugated polymers prepared

herein are promising candidates for fabricating flexible organic electrochromic devices.

Keywords: dibenzothiophene, electrochemical synthesis, electrochromism, conjugation lengths, color changes,

electrochemical stability

INTRODUCTION

It is indispensable for the preparation of high-performance conjugated polymers and development
of state-of-the-art applications to explore the structure-performance relationship of conjugated
polymers. Breakthroughs in organic optoelectronics, including organic solar cells, dye-sensitized
solar cells, organic field effect transistors, and electrochromism (Zhang et al., 2013; Jin et al., 2014;
Zhou et al., 2015; Li et al., 2019a), has been performed by altering the main conjugation length.
Strategies for altering the main conjugation length of organic optoelectronic materials include
chemical and electrochemical polymerization methods (Jin et al., 2014; Zhou et al., 2015).

Electrochemical polymerization is often used in organic optoelectronics and employs a working
electrode on which the polymer films simultaneous polymerize and are deposited by an applied
voltage (Li et al., 2009; Jiang et al., 2018). Electrochemical polymer preparation exhibits several
advantages: (1) It is high-throughput for synthesizing polymer films, formed only on the electrodes
without any observed in solution; (2) It is highly efficient for synthesizing polymer films,
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since the reaction can be conducted in several seconds
or minutes, while conventional chemical synthesis of a
similar polymer requires several hours or days; (3) The
electropolymerization method uses cheap supporting electrolytes
instead of specific catalysts and expensive complexants for
solution-phase synthesis; (4) The reaction can be performed
at room temperature, whereas conventional chemical synthesis
usually requires harsh conditions with high temperatures under
an inert atmosphere (Gu et al., 2015; Yuan and Lei, 2020).
The extension of the main chain conjugation length via
electrochemical polymerization is effectively concentrated in
electrochromism (Ak et al., 2008; Camurlu et al., 2008; Kavak
et al., 2015; Sheberla et al., 2015; Gu et al., 2018; Li et al.,
2019b; Zhang et al., 2019; Lu et al., 2020). Electrochromism
is often defined as the visible and reversible changes in the
transmittance and color of a material caused by an applied
voltage (Argun et al., 2004; Beaujuge and Reynolds, 2010;
Lin et al., 2017). For example, Zhao et al., verified the
stepwise enhancement of the electrochemical and electrochromic
performances of polyselenophene via electropolymerization of
mono-, bi-, and triselenophene. Polyselenophene that was
electropolymerized from triselenophene exhibited the lowest
optical band gap (1.72 eV), highest redox stability, as well as
the best electrochromic nature of optical contrast up to 75%,
coloration efficiency up to 450 cm2 C−1, and switching time (0.7
and 0.4 s for oxidation and reduction, respectively) compared to
polyselenophene prepared from mono- and biselenophene (Lu
et al., 2020). Zhang et al., prepared a cross-linked copolymer
(pTPhSNS-EDOT) via electrochemical polymerization that
exhibited a fast coloring time of 0.58 s and discoloring time of

SCHEME 1 | Synthetic routes of monomers (DBT-Th and DBT-2Th) and electrochemical polymers (PDBT-Th, PDBT-2Th, PDBT-Th:Th, PDBT-Th:2Th, PDBT-2Th:Th,

and PDBT-2Th:2Th). Reagents and conditions: (i) CHCl3, Br2 (2.2 eq.), N2 (ii) Pd(PPh3)4, chlorobenzene, 90
◦C, (iii) electrochemical polymerization, CH2Cl2-Bu4NPF6,

(iv) electrochemical copolymerization, CH2Cl2-Bu4NPF6.

0.38 s, high optical contrast of 40%, excellent color stability, and
improved color memory behavior compared to the pTPhSNS
homopolymer (Dai et al., 2017). Therefore, extension of the main
chain conjugation length is beneficial for obtaining excellent
electrochemical and electrochromic properties.

Herein, thiophene, and thiophene derivatives were used to
construct electrochromic polymers with stepwise enhancement
of the main chain conjugation lengths via electrochemical
copolymerization. The relationship between the main chain
conjugation length and electrochromic properties, as well as the
electrochemical redox activity and stability of the conjugated
polymer, were studied in detail. Significantly, this study provides
theoretical guidance for the development of related fields.

