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Abstract: Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS),
offering methods to approximate human reasoning and computationally infer decisions. Such meth-
ods are generally based on medical knowledge, either directly encoded with rules or automatically
extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural
Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with
parameters that can be optimally tuned using appropriate algorithms. The ever-increasing compu-
tational capacity of today’s computer systems enables more complex ML systems with millions of
parameters, bringing AI closer to human intelligence. With this objective, the term deep learning
(DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple
layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is
still limited. However, this could change shortly, as the significantly increased papers in AI, machine
learning and deep learning in cardiology show. We highlight the significant achievements of recent
years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will
take a central stage in the field.

Keywords: artificial intelligence; cardiology; heart failure; arrythmias; voice technology; cardiac imaging

1. Introduction

Artificial intelligence (AI) develops methods rendering computers to engage in human-
like thought processes, such as learning and reasoning. Many AI methods are built on
machine learning (ML) algorithms which involve processes enabling the AI systems to
optimally adapt their parameters in solving a given problem based on training data; in
that aspect, they can infer the best possible decision in a given situation. The exponential
development of AI, mainly in the subdomains of ML and deep learning (DL), has quickly
attracted clinicians’ interest to create new integrated, reliable, and efficient methods for
providing quality healthcare. Deep learning is making significant advances in solving

J. Clin. Med. 2022, 11, 3910. https://doi.org/10.3390/jcm11133910 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11133910
https://doi.org/10.3390/jcm11133910
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-7955-9100
https://orcid.org/0000-0002-2248-489X
https://doi.org/10.3390/jcm11133910
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11133910?type=check_update&version=1


J. Clin. Med. 2022, 11, 3910 2 of 14

problems that have resisted the best attempts of the artificial intelligence community for
many years. It has turned out to be very good at discovering intricate structures in high-
dimensional data and is, therefore, applicable to many domains in science, business and
government [1]. Furthermore, deep learning models can learn from input data, including
numbers, text or even combinations of input types [2].

Cardiologists make decisions for patient care from data, and they tend to have access to
richer quantitative data on patients compared with many specialties. Despite some potential
pitfalls, it is evident that the best way to make decisions based on data is to apply techniques
drawn from AI. AI requires close collaboration among computer scientists, clinical investi-
gators, clinicians, other healthcare professionals, and regulatory authorities to identify the
most relevant problems to be solved. AI is currently being investigated in several cardiology
domains, from clinical decision support systems (CDSS) to imaging interpretation. As a
result, researchers have proposed new innovative ideas and practices related to the diag-
nostic and therapeutic management of cardiovascular diseases, promising ground-breaking
developments during the coming years for both cardiovascular sciences and care [3].

Integrating AI into cardiology practice is a change that the profession should embrace.
AI has the potential to provide physicians access to actionable data in even greater depth
than ever before. Yet, despite the apparent potential, the impact of AI in current clinical
practice is still limited. However, this could change shortly given the increased interest of
the scientific community in the application of AI in cardiology.

2. Terminology

AI is an integral part of many CDSS, providing methods to computationally infer
decisions in a way that resembles human inference processes [4]. Such methods are
generally based on medical knowledge, either directly encoded with rules or automatically
extracted from medical data using ML. ML methods, such as Artificial Neural Networks
(ANNs) and Support Vector Machines (SVMs), are based on mathematical models with
parameters optimally tuned using the appropriate algorithms. Parameter tuning enables
the automatic discovery of rules required for solving a problem, e.g., for predicting a
pathological condition. In that aspect, a system can learn from data. ML algorithms can
be categorized as supervised if learning is performed on annotated datasets with known,
ground truth data that can be used as the gold standard or unsupervised when learning is
performed on non-annotated datasets. There are also semi-supervised approaches, where
learning is based on annotated and non-annotated data [5].

