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Objectives: The purpose of this study aimed at investigating the reliability of radiomics
features extracted from contrast-enhanced CT in differentiating pancreatic cystadenomas
from pancreatic neuroendocrine tumors (PNETs) using machine-learning methods.

Methods: In this study, a total number of 120 patients, including 66 pancreatic
cystadenomas patients and 54 PNETs patients were enrolled. Forty-eight radiomic
features were extracted from contrast-enhanced CT images using LIFEx software. Five
feature selection methods were adopted to determine the appropriate features for
classifiers. Then, nine machine learning classifiers were employed to build predictive
models. The performance of the forty-five models was evaluated with area under the curve
(AUC), accuracy, sensitivity, specificity, and F1 score in the testing group.

Results: The predictive models exhibited reliable ability of differentiating pancreatic
cystadenomas from PNETs when combined with suitable selection methods. A
combination of DC as the selection method and RF as the classifier, as well as
Xgboost+RF, demonstrated the best discriminative ability, with the highest AUC of
0.997 in the testing group.

Conclusions: Radiomics-based machine learning methods might be a noninvasive tool
to assist in differentiating pancreatic cystadenomas and PNETs.

Keywords: pancreatic cystadenomas, pancreatic neuroendocrine tumors, radiomics, machine learning,
differentiation, pNETs, CT
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INTRODUCTION

Pancreatic neuroendocrine tumors (PNETs), a rare group of
heterogeneous tumors originated from ductal pluripotent stem
cells, account for less than 5% of pancreatic neoplasms and 7% of
all NETs (1–3). Its incidence has increased in recent years,
reaching 0.48 per 100 000 persons per year in the United
States. This increase is probably due to the improvement in
modern imaging and endoscopic technologies (4). Based on the
clinical manifestations, PNETs have two subtypes, functional
and non-functional PNETs. The most common functional
PNETs includes insulinoma, gastrinoma, and glucagonoma.
However, about 2/3 of all PNETs are non-functional, making
the diagnosis difficult in clinical practice (5). For localized and
advanced, but resectable PNETs, surgery is the first-line therapy
capable of improving the clinical outcome (6–8). Pancreatic
cystadenomas including serous pancreatic cystadenomas and
mucinous pancreatic cystadenomas, account for approximately
46.3% of all surgically removed pancreatic cystic tumors (9).
Serous cystadenomas are rare glycogen-rich lesions, which arise
from pancreatic ductal epithelium (10). But mucinous
cystadenomas are cystic epithelial tumors, consisting of ovarian
stromata and mucus-producing columnar epithelium (11). In
clinical practice, most pancreatic cystadenoma patients are
asymptomatic or manifest non-specific symptoms (12). The
management of patients is different due to the biological
differences of PNETs and pancreatic cystadenomas. The
endoscopic ultrasound fine-needle aspiration (EUS-FNA) is
considered the best approach to diagnosis pancreatic tumors,
but it is invasive and not completely accurate due to the small
size of samples (13, 14). Therefore, a preoperative differential
diagnosis is vital to identify the most appropriate therapies and
improve clinical management.

Generally, computed tomography (CT) is the most effective
imaging technique for initial detection and tumor staging among
pancreatic patients (15–18). Previous studies showed that CT
could clearly show the tumor site and boundary, maximum
diameter, cyst wall characteristics, enhancement degree and
other imaging signs, which may contribute to differentiating
pancreatic cystadenoma from PNETs (18–21). Radiomics is a
high-throughput method to extract quantitative imaging
features, which can conduct mining and analysis of image
feature data in depth. The strength of radiomics is to provide
an objective, repeatable, non-invasive and low-risk diagnostic
tool, which helps to derive a comprehensive characterization of
tumors heterogeneity. It has plenty of applications including
biological feature prediction and tumor classification (14, 22, 23).
According to recent studies, the radiological features extracted
from CT images are helpful for differentiating pancreatic
neoplasms (19, 24, 25), as well as the prediction of PNETs
grading (21). For example, He et al. developed three models to
differentiate non-functional PNET and pancreatic ductal
adenocarcinoma (PDAC), which all showed good performance
(26). The AUC of the validation cohort was 0.884 in the LASSO
based model that integrated clinicoradiological features and
radiomic. Another study built a radiomics model based on
Frontiers in Oncology | www.frontiersin.org 2
non-contrast MRI to predict grades of non-functional PNETs
and the AUC was 0.769 in the training cohort and 0.729 in the
validation cohort (27). However, there are no studies to
differentiate pancreatic cystadenomas from PNETs. Therefore,
we conducted this study to identify pancreatic cystadenomas and
PNETs using machine learning methods based on enhanced CT
image features.
MATERIALS AND METHODS