RESULT AND DISCUSSION

Synthesis and Characterization
The synthetic routes for the monomers (DBT-Th and DBT-2Th)
and electrochemical polymers (PDBT-Th, PDBT-2Th, PDBT-
Th:Th, PDBT-Th:2Th, PDBT-2Th:Th, and PDBT-2Th:2Th)
are illustrated in Scheme 1. Poly[2,8-bis-(thiophen-2-yl)-
dibenzothiophene] (PDBT-Th) and poly[2,8-Bis-(bithiophen-
2-yl)-dibenzothiophene] (PDBT-2Th) were prepared from
the 2,8-bis-(thiophen-2-yl)-dibenzothiophene (DBT-Th)
and 2,8-Bis-(bithiophen-2-yl)-dibenzothiophene (DBT-2Th)
monomers (0.01mol L−1) and Bu4NPF6 (0.1mol L−1) in
DCM via electrochemical polymerization. PDBT-Th:Th and
PDBT-Th:2Th were electrochemical polymerized from 0.005mol
L−1 DBT-Th and 0.005mol L−1 thiophene (Th)/bithiophene
(2Th), respectively. PDBT-2Th:Th and PDBT-2Th:2Th were
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obtained from 0.005mol L−1 DBT-2Th and 0.005mol L−1

Th/2Th via electrochemical copolymerization. From the
synthetic routes of DBT-Th and DBT-2Th, dibenzothiophene
(DBT) was used to prepare the corresponding bromide
(2,8-dibromodibenzothiophene) via bromination. The above
dibromide was reacted with tributyltin substituted Th/2Th to
afford the target products using a Pd(PPh3)4 catalyst. The 1H
NMR and 13H NMR spectra of target monomers are presented
in Figures S1–S4.

Electrochemical Polymerization of DBT-Th,
DBT-2Th and Electrochemical
Copolymerization of DBT-Th, DBT-2Th, Th,
and 2Th
From their anodic oxidation curves (Figure S5), the onset
oxidation potentials (Eonset) were initiated at 1.11, 1.30, 0.85,
1.27, 1.07, and 0.98V for DBT-Th, DBT-Th:Th, DBT-2Th,
DBT-Th:2Th, DBT-2Th:Th, and DBT-2Th:2Th, respectively. The
polymers were prepared by the potentiostatic method (adding
about 0.2V of Eonset) along with similar charge of about 5 mC.
In this electrochemical deposition condition, the thickness of
polymer films were about 200 nm, which is in agreement with the
reported research (Lin et al., 2020b).

Figure 1 shows the obtained cyclic voltammograms (CVs)
corresponding to the potentiodynamic electropolymerization of
the polymeric precursor monomers DBT-Th and DBT-2Th as
well as the potentiodynamic electrochemical copolymerization

of the polymeric precursor comonomers DBT-Th, DBT-2Th,
Th, and 2Th. The current density increased gradually as
a function of scanning cycles for all systems. Meanwhile,
the corresponding conducting polymers on the working
electrode grew prominently, indicating that the as-prepared
conducting polymers exhibited good electrochemical redox
activity. Meanwhile, all systems exhibited an increasingly obvious
voltage drop (1V) from 0.6 to 1.0V of the reduction peak with
stepwise enhanced conjugation lengths, which were ascribed to
the wide distribution of polymer chain lengths. Because of the
additional potential required to balance the increased polymeric
electrical resistance and slowmass transport, an obvious potential
shift of the anodic and cathodic peaks was observed during
polymer growth (Chen and Xue, 2005; Lin et al., 2020a; Lu et al.,
2020).

Theoretical Calculations
The ground-state optimized molecular geometries and frontier
molecular orbital distributions of DBT-Th, DBT-Th:Th, DBT-
2Th, DBT-Th:2Th, DBT-2Th:Th, and DBT-2Th:2Th were
determined using density functional theory (DFT) by Gaussian
09 at the B3LYP/6-31G(d,p) level (Figure 2). All optimized
molecular geometries exhibited slightly twisted, n-shaped
structures, with dihedral angles of < 31◦ owing to the steric
hindrance effect. The dihedral angles of DBT and adjacent
thiophene decreased with enhanced conjugation lengths, which
resulted in improved regularity. For all models, the electron
density distribution of the lowest unoccupied molecular orbitals

FIGURE 1 | Cyclic voltammograms of DBT-Th (A), DBT-Th: Th (B), DBT-2Th (C), DBT-Th: 2Th (D), DBT-2Th: Th (E), and DBT-2Th: 2Th (F) in CH2Cl2-Bu4NPF6.

Potential scan rate: 100mV s−1.
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FIGURE 2 | Optimized molecular geometries and frontier molecular orbital distributions of DBT-Th, DBT-Th:Th, DBT-2Th, DBT-Th:2Th, DBT-2Th:Th, and DBT-2Th:2Th

obtained from DFT by Gaussian 09 at the B3LYP/6-31G(d,p) level.

