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Abstract: Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents
of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four
families) of holothurian collected from four geographically distinct locations by viral metagenomics,
including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting
disease. The RNA virome comprised genome fragments of both single-stranded positive sense
and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales,
and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was
most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal
totiviruses in both genome architecture and homology and had likely infected mycobiome constituents.
Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar
to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome
fragments was recovered from the wasting A. californicus library compared to the asymptomatic
A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered
wasting genome fragments, suggesting that they were present but not well represented in the grossly
normal specimen. These results expand the known host range of flaviviruses and suggest that fungi
and their viruses may play a role in holothurian ecology.
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1. Introduction

Next generation DNA sequencing technology applied to viral metagenomics has enabled
surveillance of viruses associated with invertebrate tissues. These studies, along with the mining of
metazoan transcriptomes, have led to the discovery of novel viral lineages in aquatic invertebrates and
broadened the host range of several viral families [1–15]. While the majority of viral surveillance and
discovery is focused on grossly normal individual specimens of aquatic metazoa, viral metagenomics
has been used to examine the presence of potential pathogenic viruses through comparative
asymptomatic/disease affected individuals [16]. Despite a growing appreciation of the diversity
of aquatic metazoan-associated viruses, and of their potential roles in host disease, they remain largely
under-sampled. Study of novel and/or highly divergent viral genomes across a wider range of aquatic
invertebrates may provide clues to viral evolution and potential roles in host ecology.

Holothurians (Holothuroidea; Echinodermata) are ecologically important echinoderms [17,18]
that can dominate benthic biomass, and contribute significantly to biogeochemical cycling in
benthic compartments. On the abyssal plains, for example, holothurian biomass exceeds all other
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invertebrates [19]. Holothurians may be planktivorous, herbivorous or deposit feeders, and contribute
to ecosystem function by regeneration of particulate organic matter into dissolved organic and inorganic
constituents [18,20]. Feeding by holothurians on sediments stimulates bacterial production [20] and,
potentially, bacterial diversity [21]. Holothurians produce pelagic larvae that as meroplankton
contribute to herbivory [22–24]. Holothurians are also economically significant, since they are fished
and aqua-cultured for human consumption [25]. In China, the world’s largest consumer of holothurians,
more than 200 kT worth CNY 176M (US$26M) were produced in 2017 [26]. The economic, evolutionary
and ecological significance of holothurians make these groups attractive to study for factors influencing
their biology and population dynamics, including potentially pathogenic microorganisms.

Like all echinoderms, holothurians are deuterostomes and are therefore more closely related
to chordates than other invertebrate groups. From a viral perspective, their similarity to chordates,
and specifically the similarity of cell surface properties that mediate endocytosis and fusion, suggests that
they may be infected by similar viral groups. For example, sialic acids, which are used by a variety of viral
families to enter cells [27], became prominent late in evolution, especially in deuterostomes, where they
play diverse physiological roles [28]. While echinoderms lack adaptive immunity, genome analyses
of the echinoid Strongylocentrotus purpuratus revealed homologs of vertebrate immune factors [29,30].
Despite these similarities, few studies have assessed the composition of viruses in echinoderm
tissues. DNA viruses, including Piccovirales [11,12,14] and Curlivirales [31,32] were discovered by
viral metagenomic studies using amplified (φ29-mediated rolling circle replication) material. RNA viral
surveys, which demand a different amplification protocol and handling from that of DNA viruses,
have detected Baphyvirales, Picornavirales, Articulavirales and Tolivirales [13,33] in asteroids. However,
RNA viruses in other echinoderm classes have not been investigated by viral metagenomic approaches.

In this study we surveyed RNA viruses in eight holothurian species collected from four distinct
geographic locations (Heron Island, Moreton Bay, Salish Sea and Southeast Alaska) and representing
four families of holothurians. We found that viruses associated with these tissues were dominated
by Picornavirales (Marnaviridae) and Ghabrivirales (Totiviridae), but report on the presence of a deeply
branched flavivirus in two holothurian species in the northeast Pacific Ocean. We also compared
the composition of viruses associated with a grossly normal Apostichopus californicus and a specimen
that was affected by sea cucumber wasting (a condition that is not extensively documented in the
peer-reviewed literature) but found little difference in viral genome representation.