Patient Selection
We retrospectively included all patient with pancreatic
cystadenomas including pancreatic mucinous and serous
cystadenoma or PNETs in West China hospital from January
2013 to May 2018 in this study. We initially identified 356
eligible patients according to criteria as followed: (1) pathological
diagnosis of pancreatic cystadenomas or PNETs; (2) enhanced-
contrast CT examination before biopsy or surgery. Then 92 of
356 patients without exact pathological evidence supporting
pancreatic cystadenomas or PNETs were excluded. In addition,
144 patients lacking abdominal enhanced-contrast CT images
before surgery were also excluded. Finally, we enrolled 120
qualified patients, consisting of 66 pancreatic cystadenomas
patients and 54 PNETs patients. The patient selection process
was illustrated in Figure 1. All procedures conformed to the
Declaration of Helsinki, as well as its later amendments.

CT Image Acquisition
All the contrast-enhanced CT images were collected from the
patients before they received any treatment. A single 64-MDCT
scanner (Brilliance64, Philips Medical Systems, Eindhoven, The
Netherlands) were used for scanning. The tube voltage was 120
kVp, and tube current was 200 mAs. The gantry rotation time
was 0.42 s, and the detector collimation was 0.75 mm. The matrix
was 512×512 and beam pitch was 0.891. The slice thickness was
1.0 mm and reconstruction increment was 5.0 mm. Before the
examination, patients were administrated with 1.5-2.0 mL/kg of
nonionic contrast material (Omnipaque 350, GE Healthcare)
intravenously at 3 mL/s. Images were obtained at 60-65 s for
portal venous phase.

ROI Segmentation and Texture Extraction
All the contrast-enhanced CT images (400-bit gray scale) were
obtained through searching the picture archiving and
communication system (PACS). The lesion segmentation and
texture analysis were acquired with a local image features
extraction software (LIFEx v3.74, CEA-SHFJ, Orsay, France)
(9). Briefly, the two-dimensional region of interest (ROI) was
firstly obtained by drawing the outline of each tumor in the
portal vein phase CT images (Figure 2) and then three-
dimensional ROIs were automatically generated with default
setting (28, 29). In order to reduce bias in the evaluation of
derived radiomic features, the whole process was performed
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FIGURE 1 | Flowchart shows selection of study population and exclusion criteria.
FIGURE 2 | Examples of lesion segmentation and contouring on contrast-enhanced CT images. Portal vein phase CT images of a patient with histopathologically
proved pancreatic cystadenomas (A, B) and pancreatic neuroendocrine tumors (C, D).
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independently by two experienced radiologists without relevant
knowledge of pancreatic tumor diagnosis and a third radiologist
evaluated and selected the more accurate ROIs. The ROIs
included the whole tumor while avoiding vascular shadows
and surrounding adipose tissue. Then the textural parameters
were calculated automatically based on the ROIs by the
computer software LIFEx. Forty-eight texture features were
extracted, including histogram-based matrix, shape-based
matrix, gray-level co-occurrence matrix (GLCM), gray-level
run length matrix (GLRLM), neighborhood gray-level
dependence matrix (NGLDM) and gray-level zone length
matrix (GLZLM). The association among texture parameters
was analyzed by Pearson correlation coefficient test.