(LUMOs) and highest occupied molecular orbitals (HOMOs)
were localized in the sectional conjugated skeleton. The longer
the conjugation lengths resulted in lower energy LUMO and

HOMO levels (Liu et al., 2017). The HOMO-LUMO gaps of all
models gradually decreased from 4.34 to 2.94 eV with stepwise
enhancement of the conjugation lengths.
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FIGURE 3 | Cyclic voltammograms of the electrochemical polymer PDBT-Th (A), PDBT-Th:Th (B), PDBT-2Th (C), PDBT-Th:2Th (D), PDBT-2Th:Th (E), and

PDBT-2Th:2Th (F) modified Pt electrodes in monomer-free CH2Cl2-Bu4NPF6 (0.10mol L−1) at potential scan rates of 300, 250, 200, 150, 100, and 50mV s−1.

TABLE 1 | Electrochemical, optical properties and theoretical calculation of polymers.

Polymers Eox,onset (V) Ered,onset (V) HOMO LUMO Eg,cv (eV) HOMO-LUMO gaps (eV) Eg,opt (eV)

Experimental

value

Theoretical

value

Experimental

value

Theoretical

value

PDBT-Th 0.88 −1.95 −5.68 −5.10 −2.85 −1.73 2.83 3.37 2.59

PDBT-Th:Th 0.70 −1.75 −5.50 −5.00 −3.05 −1.97 2.45 3.03 2.53

PDBT-2Th 0.55 −1.74 −5.35 −4.90 −3.06 −2.09 2.29 2.81 2.25

PDBT-Th:2Th 0.56 −1.72 −5.36 −4.92 −3.08 −2.10 2.28 2.82 2.29

PDBT-2Th:Th 0.54 −1.75 5.34 −4.84 −3.05 −2.19 2.29 2.65 2.24

PDBT-2Th:2Th 0.52 −1.77 −5.32 −4.81 −3.03 −2.25 2.29 2.56 2.23

Electrochemistry of the Polymers
To obtain deeper insight of the electrochemical activity,
the electrochemical behaviors of PDBT-Th, PDBT-Th:Th,
PDBT-2Th, PDBT-Th:2Th, PDBT-2Th:Th, and PDBT-2Th:2Th
were investigated via CVs in monomer-free CH2Cl2-Bu4NPF6
(0.1mol L−1; Figure 3). All polymers were prepared using the
potentiostatic method at a constant potential of 1.30V for DBT-
Th, 1.50V for DBT-Th:Th, 1.05V for DBT-2Th, 1.45V for DBT-
Th:2Th, 1.3V for DBT-2Th:Th, and 1.2V for DBT-2Th:2Th. All
polymers showed obvious redox peaks with hysteresis (potential
drift) between the anodic and cathodic peak potentials. The
potential shifts of the redox peaks among the CVs were attributed
to slow heterogeneous electron transfer, local rearrangement
of the polymer chains, slow mutual transformation of various
electronic species, and electronic charging of the interfacial

exchange at the metal/polymer and polymer/solution interfaces
(Inzelt et al., 2000).

In addition, the cyclic voltammetry was employed to
evaluate the experimental HOMO and LUMO energy
levels of polymers through the empirical Equations (1)
and (2) in the Supporting Information (Sun et al., 2011).
Meanwhile, the theoretical calculated HOMO/LUMO energy
levels of polymers (simplified by two repeating units) were
illustrated comparatively. The values were presented in Table 1.
The experimental and theoretical calculated HOMO both
exhibited up lifted values when the conjugation length was
increased. The HOMO-LUMO gaps by theoretical calculation
decreased gradually. The optical band gaps (Eg,opt) and
electrochemical band gaps (Eg,cv) were decreased from PDBT-
Th to PDBT-Th:Th, however, PDBT-Th:2Th, PDBT-2Th,
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FIGURE 4 | CVs of PDBT-Th (A), PDBT-Th:Th (B), PDBT-2Th (C), PDBT-Th:2Th (D), PDBT-2Th:Th (E), and PDBT-2Th:2Th (F) cycled 100 times at a potential scan

rate of 200mV s−1 in monomer-free CH2Cl2-Bu4NPF6 (0.10mol L−1).

FIGURE 5 | Spectroelectrochemical traces for PDBT-Th (A), PDBT-Th:Th (B), PDBT-2Th (C), PDBT-Th:2Th (D), PDBT-2Th:Th (E), and PDBT-2Th:2Th (F) on ITO

coated glass in CH3CN-Bu4NPF6 (0.1mol L−1).
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TABLE 2 | Colorimetric parameters for the prepared polymers.