2. Materials and Methods

2.1. Specimen Collection

Holothurian specimens were collected at four geographic locations between 2015 and 2017 (Table 1).
Specimens were collected by hand in the intertidal zone or by SCUBA Diver (with the exception
of Cucumaria miniata, which was obtained by rock dredge). Specimens of Apostichopus californicus
(renamed from Parastichopus californicus [34]) were collected by commercial fishers and retrieved by the
Alaska Department of Fish and Game. The presence of a wasting-like condition was determined by
gross disease signs on collection (see Section 3.4). Specimens were sub-sampled either immediately after
collection, or by whole specimens being frozen on dry ice or liquid N2 before transport to the laboratory
at Cornell University, where they were thawed and dissected prior to metavirome preparation.
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Table 1. Specimens collected for viral metagenomics survey and library characteristics.

Species Family Sample
Location Latitude Longitude Collection Date

Sequence
Library Size

(reads)
# Contigs N50

Contigs

Contigs Matching
Viral Genomes

E < 10−20

Reads Mapped
to Viral Contigs

Cucumaria miniata Cucumariidae Salish Sea 48.2333 N 122.7917 W 7 January 2016 1,686,849 5394 811 3 247,494
Apostichopus californicus * Stichopodidae Ketchikan 55.4351 N 131.9481 W 26 October 2016 897,618 3431 804 11 195,230
Apostichopus californicus Stichopodidae Ketchikan 55.4351 N 131.9481 W 26 October 2016 1,019,071 3900 880 2 179,175

Holothuria scabra Holothuridae Amity Banks 27.4115 S 153.4344 E 10 December 2015 822,244 21,777 838 1 368
Synaptula recta Synaptidae Dunwich 27.4952 S 153.3985 E 10 December 2015 983,151 19,760 847 0 299

Holothuria difficilis Holothuridae Amity Banks 27.4115 S 153.4344 E 10 December 2015 794,579 5803 846 1 301
Stichopus horrens Stichopodidae Amity Banks 27.4115 S 153.4346 E 10 December 2015 1,577,532 21,194 817 2 423
Holothuria atra Holothuridae Heron Island 23.4441 S 151.9113 E 19 December 2015 875,840 18,866 793 1 345

Holothuria pardalis Holothuridae Dunwich 27.4952 S 153.3985 E 10 December 2015 1,467,795 7424 896 0 306

The * indicates that the specimen was affected by sea cucumber wasting (SCW).
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2.2. Metavirome Preparation

Metaviromes were prepared from each specimen by first retrieving an 8 mm biopsy punch from
body wall tissues, which was extruded into a sterile microcentrifuge tube. From here, viral metagenomes
were prepared according to established protocols as described in [35] with modifications [36] and
omitting the chloroform treatment step. Briefly, tissue samples were disrupted by bead beating
(Zymo Bead Beaters) in 2 mL virus-free (i.e., 0.02 µm filtered) PBS, then centrifuged at 5000× g for 5 min
to remove large particulate material. The resulting supernatant was then removed, filtered through
0.2µm PES filters (to remove host cells and cell debris), and then treated with RNAseOne (50 U), DNAse I
(5 U), and Benzonase nuclease (250 U) for 2 h at 37 ◦C. Nuclease activity was arrested by amendment
with 50 µM EDTA. RNA was extracted from purified virus-sized material using the Zymo Viral RNA
Kit. Extracted RNA was then amplified using the TransPlex WTA2 kit (Sigma Aldrich) applied to a
5 µL extract. Because we did not standardize template amounts, and because of uncertainties in bias
introduced by TransPlex amplification, data presented in this manuscript are not quantitative and
based solely on presence and absence of genome fragments [16]. Amplified DNA (the end product
of the TransPlex protocol) was submitted to the Cornell University Biotechnology Resource Center,
where it was prepared with the Nextera XT library preparation protocol and sequenced on an Illumina
MiSeq 2 × 250 bp platform. Sequence libraries are available at National Center for Biotechnology
Information (NCBI) under accession PRJNA417963.