Machine Learning Model
In this study, five feature selection methods, namely, random
forest (RF), distance correlation (DC), least absolute shrinkage
and selection operator (LASSO), gradient boosting decision tree
(GBDT) and eXtreme gradient boosting (Xgboost) were used to
analyze the texture parameters and several clinicoradiological
features (gender, age, size, location of lesions and calcification of
lesions). Then, discriminative models were built by nine machine
learning classifiers, which covers linear discriminant analysis
(LDA), RF, Adaboost, support vector machine (SVM),
GaussianNB, k-nearest neighbor (KNN), GBDT, logistic
regression (LR) and decision tree (DT). Patients meeting the
criteria were randomly assigned to either training group or
validation group. The ration of patient number in training
group to validation group was 4:1. The classification models
were generated from the training group and the discriminative
capability of models were tested in the validation group.
Frontiers in Oncology | www.frontiersin.org 4
We performed 10-fold cross validation with 1000 repetition to
guarantee the real distribution of classification. The sensitivity,
specificity, accuracy and F1 score were calculated accordingly
after establishing a confusion matrix. Besides, the area of receiver
operating characteristic curve (AUC) was recorded to assess the
discriminative ability of the classification models. The machine
learning algorithm was completed by the Python programming
language and sklear-Package. The whole study process was
shown in Figure 3.
RESULTS

Patient Characteristics
In this study, a total number of 120 patients (including 66
individuals with pancreatic cystadenomas and 54 patients with
PNETs) were enrolled. The median age of all patients was 50.26
(ranging from 24 to 77) in the group of pancreatic cystadenomas,
and 54 (ranging from 29 to 73) in the PNETs group. Of the 66
patients with pancreatic cystadenomas, 15 (22.7%) were males
and 51 (77.3%) were females. In PNETs group, there were 32
(59.3%) male and 22 (40.7%) female patients. In the patients with
pancreatic cystadenomas, 40.9% of lesions were located in the
pancreatic head, whereas 59.1% were in the pancreatic body-tail.
Of the 54 patients with PNETs, the tumor was located in the head
of pancreas in 23 patients (42.6%) and in the pancreatic body-tail
in 31 patients. The average size of pancreatic cystadenomas
and PNETs was 4.1 cm (range 0.8-12.0 cm) and 4.19 cm
(range 1.0-12.0 cm) respectively. The summary of patient and
lesion characteristics were recorded in Table 1.
FIGURE 3 | Flowchart depicts the workflow of the whole study.
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Texture Parameters Selection
Most texture parameters were uncorrelated or weakly correlated
according to the result of Pearson correlation coefficient test,
only a few parameters showing strong positive or negative
correlation (Figure 4). Different texture parameters were
selected in five feature selection methods, however, no
clinicoradiological feature was selected using the five feature
selection methods (Table 2). LASSO selected the most number of
parameters , including maxValue, HISTO_Skewness,
SHAPE_Sphericity, GLRLM_SRLGE, GLRLM_GLNU,
GLRLM_RLNU, GLRLM_RP, GLZLM_SZE, GLZLM_LGZE,
Frontiers in Oncology | www.frontiersin.org 5
GLZLM_SZLGE, GLZLM_LZLGE, GLZLM_GLNU,
GLZLM_ZLNU, GLZLM_ZP and Xgboost selected only
four parameters.