The ever-increasing computational capacity of today’s computer systems enables more
complex ML systems with millions of parameters, bringing AI closer to human intelligence.
In this direction, the term DL has been introduced to characterize ML based on deep ANN
(DNN) architectures with multiple layers of artificial neurons [6]. Representative DNN
architectures, called Convolutional Neural Networks (CNNs), have revolutionized signal
analysis by being capable of recognizing meaningful patterns within the signals without
being based on subjective handcrafted formulas for feature extraction, e.g., pathological
patterns in electrocardiograms (ECG) [7], or in spatiotemporal cardiac imaging [8]. Today’s
ML/DL methods used in the context of CDSSs have a high learning capacity; however,
their capabilities are limited by the limited availability of high-quality and sufficiently large
datasets to validate algorithms, so they perform well for large populations.

There are two significant obstacles with regard to the availability of datasets: (1) the
complexity and usually the inflexibility of the national ethicolegal frameworks for clinical
data collection and sharing; and (2) the high effort and costs involved in clinical data
annotation. Nevertheless, explainable AI (XAI) can help ensure that patients remain at the
center of care and that, together with clinicians, they can make informed and autonomous
decisions about their health [9]. The review of Tjoa and Guan reveals an increasing trend
towards XAI, with various methods proposed for different medical applications [10]. For
example, Maweu et al. recently proposed a framework for explainable classification of
ECG patterns [11]. However, it should be noted that the journey towards explainable
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ML-based CDS is still long, with many challenges ahead. In this direction, promising
perspectives arise with the introduction of fuzzy logic in signal interpretation, enabling
an uncertainty-aware mapping of linguistic terms to numeric intervals. One successful
paradigm combining ML and fuzzy logic for heart disease (HD) detection and heart failure
(HF) prediction has been proposed by Vasilakakis et al. [12]. The methodology of that study
was extended and applied to develop a generic framework for the explainable classification
of medical images that can be applied on any ML-based classification system [13].

3. AI in Echocardiography

One of the first applications of AI in echocardiography was the assessment of left
ventricular (LV) volume and function with automated quantification. AI may improve
imaging quality—and thereby scan and dose time—and assist in segmentation, process-
ing, and analysis. In 2015, Knackstedt et al. used a computer vision vendor-independent
software in 255 patients; the software applies a machine-learning algorithm for measuring
ejection fraction (EF) and longitudinal strain (LS) from biplane views of the left ventricle [14].
The EF and LS measurements were feasible in 98% of studies, and the average analysis
time was 8 ± 1 s/patient, while a 92.1% accuracy was seen compared with the manually
traced reference. A year later, Narula et al. investigated the diagnostic value of an ML
framework that incorporates speckle-tracking echocardiographic data for automated dis-
crimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen
in athletes [15]. In a cohort of 77 athletes and 62 HCM subjects, the sensitivity and the
specificity were 87% and 82%, respectively, for the differential diagnosis between HCM and
physiologic hypertrophy.

Moreover, Zhang et al. used 14,035 echocardiograms performed over ten years to
train CNN models for multiple tasks, including automated identification of 23 viewpoints,
segmentation of cardiac chambers across five standard views, quantify chamber volumes, LV
mass, LV EF and facilitate automatic determination of longitudinal strain through speckle
tracking [16]. Automated measurements were comparable (or even superior) to manual ones.
Finally, models were developed to detect hypertrophic cardiomyopathy, cardiac amyloidosis,
and pulmonary arterial hypertension with C-statistics of 0.93, 0.87, and 0.85, respectively.

Furthermore, some AI models may aid in assessing valvular heart disease. For ex-
ample, Moghaddasi et al. showed in a cohort of 139 subjects that a Support Vector Ma-
chine(SVM) (supervised ML model) classifier had a 99.38% sensitivity and 99.63% speci-
ficity to detect severe mitral regurgitation (MR) [17]. Specifically, an accuracy of 99.52%,
99.38%, 99.31%, and 99.59% was recorded to detect normal mitral valve, mild, moder-
ate, and severe MR, respectively. In a proof-of-concept study, Playford et al. used data
from 530,871 deidentified echocardiograms derived from 171,571 men and 158,404 women
linked to a median of 4.1 years of follow-up to develop an AI system for the assessment of
the severity of aortic stenosis (AS) [18]. The AI correctly identified 95.3% of patients with
traditional high gradient AS versus 73.9% for the continuity equation. The entire phenotype
evaluation obtained the severity of aortic stenosis without reference to LV outflow track
velocity or dimension. The algorithm performed equally well in normal and impaired LV
systolic function and low-flow and low-gradient severe AS.