2.3. Viral Metagenome Library Analyses

Sequence libraries were first trimmed for ambiguous bases, adapters, TransPlex primers, and poor
quality (N < 2) sequences using the Trim Sequences function in the CLC Genomics Workbench 4.0
(Qiagen, Germany). Sequence libraries were then assembled using a minimum overlap of 0.2 and
similarity of 0.9 resulting in contig spectra for each library. The resulting contig spectra was aligned
against several boutique databases of RNA viruses: (1) all RNA viral library using tBLASTx [37]
(genome sequences retrieved in September 2018 from NCBI using search term “RNA Virus”); (2) all
Mononegavirus proteins (search term “mononegaviruses”) by BLASTx; Picornavirus ribosome-dependent
RNA polymerase (RdRp) proteins (search term “RdRp AND picornavirus”) by BLASTx; invertebrate
RNA viral proteins (search term “invertebrate AND RNA viruses”) by BLASTx; Flavivirus proteins
(search term “flavivirus”) by BLASTx; Coronavirus proteins (search term “coronavirus”) by BLASTx;
and nodavirus proteins (search term “nodavirus”) by BLASTx. Sequences were further vetted
by comparing matches to viral proteins against the non-redundant database at NCBI by BLASTn,
and matches (E < 10−30) to bacterial or eukaryotic genes were removed from further consideration.
Finally, contigs were compared to the RefSeq and non-redundant protein database by BLASTx to
retrieve closest matches from cultivated and uncultivated viruses. Viral contiguous sequences are
available at NCBI under accessions MT949664–MT949685.

2.4. Viral Genome Architecture and Phylogeny

The open reading frames on vetted viral contigs were extracted with GetORF [38] and compared
against the established genome architecture of viral families. If significant matches against proteins
were detected, but open reading frame (ORF lengths) were shorter than expected based on reported
genome architectures, the sequence was examined for internal frameshifts, which are common in
viral ORFs. ORFs were then annotated by comparison against the RefSeq Viral Proteins Database
(NCBI). ORFs and partial ORFs adjacent to annotated viral proteins were further compared against the
non-redundant database at NCBI by tBLASTx [37] and, if no matches were found, then by the Phyre
protein server [39]. Internal secondary RNA structures corresponding with published viral genomes
were checked using the mFold server [40]. Additional features were identified by the conserved
domain database (CDD) at NCBI [41]. α-helix and β-strand regions of ORFs were determined by
PSIPRED [42]. Viral contig sequences and closest matches in NCBI were collected and aligned using
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the native alignment algorithm in CLC Sequence Viewer 8.0 (gap open cost 10.0; gap extension cost 1;
end gap cost as any other), and trimmed to contiguous sequences within protein encoding regions.
Phylogenetic representations were performed using both the CLC Sequence Viewer 8.0 and MEGA
10.1.8 [43].

2.5. Eukaryotic 18S and 28S rRNA Analyses

18S and 28S rRNAs were identified in viral metagenomes by comparison of contig spectra against
the Silva database [44] by BLASTn (E < 10−25). Contigs matching this criterion were further annotated
based on nearest match in NCBI by BLASTn, and classified based on taxonomic descriptions provided
by the NCBI Taxonomy Database.

3. Results and Discussion

Twenty-two contiguous sequences met our criteria as matching viral proteins (from here referred
to as “viral contigs”), which were primarily within the Picornavirales (Marnaviridae and Dicistroviridae,
referred to from here as “picornavirus-like”), Ghabrivirales (Totiviridae, referred to from here as
“totivirus-like”), and a single contig matching the Amarillovirales (Flaviviridae, referred to from here as
“flavivirus-like”). The Apostichopus californicus wasting library yielded the most viral contigs (Table 1;
n = 11), followed by Cucumaria miniata and Stichopus horrens (n = 3), and single viral contigs in the
Holothuria atra, Holothuria scabra and Holothuria difficilis libraries. No viral contigs were retrieved
from the Holothuria pardalis or Synaptula recta libraries. Read recruitment of all libraries against the
22 viral contigs revealed that some were specific to one library, but others were more cosmopolitan.
Aside from a single picornavirus-like contig (708), all other picornavirus-like contigs were present in
only the C. miniata and A. californicus libraries. Conversely, of the five totivirus-like contigs, only two
were specific to a single library, and two (contigs 5835 and 4411) recruited from both Australian and
North American holothurians. The flavivirus-like contig (91) recruited from only the North American
holothurian libraries, in both C. miniata and A. californicus. Comparing the composition of wasting and
grossly normal A. californicus, all contigs except one (picornavirus-like contig 1223) that were assembled
in the wasting affected specimen also recruited reads from the grossly normal specimen library.