Machine-Learning Model Evaluation
Through a random combination offive feature selection methods
and nine machine-learning classifiers, we acquired a total of
forty-five predictive models for distinguishing pancreatic
cystadenomas from PNETs. The AUC, accuracy, sensitivity,
specificity and F1 score of all models in the testing group were
shown in Table 3. The result revealed that radiomics-based
machine learning models were able to differentiate pancreatic
cystadenoma from PNETs, with AUC more than 0.743 in the
validation cohort (Figure 5). It is noteworthy that the
combination of DC as the selection method and RF as the
classifier, as well as Xgboost+RF, demonstrated the best
discriminative ability, with the highest AUC of 0.997 in the
testing group. The receiver operating characteristic (ROC) curves
of 10 fold for DC+RF and Xgboost+RF in the testing group were
shown in Figure 6. For the model (DC+RF) in the testing group,
the accuracy, sensitivity, specificity and F1 score were 0.983,
0.980, 0.986 and 0.980, respectively. The mean AUC for DC+RF
was 0.9977 (Std= 0.0024; 95% CI, 0.9976 to 0.9979) after 1000
repetition. As for the model of Xgboost+RF, the accuracy,
sensitivity, specificity and F1 score were 0.992, 0.980, 1.000 and
TABLE 1 | Characteristics of patients and lesions.

Characteristics Pancreatic
cystadenomas

Pancreatic
neuroendocrine tumors

Number 66 54
Mean age (range) (year) 50.26 (24-77) 50.48 (29-73)
Gender
Male 15 (22.7%) 32 (59.3%)
Female 51 (77.3%) 22 (40.7%)
Location
Head 27 (40.9%) 23 (42.6%)
Body or tail 39 (59.1%) 31 (57.4%)
Maximum diameter
(range) (cm)

4.1 (0.8-12) 4.19 (1-12)
FIGURE 4 | The result of Pearson correlation coefficients test between radiomics features.
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0.989 respectively in the validation group and the mean AUC
was 0.9962 (Std=0.0033; 95% CI, 0.9960 to 0.9964) after
1000 repetition.
DISCUSSION

Contrast‐enhanced CT and MRI are widely used for identification
of pancreatic neoplasms, which is not sufficiently specific due to the
overlapping of anatomical imaging features between different
pancreatic tumors (30). Furthermore, PNETs identification is to
exploit somatostatin analog radiotracers for CT and MRI imaging,
which is easily affected by intra-/inter-observer variability (31). The
accuracy for manual identification of tumor lesions is only 60%-
70%, even by highly-trained radiologists (32). To date, EUS-FNA is
considered the best approach to diagnosis pancreatic tumors based
on cytopathologic features. However, it is invasive with the
possibility for puncture failure, as well as unable to reflect tumor
heterogeneity accurately due to the small size and limited number of
samples (14, 33).

Radiomics combine quantitative image analysis with machine
learning or artificial intelligence methods to select out and classify
target features in the sample images. It has been applied in
modern medical care including diagnosis, risk stratification,
virtual biopsy and radiogenomics (34). Several studies have
investigated the utility of machine learning based-radiomics on
the differentiation of pancreatic mucinous cystadenomas from
pancreatic serous cystadenomas (35, 36) and the prediction of
PNETs grading (13, 21, 37–39). However, no studies reported
how to differentiate pancreatic cystadenomas from PNETs. Given
the similar incidence, nonspecific symptoms and various
biological behaviors of pancreatic cystadenomas and PNETs, we
conducted this study by combining radiomics and machine
learning method to distinguish these two types of pancreatic
lesions. This is the first study that utilized enhanced CT images
features and machine learning methods to differentiate pancreatic
cystadenomas from PNETs so far.
Frontiers in Oncology | www.frontiersin.org 6
Different radiomic features were obtained from preoperative
contrast-enhanced CT images. Then the establishment of
predictive models were based on five feature-selection methods
and nine machine-learning classifiers. Our results proved that
the combination of predictive models and appropriate selection
methods could differentiate pancreatic cystadenomas from
PNETs, with AUC more than 0.743 in the validation cohort.
Notably, the combination of DC as the selection method and RF
as the classifier, as well as Xgboost+RF, seemed to be optimal in
differentiating the two types of pancreatic lesions, with the
highest AUC of 0.997 in the testing group. For the model
(DC+RF) in the testing group, the accuracy, sensitivity,
specificity and F1 score were 0.983, 0.980, 0.986 and 0.980,
respectively. In addition, the accuracy, sensitivity, specificity
and F1 score were 0.992, 0.980, 1.000 and 0.989 respectively in
the validation group for the model of Xgboost+RF. RF classifier is
an excellent classification algorithm that has been widely used in
many studies (40–42). Previous studies have investigated the
diagnostic performance of PNETs from PDACs based on CT
features and texture analysis. Yu et al. used LASSO and
univariate logistic regression (ULR) analyses to select CT
radiomic features and generated four multivariate logistic
regression (MLR) models. The highest AUC was 0.926 in the
model built with CT radiomic features extracted from portal
venous phase (43). Another study developed a MLR model to
discriminate PNETs from solid pseudopapillary tumors (SPTs)
(44). The model incorporating MRI radiomics features and sex
and age of patients exhibited the best discriminative ability with
AUC of 0.97 and 0.86 in the training and validation cohort
separately. Compared with previous studies, we developed more
predictive models by employing more selection methods and
classifiers to identify the best model.