4. AI in Cardiac/Coronary Computer Tomography (CCT)

The coronary artery calcium (CAC) score is a relatively new technique for coronary
atherosclerosis identification and risk stratification. The amount of CAC volume can be
quantified using the Agatston scoring method when applied to non-contrast ECG-gated
coronary CT images [19]. However, image quality can be deteriorated by image noise,
motion artifacts, or blooming artifacts from extensively calcified vessels or devices. In
addition, the CAC scoring process is often a time-consuming one, making it an ideal
candidate for time-saving AI applications. Wolterink et al. proposed an algorithm based on
supervised learning to directly identify and quantify coronary artery calcification (CAC) in
CCTA without initial coronary artery tree extraction [20]. This study included cardiac CT
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exams of 250 consecutively scanned patients. The proposed algorithm aimed the automatic
CAC quantification in CCTA, reaching a sensitivity of 72%.

Recently, Martin et al. evaluated a novel deep learning-based piece of research software
(Automated CaScoring, Siemens Healthineers) for CACS on non-contrast CT images [21]. This
approach was based on a convolutional neural network trained on 2000 annotated datasets.
As a result, the ML software correctly classified 93.2% of patients (476/511) into the same risk
category as the human observers. ML methods were used to assess CACs from non-contrast-
enhanced low-dose chest CT performed for lung cancer screening. In a 5973 non-contrast
non-ECG gated chest CT scans dataset, a deep CNN was employed to extract the Agatston
scores directly from these images [22]. The algorithm yielded a Pearson correlation coefficient
of 0.93 and correctly stratified 73% of cases into the corresponding risk category.

CTCA has become the first-line examination in detecting and quantifying coronary
stenosis. It has shown excellent sensitivity and negative predictive value for coronary artery
stenosis. Currently, the reporting is based on a subjective visual assessment by clinicians.

Van Hamersvelt et al. evaluated the added value of DL analysis of the LV myocardium
(LVM) in coronary CT angiography (CCTA) overdetermination of the degree of the coronary
stenosis for identification of patients with stress-induced ischemia [23]. Multiple AI tech-
niques were used in this study; firstly, the LV myocardium was automatically segmented
using a multiscale CNN. Afterwards, the algorithm unsupervised using a convolutional
auto-encoder, LV myocardium, was characterized (encoded) on all CT slices. Finally, pa-
tients were classified with a support vector SVM to those with or without functionally
significant coronary artery stenosis based on the extracted features. The proposed method
improved discrimination (AUC = 0.76) compared to classification based on the determi-
nation of the coronary degree of stenosis only (AUC = 0.68). The proposed method’s
sensitivity and specificity were 84.6% and 48.4%, respectively.

In the NXT trial (Heart Flow analysis of coronary blood flow using CT angiography: NeXt sTeps
trial), 254 subjects underwent CCTA before invasive coronary angiography with fractional
flow reserve (FFR), which was the reference standard [24]. The aim was to investigate the
associations between coronary stenosis severity, semi-automated assessment of atherosclerotic
plaques, derived fractional flow reserve (FFRCT) and lesion-specific ischemia (identified by
FFR). An assessment of plaque characteristics was shown to improve the discrimination of
lesion-specific ischemia compared with stenosis alone. In a sub-study, the same group investi-
gated if machine learning integration of clinical data, quantitative stenosis and plaque metrics
measured from CCT can effectively predict lesion-specific ischemia (identified by FFR) [25].
This combination improved the prediction of lesion-specific ischemia. The integrated ML
ischemia risk score exhibited higher AUG (0.84) than individual CTA measures, including
stenosis (0.76), low-density noncalcified plaque volume (0.77), total plaque volume (0.74), and
pre-test likelihood of coronary artery disease (0.63); p < 0.006.