These results indicate that most RNA viruses discovered in this survey were restricted to a
single or perhaps sympatric holothurian species, with few that spanned species or genera. Viral host
tropism is circumscribed by inherent cell properties, including those affecting entry, replication and
release/shedding of virions. Similar species may exhibit greater shared tropism for viruses, which may
result in spillover events of pathogens [45]. While variation in factors affecting tropism may result in
restricted host range [46], viruses may also infect across highly unrelated hosts, e.g., arboviruses that infect
both insects and vertebrates. Amongst the 22 viral contigs retrieved in this survey, genome architecture
and features suggest variable hosts, which may include non-holothurian microorganisms and metazoa.
Hence, it is not possible to speculate on their host range. However, our data demonstrate that some
viral genotypes may have geographically widespread distribution, since contigs recruited reads from
libraries generated from Australian and North American specimens (Table 2).
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Table 2. Read recruitment to metagenome-assembled viral genome fragments across all libraries. + indicates that reads recruited from the metavirome library.

Species of Metagenome Contig # Viral Order Contig Length
(nt)

Holothurian Species Recruited

Sh Ha Hs Hp Hd Sr Cm Ac Ac *

Stichopus horrens 17,482 Ghabrivirales 1070 +
Stichopus horrens 5835 Ghabrivirales 2224 + + + + + + +
Stichopus horrens 10,295 Ghabrivirales 796 + + + + +
Holothuria atra 17,799 Picornavirales 793 +

Holothuria scabra 11,085 Ghabrivirales 679 +
Holothuria difficilis 4411 Ghabrivirales 688 + + + +
Cucumaria miniata 4304 Picornavirales 636 +
Cucumaria miniata 1913 Picornavirales 1826 +
Cucumaria miniata 1781 Picornavirales 782 +

Apostichopus californicus 91 Amarillovirales 8883 + + +
Apostichopus californicus 3426 Picornavirales 1158 + +

Apostichopus californicus * 942 Picornavirales 1156 + + +
Apostichopus californicus * 792 Picornavirales 767 + +
Apostichopus californicus * 791 Picornavirales 1491 + +
Apostichopus californicus * 708 Picornavirales 1241 + + + + + + + + +
Apostichopus californicus * 557 Picornavirales 789 + +
Apostichopus californicus * 45 Picornavirales 1368 + +
Apostichopus californicus * 1580 Picornavirales 854 + +
Apostichopus californicus * 1446 Picornavirales 597 + +
Apostichopus californicus * 1223 Picornavirales 810 +
Apostichopus californicus * 1120 Picornavirales 1132 + +
Apostichopus californicus * 1020 Picornavirales 934 + +

* indicates wasting-affected individual. Sh = Stichopus horrens; Ha = Holothuria atra; Hs = Holothuria scabra; Hp = Holothuria pardalis; Hd = Holothuria difficilis; Sr = Synaptula recta;
Cm = Cucumaria miniata; Ac = Apostichopus californicus.
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3.1. Flavivirus-Like Genome Fragment