Polymers CIE color coordinates Colors of polymers

Neutral Oxidized Neutral Oxidized

PDBT-Th L* 98.7235 92.2886

a* −2.2272 1.6750

b* 6.5666 −3.7137

PDBT-Th:Th L* 87.0708 67.1116

a* −8.4870 4.7474

b* 32.6390 −3.4195

PDBT-2Th L* 82.3156 79.7525

a* −1.3602 −4.6198

b* 20.1580 4.5149

PDBT-Th:2Th L* 98.8370 94.9152

a* −0.2581 −0.1172

b* 5.9035 −4.5872

PDBT-2Th:Th L* 84.1909 69.1127

a* 11.1086 −2.1452

b* 63.0452 −9.6235

PDBT-2Th:2Th L* 88.6797 76.6157

a* 6.0639 −1.6808

b* 33.9582 −4.6985

PDBT-2Th:Th and PDBT-2Th:2Th displayed the similar
band gaps.

The stabilities of all polymers were studied in a monomer-
free CH2Cl2-Bu4NPF6 system. A total of 100 cycles were
performed to study the doping and dedoping abilities of all
polymers, as shown in Figure 4. The redox activity of PDBT-
Th was maintained at 56% after scanning 100 cycles, exhibiting
generally good redox stability. However, increasing conjugation
length significantly improved electrochemical stability, achieving
moderate stability at 62, 79, 76, 85, and 90% remaining activity
for PDBT-Th:Th, PDBT-2Th, PDBT-Th:2Th, PDBT-2Th:Th, and
PDBT-2Th:2Th, respectively, after scanning 100 cycles. The
improved electrochemical stability could benefit from the more
stable thiophene bridge.

Electrochromic Properties
Spectroelectrochemical analyses were performed by recording
the absorption changes of the polymers under different potentials
(Figure 5). In the neutral state, all polymers showed the
absorbance peaks centered at approximately 410 nm arising from
the π-π∗ transition. DBT-2Th based polymers PDBT-2Th (c),
PDBT-2Th:Th (e), and PDBT-2Th:2Th (f) clearly showed two
absorbance peaks with red shift on the absorbance edges, which
was ascribed to the enhanced conjugation lengths. The optical

band gaps (Table 1, empirical Equation (3) in the Supporting
Information) of the corresponding polymers were gradually
reduced from 2.59 eV (PDBT-Th) to 2.53 eV (PDBT-Th:Th),
2.29 eV (PDBT-Th:2Th), 2.25 eV (PDBT-2Th), 2.24 eV (PDBT-
2Th:Th), and 2.23 eV (PDBT-2Th:2Th). With increasing effective
conjugated chain length of those polymers by introducing
thiophene as bridge unit, the optical band gaps were gradually
reduced, and tend to the same. Notably, with increasing voltage,
new bands resulting from the polaron at approximately 600 nm
and bipolaron at approximately 1,000 nm increased in intensity
(Zhu et al., 2009; Lu et al., 2014; Yang et al., 2014; Lin et al.,
2015; Ming et al., 2020). During this process, all polymers
displayed a conspicuous color change under doped (oxidized)
and dedoped (neutral) conditions (Table 2). To determine the
color change, the CIE 1976 (L∗, a∗, b∗) color space and
photographs were determined, in which L∗ is the parameter
of the lightness, a∗ is the red-green balance and b∗ is yellow-
blue balance (–a∗ and +a∗ correspond to green and red and
–b∗ and +b∗ correspond to blue and yellow, respectively) (Dyer
et al., 2011). As presented in Table 2, PDBT-Th, PDBT-Th:Th,
PDBT-2Th, and PDBT-Th:2Th showed –a∗ and+b∗ directions in
the neutral state, therefore, the polymers exhibited yellow green
color. PDBT-2Th:Th and PDBT-2Th:2Th exhibited noteworthy
color of claybank (neutral state), which was attributed to the
value of +a∗ and +b∗ directions. Isosbestic points at 450 nm of
DBT-Th based polymers and 500 nm of DBT-2Th based polymers
appeared in the spectra, indicating that these polymers were
easily interconverted between neutral and oxidized states (Balan
et al., 2011; Lin et al., 2020b).

CONCLUSION

Thiophene was used as a fundamental unit to progressively
construct conjugated polymers of various lengths by
electrochemical polymerization from polymeric precursor
monomers (DBT-Th and DBT-2Th) and comonomers
(thiophene and bithiophene). Theoretical DFT calculations,
electrochemical, and electrochromic properties were measured
and compared. All polymeric precursor systems exhibited
increasingly significant voltage drops (1V) of their reduction
peaks with enhanced conjugation length. All conjugated
polymers exhibited decreased HOMO-LUMO gaps, significantly
improved electrochemical stability, and noteworthy color
changes when transitioning from the oxidized to neutral state
with increasing conjugation length.
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