Kelm et al. used an ML algorithm to automatically identify, grade and classify coronary
stenosis caused by calcified and non-calcified plaques [26]. Their random forest model was
trained on 229 CTA volumes following centerline extraction and lumen segmentation. The
model performed accurate stenosis identification and lumen cross-sectional area estimation,
with an average processing time of 1.8 s per case.

Zreik et al. trained a recurrent CNN to detect coronary plaque accurately, determine
its composition, and classify the coronary stenosis as obstructive or non-obstructive [27].
For the detection and characterization of coronary plaque, the method has achieved an
accuracy of 0.77. For detection of stenosis and determination of its anatomical significance,
the method has achieved an accuracy of 0.80.

5. AI in Cardiac MRI

After the acquisition of images acquisition, AI can be employed to check that all the
acquired images fit a prescribed imaging standard for further processing or analysis. For
example, in MRI, investigators have proposed the automatic detection of possible missing
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basal and apical slices [28], the location of the ascending or descending aorta [29], or the
presence of potential interslice motion artefacts and complete heart coverage [30,31].

The assessment of EF is a part of cardiac MRI scan analysis, and a trained cardiologist
needs up to 20 min to complete it. Therefore, a fully automated approach will greatly value in-
terpreting images rapidly, preventing interobserver and intraobserver interpretation variance.

Xue et al. proposed a robust method for LV detection using the CNN [32]. The CNN
models were trained by assembling 25,027 scans. The model with three classes (3CS) for
background, LV, and RV, successfully detected the LV in 99.98% of all test cases.

Tan et al. successfully developed a fully automated neural network regression-based
algorithm for segmentation of the LV in cardiac MRI, with full coverage from apex to base
across all cardiac phases, utilizing both short-axis (SA) and long-axis (LA) scans [33]. First,
a network was trained to automatically identify the myocardium and detect the centre
of the cavity. Then another network was trained to estimate radii from the cavity centre,
producing smooth epicardial and endocardial contours. A similar approach was proposed
by Du et al., where a boundary regression was performed on both left and right ventricles
on short-axis images producing contours instead of pixel classification [34].

Furthermore, Bernard et al. published an automated segmentation algorithm, achiev-
ing Dice similarity coefficients of 0.95, or better, when compared to manual tracing [35].
Fahmy et al. presented an algorithm based on deep convolutional neural (DCN) networks
to automatically quantify LV mass and scar volume on late gadolinium enhancement (LGE)
in patients with HCM [36].

Recently, increased interest has been noted in the novel field of radiomics. The
term radiomics reflects a process of converting digital medical images into mineable high-
dimensional data by extracting a high number of handcrafted quantitative imaging features
based on a wide range of mathematical and statistical methods [37]. Radiomics can be an
efficient tool for discriminating between hypertensive heart disease and HCM patients
when radiomics is applied on T1 and T2 mapping [38].

6. AI in Nuclear Cardiac Imaging

Myocardial perfusion imaging (MPI) by single-photon emission computed tomography
(SPECT) and positron emission tomography (PET) plays a crucial role in the diagnosis and
management of CAD. In nuclear cardiology, AI models demonstrated the use of ML to
improve diagnostic accuracy, identify perfusion defects and their location, and predict early
revascularization. In nuclear cardiac imaging, an ML algorithm (LogitBoost) was proposed to
predict those patients with suspected coronary artery disease in whom early revascularization
can be effective [39]. 713 single-photon emission computed tomography (SPECT) myocardial
perfusion imaging (MPI) correlating invasive angiography with 372 revascularization events
was used. The prediction of revascularization by the ML algorithm was compared to the
analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. The
AUC for the ML was similar to one reader and superior to the second reader.

DL was used to predict obstructive disease from SPECT MPI [40] automatically. A
total of 1638 patients without known CAD, undergoing SPECT MPI and invasive coronary
angiography were studied. AUC for disease prediction by DL was significantly higher
than for the total perfusion deficit (0.80 vs. 0.78 per person and 0.76 vs. 0.73 per vessel). In
addition, the time needed to evaluate a new patient with this model was <1 s.