A single flavivirus-like contig (A. californicus contig 91) was retrieved based on homology with
flaviviruses deposited at NCBI. This 8883 nt contig bore a single open reading frame (ORF; 8318 nt;
flavivirus polyprotein by CDD search), with 391 nt untranslated region (UTR) at the 5′-end. Within the
polyprotein ORF, a region corresponding to the NS5 of flavivirus RNA-dependent RNA polymerase
(RdRp) was observed at the 3′ end. Preceding this is a conserved helicase domain (comprising DEAD
N- and C-terminus motifs flanking a Walker motif) but at the 5′ end there was no similarity based
on homology with any known flavivirus. However, analysis of this region by predicted peptide
folding revealed a high confidence match to flavivirus envelope protein (nt positions ~400–700;
confidence = 86.7; crystal structure of the envelope glycoprotein ectodomain from dengue2 virus
serotype 4), suggesting it was distant from known representative flaviviruses. Within this region,
there was a slippery sequence frameshift at position 2061 (5′-CUCCCUUUUUUAUC-3′) which is also
observed in insect-specific flaviviruses [47]. A start codon (AUG)-flanked hairpin structure, which is
characteristic of flaviviruses is at nt positions 232–274 [48,49] (Figure 1). There was no similarity to
known capsid or membrane proteins at the 3′ end based on CDD search or predicted peptide folding.
The first 1000 amino acids contained mostly β helices, whereas the region closest to the RdRp bore
more α-helices, suggesting it may bear the structural region [50]. The genome arrangement of the
A. californicus flavivirus-like genome fragment is similar to other insect-specific flaviviruses and distinct
from flavivirus arboviruses. Reads recruited from the C. miniata library to this flavivirus-like genome,
but not from other holothurian species (Table 2).
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Figure 1. Contig map of Apostichopus californicus flavivirus-like contig 91. The open reading frame
matched a flavivirus polyprotein by BLASTx [37]. Methyltransferase, NS5 and helicase domains were
identified by comparison against the conserved domain database (CDD) at NCBI [41]. The location of
the envelope region was determined by protein folding comparison in Phyre [39]. The hairpin like
structure preceding the Envelope region was determined by folding all sites between start (AUG)
codons by mFold [40].

Alignment of the A. californicus flavivirus-like genome fragment against closest matches at NCBI
revealed that it was firmly embedded within a clade of insect-specific flaviviruses [51], including
flaviviruses recovered from cephalopods [52] and from invertebrate and vertebrate transcriptomes [53]
(Figure 2). Enveloped RNA viruses are notable in marine ecosystems because they are not common
constituents of virioplankton and generally experience high decay rates in seawater [54]. Flaviviruses
(+ssRNA) represent important pathogens of mammals, including Dengue Fever, Yellow Fever, Hepatitis C
Virus and Zika Virus. While most flaviviruses recovered to date infect mammals and represent
arboviruses (arthropod-borne viruses) that cause pathology in mammals but do not cause disease
in arthropod vectors, there is an expanding clade of flaviviruses that are found only in arthropods
and never in vertebrates [55]. These viruses have been termed “insect-specific flaviviruses (iFVs)”.
Despite this moniker, iFVs have also recently been observed in teleosts [56,57], crustaceans [52] and an
elasmobranch [53]. Our discovery of a flavivirus genome fragment associated with a holothurian host
expands the host range attributed to this group and suggests that these may be more widespread in
invertebrate groups than currently understood. Parry and Asgari [52] inferred circulation of flaviviruses
between vertebrates and invertebrates based on nucleotide frequencies and active interference RNA
response to a shark flavivirus in crabs. The observation of vertebrate-invertebrate flavivirus associations
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in marine habitats and in terrestrial habitats may suggest they have arisen twice. Because flavivirus host
range restriction occurs at multiple levels [48], vertebrate-invertebrate associations have evolved through
complex interactions in order to overcome barriers to infection and replication. Our observation of a
holothurian flavivirus that has greatest similarity to a shark flavivirus [53] suggests that either these are
unique to deuterostomes, or that these may represent similar invertebrate-vertebrate viral associations.
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Figure 2. Phylogenetic representation of Apostichopus californicus flavivirus-like contig 91. The tree was
constructed by performing an alignment of overlapping regions with best BLASTx matches at NCBI
using the CLC Sequence Viewer 8.0 native alignment algorithm. The tree is based on a ~420 amino
acid alignment by neighbor joining and based on Jukes-Cantor distance. Values above nodes indicate
bootstrap statistics (>50%) based on 1000 iterations. The green branches indicate the emerging aquatic
and invertebrate-associated flavivirus clade [52]. An additional phylogenetic representation based on
maximum likelihood is provided in the Supplementary Materials.