However, our study existed several limitations. First of all, this
study was conducted in a retrospective fashion, which had
unavoidable selection bias. Second, it was a single-center study
with a small group of patients. Multicenter studies with more
patients would be helpful to confirm these findings. Third, there
TABLE 2 | Selected features of five selection methods.

DC RF LASSO Xgboost GBDT

meanValue meanValue maxValue meanValue HISTO_Kurtosis
HISTO_Kurtosis HISTO_Kurtosis HISTO_Skewness HISTO_Kurtosis GLRLM_SRHGE
GLZLM_HGZE PARAMS_YSpatialResampling SHAPE_Sphericity GLRLM_HGRE GLRLM_LRHGE
GLZLM_SZHGE GLRLM_HGRE GLRLM_SRLGE GLRLM_LRHGE GLZLM_HGZE
GLRLM_HGRE GLRLM_SRHGE GLRLM_GLNU GLZLM_SZHGE
GLRLM_SRHGE GLRLM_LRHGE GLRLM_RLNU
GLZLM_SZE GLZLM_SZE GLRLM_RP

GLZLM_HGZE GLZLM_SZE
GLZLM_SZHGE GLZLM_LGZE

GLZLM_SZLGE
GLZLM_LZLGE
GLZLM_GLNU
GLZLM_ZLNU

　 　 GLZLM_ZP 　 　
July 2021 | Volume 11
DC, distance correlation; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree;
GLZLM, gray-level zone length matrix; HGZE, High Grey Level Zone Emphasis; GLRLM, Gray Level Run Length Matrix; SZHGE, Short Zone High Grey Level Emphasis; HGRE, High Gray
Level Run Emphasis; SRHGE, Short-Run High Grey Level Emphasis; SZE, Short Zone Emphasis; LRHGE, Long-Run High Grey Level Emphasis; SRLGE, Short-Run Low Grey Level
Emphasis; GLNU, Grey Level Non-Uniformity; RLNU, Run Length Non-Uniformity; RP, Run Percentage; LGZE, Low Gray Level Zone Emphasis; SZLGE, Short Zone Low Grey Level
Emphasis; LZLGE, Long Zone Low Grey Level Emphasis; ZP, Zone Percentage.
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was subjectivity when manually defining the tumor boundary on
CT images.
CONCLUSION

This study concluded that radiomics-based machine learning
method was able to preoperatively differentiate pancreatic
cystadenomas from PNETs, which may guide clinical decision-
making for better treatment. The feature selection method DC or
Xgboost and classifier RF showed a good prospect in
discriminating pancreatic cystadenomas from PNETs. However,
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FIGURE 5 | The results of AUC (A), sensitivity (B) and specificity (C) in the
testing group.
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more large-scale multicenter studies are required to supplement
more evidence concerning the feasibility of this method in
clinical practice.
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