Another study aimed to determine whether ANN might help to diagnose coronary
artery disease [41]. The ANN was trained to classify potentially abnormal areas as true or
false based on the nuclear cardiology expert interpretation of 1001 gated SPECT images.
The diagnostic accuracy of the ANN was compared with 364 expert interpretations that
served as the gold standard of abnormality for the validation study. The ANN identified
stress defects better than nuclear cardiology experts (AUC = 0.92 vs. 0.82, respectively).
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7. AI in Heart Failure

Sanchez-Martinez et al. showed that an unsupervised ML algorithm for analyzing
left ventricular (LV) long-axis function at rest and exercise could facilitate the diagnosis of
heart failure (HF) with preserved ejection fraction (HFpEF) [42]. Inan et al. showed that the
telemonitoring of HF patients in combination with ML algorithms can assess compensated
and decompensated HF states [43]. A Swedish study confirmed that ML algorithms could
identify four phenotypes with different clinical courses and therapeutic responses [44].

Koulaouzidis et al. developed an algorithm for detecting patients at high risk of HF
hospitalization, using daily collected physiological data (blood pressure, heart rate, weight)
by non-invasive telemedicine [45]. The algorithm could identify such patterns and classify
them as abnormal by assessing the predictive value of each of the monitored signals and
their combinations using analysis of vectors (e.g., vectors of raw signal values, vectors of
signals obtained by Multi-Resolution Analysis). The best predictive results were achieved
with the combined used of weight and diastolic BP. The highest predictive performance was
achieved using eight-day TM data (area under the receiver operator characteristic curve
(AUC) 0.82 ± 0.02).

Finally, the clinical response to cardiac resynchronization can be predicted using ML
systems [46].

8. AI in Arrythmias

One of the most widespread applications of AI in cardiology is the prediction of cardiac
arrhythmias. An effective ML-based methodology to classify ECG was proposed to predict
the onset of paroxysmal atrial fibrillation [47]. The prediction performance of this algorithm
was superior to the previously developed methods in terms of both the sensitivity and
specificity, which was 100% and 95.5%, respectively. DL techniques have succeeded in
detecting cardiac arrhythmia (17 classes) based on long-duration ECG signal analysis [48].

Attia et al. from the Mayo Clinic used paired 12-lead ECG and echocardiogram data,
including the left ventricular ejection fraction (LVEF) from 44,959 patients, to train a CNN to
identify patients with ventricular dysfunction, defined as LVEF ≤ 35%, using the ECG data
alone [49]. When tested on an independent set of 52,870 patients, the network model yielded
values for AUC, sensitivity, and specificity of 0.93, 86.3%, and 85.7%, respectively. In another
study from the Mayo Clinic, a CNN was trained and validated using a digital 12-lead ECG
from 2448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched
control subjects [50]. The algorithm detected adult HCM patients from the ECG with an AUC
of 0.96, a sensitivity of 87% and a specificity of 90%. The performance of the above-described
algorithm was tested in a cohort of 300 children and >18,000 age- and sex-matched controls [51].
The results were impressive: the AUC of the model for HCM detection was 0.98, with 92%
sensitivity and 95% specificity; positive predictive value (PPV) was 22%, and negative predictive
value (NPV) was 99%. It tended to work better in adolescents than in small children.

Finally, Koulaouzidis et al. developed a statistical index based on the phase space
reconstruction (PSR) of the ECG for the accurate and timely diagnosis of ventricular
tachycardia (VT) and ventricular fibrillation (VF) [52].

Recently, a breakthrough technology, Cardio-HART™, was introduced. Using bio-
signals enhanced with AI, it is possible to estimate echocardiographic-like findings (HART-
findings), including structural, functional and hemodynamical abnormalities. Functional
abnormalities mean systolic and diastolic dysfunction supported by measurements of LVEF,
GLS, E/e’, LAVI and wall motion abnormalities. The detection of structural and functional
cardiac abnormalities with promising performance supports the early detection of HF.
Significantly, however, being bio-signal based, it can be used in primary care settings, since
ECHO is only available in Secondary Care.