3.2. Picornavirales-Like Genome Fragments

Sixteen contigs were most similar to Picornavirales (which comprises picornaviruses, dicistroviruses
and iflaviruses) based upon sequence homology to representatives at NCBI (Figure 3). Of these, 11 were
retrieved from the wasting-affected A. californicus library, while only one contig was retrieved from the
grossly normal A. californicus library. In addition to A. californicus picornavirus-like genome fragments,
3 fragments were also retrieved from C. miniata. All contigs bore similarity to RdRp domains of
picornavirus polyproteins. Apostichopus californicus contig 1020 bore 2 overlapping ORFs, which is
uncharacteristic of picornaviruses and may indicate the presence of a frameshift in the overlapping
region. Of the 17 picornavirus-like contigs, 11 bore similarity to rhinovirus capsid (rhv) regions,
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six bore similarity to reverse transcriptase (RT)-like RdRp domains (one contig, from wasting-affected
A. californicus, contig 708, contained both rhv and RdRp domains), and one contig bore similarity
to a Walker motif (P-loop-NTPase) and to the 3C cysteine protease (picornarin). Of particular note,
Holothuria atra contig 17,799 bore a capsid protein motif most similar to VP4 of Cricket paralysis virus,
suggesting that it may belong to the Dicistroviridae. Picornaviruses have conserved genome arrangement
in the order rhv-helicase-protease-polymerase [58–60]. Interestingly, the one contig bearing both rhv
and RdRp motifs was in the arrangement from 5′- to 3′- that was opposite to conserved picornaviruses
and iflaviruses and more similar to dicistroviruses [60]. Phylogenetic analyses of detected Picornavirales
based around the rhv domain demonstrate that they are similar to picorna-like viruses retrieved from
transcriptomes of insects, suggesting an invertebrate host (Figure 4).
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Figure 4. Phylogenetic representation of holothurian-associated Picornavirales-like genome fragments.
The tree was constructed by performing an alignment of an overlapping region (~100 amino acid)
of the rhv domain with best BLASTx matches in the non-redundant database at NCBI. The tree was
constructed by neighbor joining and based on Jukes-Cantor distance. Values above nodes indicate
bootstrap statistics (>50%) based on 1000 iterations. An additional phylogenetic representation based
on maximum likelihood is provided in the Supplementary Materials.
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Picornavirus-like genomes are routinely recovered in invertebrate host-associated and environmental
RNA viral metaviromes [12,33,61–68]. There have been no previous reports of picornaviruses associated
with any disease in aquatic invertebrates, and their pattern of association between sea star wasting
(SSW)-affected and grossly normal asteroid specimens does not suggest their involvement in disease
process [33]. Picornavirales infect a wide range of hosts including metazoa and unicellular eukaryotes [69].
Hence, it is possible that some detected picornavirus-like viruses may infect microscopic eukaryotic
constituents of the holothurian microbiome. Our observation of a dicistrovirus-like genome fragment in
H. atra may suggest that this infects the holothurian. The known host range of dicistroviruses includes
only arthropods and other invertebrates [62]. Similarly, the phylogenetic similarity of rhv domain-bearing
contigs in this survey suggest an invertebrate host rather than unicellular eukaryotic hosts.

3.3. Totivirus-Like Genome Fragments

Five contiguous sequences matching totivirus genome fragments were recovered from three
species of holothurian, with most coming from Stichopus horrens (Figure 5). These represented RdRps
(n = 4) and capsid (Cp) proteins (n = 2), with one contig (S. horrens contig 5835) bearing an overlapping
Cp-RdRp region, with a possible frameshift at position 882, characteristic of totivirus ORFs [70].
Predicted secondary structure (PSIPRED V4.0 [71]) of the S. horrens contig 5835 major capsid protein
region revealed a 5′ α- and β-strand rich region, followed by a β-helix rich region at the 3′ end, which is
most similar to fungal totiviruses and less similar to metazoan totiviruses, which have an α-helix rich
3′ region [72]. The Cp on S. horrens contig 17482, on the other hand, bears an α- and β-rich region at
the 5′ end, followed by a β-rich region and terminating in an α-rich region, which suggests it may be
more closely related to arthropod totiviruses [72]. Phylogenetically, the Cp regions on both S. horrens
5835 and 17,482 match more closely fungal totivirus Cp regions, as do all RdRp fragments recovered in
this study (Figure 6). Hence, these are likely fungal viruses.