Cardio-HART™ is based on complementing ECG with phonocardiograph (PCG) and
a novel bio-signal of a physiological nature (MCG), shows significantly higher sensitivity
in detection of common heart diseases. AI make fusion of each bio-signals own strengths:
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ECG—Electro-physiological abnormalities: arrhythmias, premature beats, atrioven-
tricular blocks, bundle-branch blocks, etc.;

PCG—Hemodynamical diseases: valve stenosis, valve regurgitation, hypertension
(arterial or pulmonary hypertension);

MCG—Mechano-physiological abnormalities: cardiomyopathy, myocarditis, myocar-
dial infarction, ischemia, hypertrophies, atrial enlargements, systolic or diastolic dysfunc-
tion, or other wall motion problems;

The performance is summarized by using triple classification of the echocardiographic
summary, where the middle category between Normal and Abnormal, called “Mild”,
means that the patient has one or a few mild abnormalities, typically diastolic dysfunction
with preserved LVEF and/or some asymptomatic heart enlargement or non-significant
valve insufficiency (Tables 1 and 2). The ECG summary with its triple outcome is provided
in statistics for comparison purposes: normal, borderline, and abnormal.

Table 1. Confusion matrix of Triple Aggregated Diagnostic of HART Summary and ECG.

HART Summary

Negative Positive/Mild Positive/Abnormal Sum

ECHO
ground truth

Normal 1916 974 60 2950

Mild 632 1426 386 3444

Abnormal 68 1288 2010 3366

9760

ECG summary

Normal Borderline Abnormal Sum

ECHO
ground truth

Normal 1654 670 626 2950

Mild 1282 1074 1088 3444

Abnormal 426 534 2406 3366

9760
Summary. (i) The negative HART summary has high negative predictive value for the abnormal patient, while the
positive/abnormal HART summary has high positive predictive value for the non-normal patients. (ii) When the HART
assessment is negative (normal), then the moderate/severe abnormality can be ruled out, as the patient would be normal
by echocardiography with high probability. The discussion can be only between normal and mild. (iii) When the HART
assessment is positive/abnormal, then the patient has some moderate/severe condition with high probability and this
indicates that the patient needs to be referred to cardiology for a detailed and more certain diagnosis. (iv) When the HART
assessment is positive /mild, then the patient’s condition is less certain, and it is advised to carefully consider the ECG,
PCG and MCG findings together with patient symptoms and history for the appropriate referral and treatment options.

Table 2. Probability evaluation of HART and ECG summary compared to ECHO-based ground truth.
CHART: Cardio-Hart ECG: electrocardiogram, ECHO: echocardiogram, NPV: negative predictive
value, PPV: positive predictive value.

Outcome by HART Summary by ECG Summary

Negative

Patient predicted as negative by HART is not abnormal in
97.4% probability (NPV = 97.4%)

Patient predicted as normal by ECG is not abnormal with
87.3% probability (NPV = 87.3%)

Patient predicted as negative by HART is mild with
24.1% probability

Patient predicted as normal by ECG is mild with
38.1% probability

Patient predicted as negative by HART is abnormal only with
2.6% probability (100%-NPV)

Patient predicted as normal by ECG is abnormal only with
12.7% probability (100%-NPV)

Mild Patient predicted as positive/mild by HART is mild with
52% probability

Patient predicted as borderline by ECG is mild with
47% probability

Positive

Patient predicted as positive/abnormal by HART is not
Normal with 97.6% probability (PPV = 97.6%)

Patient predicted as abnormal by ECG is not normal with
84.8% probability (PPV = 84.8%)

Patient predicted as positive/abnormal by HART is mild
with 15.7% probability

Patient predicted as abnormal by ECG is mild with
26.4% probability

Patient predicted as positive/abnormal by HART is normal
only with 2.4% probability (100%-PPV)

Patient predicted as abnormal by ECG is normal with 15.2%
probability (100%-PPV)
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9. Voice Technology in Clinical Practice

Synthesis of ML and computational linguistics enabled human-computer voice inter-
action. Speech recognition algorithms interpret the complexity of conversational language
while text-to-speech technology leverages neural network techniques to generate human-
like voices. This is crystalized in the form of voice assistants (VAs) exemplified by Amazon
Alexa or Google Assistant; these advanced software architectures are available on smart
speakers (Amazon Echo, Google Home, respectively) or smartphones [53]. Broad market
adoption and strong consumer interest in using smart speakers for daily tasks created an
opportunity to implement voice technology in health care. VAs, also known as conversa-
tional agents or voice bots, are emerging tools for the remote delivery of medical services
already adopted into clinical practice.

The FDA classifies medical software based on the impact on the patient, illustrating
the application’s main functionality [54]. A wide spectrum of AI-driven voice applications
ranges from educational services through optimization of processes and data collection
to the Software as a Medical Device (SaMD) solutions. Figure 1 illustrates a risk-based
approach for the evaluation and categorization of medical software. Notably, the software
transferring medical data must comply with the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) [55] and the General Data Protection Regulation (GDPR) [56]
in the USA and Europe, respectively.
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ity and Accountability Act of 1996 (HIPAA) [55] and the General Data Protection Regu-
lation (GDPR) [56] in the USA and Europe, respectively. 

 

Figure 1. Risk-based approach to evaluate and categorize software designed for medical purposes.
Category I-IV reflects an impact on patients being associated with medical utilization (inform, drive,
treat, diagnose) and clinical scenarios that the service is intended for (non-serious, serious, critical).
Non-MDDS—Non-Medical Device Data Systems; MDDS—Medical Device Data Systems; SaMD—
Software as a Medical Device.

Educational voice applications can be exemplified by services providing instruction or
answering frequently asked questions. For example, the Mayo Clinic First Aid skill provides
guidelines on cardio-pulmonary resuscitation procedures [57]. Furthermore, a clinically
validated tool developed by the Mayo Clinic and the Centers for Disease Control and
Prevention (CDC) experts advises on COVID-19 where patients can verbally ask questions
related to the SARS-CoV2 virus [58]. Furthermore, the voice-enabled technology is used to
streamline repetitive tasks helping medical professionals reduce the administrative burden
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within their practices. For example, the Giant Eagle Pharmacy skill for Amazon Alexa
allows patients to set up medication reminders and refill prescriptions [59].

Moreover, to improve organization workflow, Providence St. Joseph Health makes an
appointment scheduling system available on Amazon Alexa-enabled devices, advancing
convenient access to health care [60]. Additionally, to optimize in-hospital logistics, the
voice-powered Aiva Health [61], OrbitaASSIST [61], and Vocera Engage [62] skills serve as
digital bedside assistants that keep patients connected to the clinical team. Accordingly,
the hospitalized individuals and caregivers can speak requests for a care team member
supporting effective routing.

VAs have also been shown to support paperless medical history documentation at
the Cardiology Outpatient Clinic of the Cedars-Sinai Medical Center in Los Angeles (CA,
USA). The HIPAA-compliant CardioCube voice application deployed on Amazon Echo
was integrated with electronic health records (EHR) to automate the admission process,
during which patients verbally answered a set of pre-specified clinical questions. Study
results showed that CardioCube collected medical information obtained during human-VA
conversation with a high accuracy generating ready-to-use reports in the EHR system [63].

Importantly, the voice AI solutions can be integrated with an existing health care
ecosystem. For example, the FCNcare application by CardioCube reviewed by the FDA
was implemented at the Family Care Network in Bellingham (WA, USA), enabling heart
failure and diabetic patients to update medical status and biometric data (blood pressure,
glucose level) from home through a HIPAA-compliant conversational agent integrated with
a CDSS and EHR system. Focused medical reports were instantly available for review by a
telemedical nurse who was taking adequate clinical actions based on received information.
In addition, automatic analysis of the patient-reported outcomes and red-flagging system
provided a routinely used digital screening tool for a long-term follow-up of chronic
patients [64].