Fungi do not comprise a large portion of free-living aquatic protistan communities, but they are
frequently found in association with invertebrates [73] and are implicated in at least one invertebrate
disease [74]. Fungi are easily cultivated from echinoderms, and especially holothurian tissues [75–77],
and extracts of holothurian body wall bear antifungal substances [78,79]. To date there have been
no cultivation-independent assessments of holothurian microbiome composition. Because viral
metagenomes enrich particles <0.2 µm, which includes ribosome-sized particles, rRNAs can comprise
a large fraction of metaviromic libraries, even after RNAse treatment to remove co-extracted host
RNAs. We probed the phylogeny of 18S and 28S rRNAs recovered in RNA viromes and discovered
that most bore signatures of basidiomycete and ascomycete rRNAs (Table 3). Hence, it is not surprising
to retrieve fungal viruses in our survey. Nerva et al. [80] observed the diversity of viruses in a fungal
collection prepared from Holothuria polii. They discovered that more than half were double-stranded
RNA (dsRNA) viruses belonging to the Partitiviridae and Chrysoviridae, the latter of which belongs
to the Ghabrivirales. Our observation of putatively fungal totiviruses in echinoderm viromes raises
interesting questions about the role of fungi, and interactions between these and their viruses in host
health and ecology.
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RdRp = RNA-dependent RNA polymerase, Cp = capsid protein.
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The trees were constructed by performing an alignment of an overlapping region of the RdRp (top)
and Cp (bottom) domains with best BLASTx matches at NCBI. The trees are based on ~156 amino
acid (for RdRp) and 87 amino acid (for Cp) alignments by neighbor joining and based on Jukes-Cantor
distance. Values above nodes indicate bootstrap statistics (>50%) based on 1000 iterations. An additional
phylogenetic representation based on maximum likelihood is provided in the Supplementary Materials.
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Table 3. Taxonomic assignment of contigs matching eukaryotic 18S/28S rRNAs. The number of contigs matching each group is indicated, but should be treated with
caution because of un-defined biases in template amplification.

Group Taxonomic Assignment
Holothurian Species

Holothuria
pardalis

Holothuria
difficilis

Holothuria
scabra

Holothuria
atra

Synaptula
recta

Stichopus
horrens

Cucumaria
miniata

Apostichopus
californicus

Apostichopus
californicus *

Unicellular Eukaryotes Alveolata 1 2 6 8
Apusozoa 2

Amoebozoa 2
Cryptomonada 1 9

Heterokonta 1
Metamonada 1
Viridiplantae 2 2 2 63 11 18 6 1

Fungi Ascomycota 17 14 6 7 8 17 14 2 21
Basidiomycota 11 8 6 9 8 13 14 12 16

Fungi intercae sedis 1 1 2 2

Metazoa Annelida 1
Arthropoda 4 2 4 1 3 4 3 5 5
Asteroidea 2
Chordata 3 1 2 2 4 14 3 3
Cnidaria 1 1 1 2

Echinoidea 1
Holothuria 1 1 1 3 1 1
Mollusca 1 2 1 1

Nematoda 3
Phoronida 1

Platyhelminthes 1

The * indicates that the specimen was affected by sea cucumber wasting (SCW).
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3.4. Viral Diseases in Holothurians