10. AI and Non-Cardiac Conditions

Dyselectrolytaemia represents a broad spectrum of electrolyte disbalance associated
with high cardiovascular risk [65,66]. Abnormal potassium level (dyskalaemia) is one of
the most common findings among patients presenting to emergency departments [67,68].
ECG manifestation of hypokalemia includes widespread ST depression, increased P wave
amplitude, and T wave inversion. At the same time, hyperkalemia promotes increased
T wave amplitude and P wave and QRS complex widening [69]. Despite well- described
morphologic features, diagnosing dyskalaemias may be challenging, especially since only
half of the hypokalemic patients present evident ECG abnormalities [70]. Interestingly, an
AI-based system designed to detect dyskalaemia on ECG identifies moderate-to-severe
hypo- and hyperkalemia [71]. Moreover, a deep learning model showed high performance
in detecting ECG manifestation of hyper- and hyponatremia and hyper- and hypocal-
cemia [72]. In addition to electrolyte imbalance, the ML approach was proven to detect
overt hyperthyroidism [73], which can open access to non-invasive screening, early diagno-
sis and treatment to prevent serious cardiovascular complications (i.e., cardiac arrhythmia,
heart failure, and stroke) [74,75]. Furthermore, the AI algorithm can mark pathophysi-
ological conditions beyond dyselectrolytaemia as an independent predictor of adverse
outcomes [71].

11. Discussion

AI methods will be used in two main areas in cardiology: automating tasks that
humans might otherwise perform and generating clinically crucial new knowledge for
risk prediction. In addition, the AI technology will assist cardiologists in making prompt
diagnoses, improving interpretation skills, and delivering more accurate and personal-
ized care. Major ethical issues could arise from the implication of AI predictive models
in clinical practice. Although researchers continue to improve the accuracy of clinical
predictions, a perfectly calibrated prediction model may not significantly enhance clinical
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care. An accurate prediction of a patient outcome does not tell us what to do if we want
to change that outcome. We cannot even assume whether possible changes will affect the
predicted outcomes.

After an algorithm/model is built, the next important step is determining whether
the model remains accurate if new data are fed into the model. For this reason, data are
needed for both training (developing the model) and for testing (assessing how well the
model continues to predict the same outcome with the new data). It is essential that the
data that was used for training is not used for testing. There is a risk of overfitting; the
model may only be suited to the dataset from which it was developed. The development of
AI predictive models is based on data from primarily white patients, and these data may
be less precise in minorities. Most evidence-based treatment recommendations for HF are
based on studies on White men. An AI algorithm based on preexisting biases will increase
uncertainty, primarily when used for complex conditions. Another significant ethical issue
is the question of accountability. When an AI system fails at a particular assigned task,
and this failure has substantial clinical implications, who should be responsible? The
manufacturer who built it, the data owner, or the clinician who used it? Who is accountable
when things go wrong with AI remains an unanswered question.

The acceptance of AI by the patient needs to be explored in depth before adopting AI
predictive models in clinical practice. It is well known that good doctor-patient relationships
positively affect health outcomes. It will be difficult for the patients to understand why an
AI system suggests a particular diagnosis, treatment, or outcome prediction. But, more
importantly, it will be difficult for the patients to accept that an AI system excluded them
from treatment. This will have a negative impact on the confidence of the patients in the
medical society. Even if AI is successfully introduced in clinical practice, human interaction
will still be required in healthcare, particularly in cases with social interaction and a demand
for a holistic perspective. Until now, AI systems have not considered patient fears and
worries, the social environment, lifestyle and other factors. It remains to be determined
how and to what extent AI can address these factors.

12. Conclusions

AI techniques are of great interest in the healthcare and medical field because they can
use sophisticated algorithms to analyse large volumes of physiological data obtained from
thousands of patients, thus gathering information to assist clinical practice and decision-
making. Considering that the performance of AI technology depends on the appropriate
data being used and their quality, it is important to focus on solutions for more flexible and
larger-scale data sharing and methods with less requirements for human annotation, such
as semi-supervised and transfer learning methods. Finally, although AI may predict likely
outcomes, the automatic generation of management decisions does not seem desirable, as
personal, environmental and social aspects of each patient differ significantly.
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