A condition affecting A. californicus has been observed since at least 2014 in southeast Alaska and
the Salish Sea. The ongoing sea star wasting (SSW) epidemic brought attention to the condition in sea
cucumbers, which has not yet been reported in the peer-reviewed scientific literature. Because this
species primarily inhabits subtidal habitats and is generally not as abundant as asteroids, the extent of
sea cucumber wasting (SCW) and impacts on population decline is driven by wildlife manager and fisher
observations (cf. extensive citizen science observations of SSW). Wasting was first anecdotally reported
in Friday Harbor, WA, in February 2014, subsequently near Admiralty Island (AK) in August 2014,
and Santa Catalina Island in September 2014. In April 2015 and again in November 2016, more extensive
SCW was observed in the holothurian fishery in southeast Alaska (Tenakee Springs, Chicago Island)
and in the central Salish Sea [81]. In February 2017, SCW was observed at an aquaculture facility
in the southern Salish Sea (Manchester, WA) and again in the central Salish Sea and has since been
reported more widely in the region (including in the Secheldt and Howe Sound, BC). Anecdotally
reported disease signs based on gross observations include non-focal lesions and fissures across the body
wall, some sloughing of epidermal tissues, and rapid liquefaction upon collection [81]. Anecdotally,
the number of individuals recovered at fishing sites decreased from 2014 to the present day, suggesting
that SCW may have affected overall holothurian population density. Wasting was mostly reported
between September and January in 2014–2017, which corresponds with seasonal evisceration which is a
response to more limited food availability and organ atrophy [82]. During seasonal self-evisceration,
viscera are recycled by internal processes [83]. However, self-evisceration does not typically affect body
wall tissues, so it is unclear whether SCW is an extension of normal self-evisceration processes.

We compared a single wasting A. californicus specimen virome to a single grossly normal A. californicus
virome collected at the same site (Table 1). We expected to see differential representation of wasting-
associated viruses in A. californicus which would provide targets for further pathology investigations.
However, nearly all viral genome fragments discovered in the wasting-affected individual recruited
reads from the asymptomatic specimen library, which is similar to metagenomic analyses performed
on sea star wasting-affected individuals [12]. Because of uncertain amplification biases and variable
amplification template amounts, it is not possible to quantitatively compare representation between
tissue states [16]. Moreover, no challenge experiments with virus-sized material or isolated viruses
were performed in this study. Hence, it would be highly speculative with the available information to
attribute sea cucumber wasting to any virus.

Previous work has highlighted several virus-like particles associated with tissues of grossly diseased
specimens of the aqua-cultured Apostichopus japonicus. A skin ulceration and evisceration-associated
disease caused mass mortality in the Yellow Sea in 2004–2005. Occluded viral particles were observed by
electron microscopy in muscles lining the water vascular system, alimentary canal, connective tissue and
respiratory tree, although the virus was not sequenced [84]. In addition, exposure to virus-sized material
yielded disease signs in naïve specimens. Separately, [85] reported microscopy-based assessments
of acute peristome edema disease in the Yellow Sea in 2007, and described particles with consistent
morphology to coronaviruses. Similarly, a spherical virus with a bilayer capsule was described in
holothurians experiencing skin ulceration and peristome tumescence disease, and again this appeared
to be transmissible [86]. Similar virus particles were also reported in A. japonicus larvae experiencing
stomach atrophy, which were identical to virus particles observed in parent gonads [84].

The eight species of holothurian sampled in this study were broadly similar in ecology. Specimens
of A. californicus, S. horrens, H. atra, H. scabra, H. difficilis, H. pardalis, and S. recta are deposit feeders
that consume detritus and sediment-bound organisms. A. californicus inhabits subtidal waters in the
northeastern Pacific, whereas other species inhabit primarily subtropical and tropical waters of the
Indo-Pacific. C. miniata is a suspension feeder that occurs in rocky intertidal zones in the northeastern
Pacific. In the context of virology, there were no expected differences due to behavior (which may
affect contact rates between individuals or with fomites), except for perhaps between C. miniata and
other species. However, our observation of read recruits between viral genome fragments detected in
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C. miniata and A. californicus suggests that geographic location may ultimately influence viral types
present in species more strongly than feeding behavior.

4. Conclusions

To the best of our knowledge, this is the first viral metagenomic survey of holothurians, and our
work expands on knowledge of viruses inhabiting echinoderms. Our work revealed the presence
of a flavivirus-like genome fragment that falls within an expanding group of aquatic invertebrate
flaviviruses, along with novel totivirus and picornavirus-like fragments. While we cannot associate
pathology with any of these detected viral genotypes and our comparison is limited to a single
individual of sea cucumber wasting, we did not observe a viral genotype that was unique to SCW. It is
recommended that future studies focus on the entry, replication and shedding of novel flaviviruses
and the role of fungi and their associated viruses in holothurian ecology.
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