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Simple Summary: Heat stress in cattle is broadly defined as a physiological condition in which body
temperature rises, and the animals are no longer able to adequately dissipate body heat to maintain
thermal equilibrium due to environmental factors. Dairy cattle are particularly sensitive to heat stress
because of the higher metabolic rate needed for milk production. Due to global warming and the
expected growth of milk production in warmer regions, an increase in the occurrence of heat stress
can only be avoided with the use of environmental control systems. However, most available systems
were developed to take corrective measures or are not accurate enough to effectively prevent heat
stress, as there is not yet an automated technological solution that considers all the environmental
and animal variables that determine the occurrence of this condition. Further, these systems must
be connected in time to prevent this condition in cattle but also disconnected when they are no
longer needed, as their use raises major economic and environmental concerns regarding energy and
water consumption. This review describes and discusses three types of predictive models that can
make these systems more effective in preventing heat stress and more efficient in the use of energy
and water.

Abstract: Dairy cattle are particularly sensitive to heat stress due to the higher metabolic rate needed
for milk production. In recent decades, global warming and the increase in dairy production in
warmer countries have stimulated the development of a wide range of environmental control systems
for dairy farms. Despite their proven effectiveness, the associated energy and water consumption
can compromise the viability of dairy farms in many regions, due to the cost and scarcity of these
resources. To make these systems more efficient, they should be activated in time to prevent thermal
stress and switched off when that risk no longer exists, which must consider environmental variables
as well as the variables of the animals themselves. Nowadays, there is a wide range of sensors and
equipment that support farm routine procedures, and it is possible to measure several variables that,
with the aid of algorithms based on predictive models, would allow anticipating animals’ thermal
states. This review summarizes three types of approaches as predictive models: bioclimatic indexes,
machine learning, and mechanistic models. It also focuses on the application of the current knowledge
as algorithms to be used in the management of diverse types of environmental control systems.

Keywords: dairy cow; heat stress; cow thermal state; predictive model; bioclimatic indexes; machine
learning; mechanistic models; numerical model
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1. Introduction

Heat stress in cattle is broadly defined as a physiological condition during which the
animal is no longer able to regulate its internal temperature within a comfortable level
because of an increase in body heat storage [1]. This physiological condition can lead to
impaired health and immunity [2,3], deteriorated living conditions and even mortality
during extreme events [4,5], especially in younger cattle [6,7]. Due to global warming,
the number of heat stress events is expected to increase (2000 h in Central Europe and
Mediterranean regions [8]) causing vast economic losses (e.g., the dairy industry loses
approximately USD 900 million/year only in the U. S. [3]). Furthermore, the conventional
genetic selection of dairy breeds to increase dry matter intake (DMI) and milk yield [9,10]
resulted in cows with elevated internal heat loads (due to high milk production) that
may lead to heat stress much earlier than their lower-producing counterparts [11–13]. For
instance, the loss of milk production due to heat stress is expected to increase at a rate
of 174 ± 7 kg/cow/decade in the 21st century [14]. Thus, the impact of this syndrome
on animals cannot be neglected in any way as the future dairy industry faces the difficult
challenge of increasing milk production in warmer environmental conditions [8], while
preserving the welfare of dairy animals.

Several strategies are reported in the literature to mitigate heat stress, from cattle
housing design to shifting feeding times to cooler periods and shade seeking [3,15,16], but
only cooling and forced ventilation systems are effective above certain temperatures and
humidity conditions [16]. Further, these systems must be connected in time to prevent the
development of heat stress in cattle but also disconnected when they are no longer needed,
as their use raises major concerns regarding energy and water consumption, which may be
economically and environmentally unsustainable in the near future [17–19].

Presently, as a wide range of sensors and equipment have been developed to support
farmer routines, it is possible to measure several variables that, with the aid of algorithms
based on predictive models, could allow anticipating the thermal state of the animal. This
review summarizes three types of approaches with the potential to be used as predictive
models: bioclimatic indexes, machine learning, and mechanistic models. The analyses
focused on the application of the current knowledge as algorithms to be used in different
types of dairy technology (e.g., fans, sprinklers), considering the several input and output
variables of the models as practical issues.

2. Heat Stressed Dairy Cows and the Available Technological Solutions to Detect and
Mitigate Heat Load
2.1. Heat Stress Indicators

Heat stress has an enormous impact on animal health, biological functioning, and wel-
fare. One of the most noticeable consequences of heat stress in dairy cows is the reduction
of DMI, which causes a drop in milk production by decreasing the availability of nutrients
used for milk synthesis [20,21]. Moreover, heat stress compromises cattle welfare by chang-
ing or inhibiting social and eating behavior [22], increasing susceptibility to disease [23],
and causing stress and discomfort [24]. Under harsh ambient conditions, animals show
physiological or behavioral responses or, most often, a combination of both. For instance,
in the early stage of heat exposure, the animal body quickly responds to maintain home-
ostasis. As the amount of heat load increases, the physiological response becomes more
evident, triggering an increase in both respiratory (RR; [25,26]) and heart rates (HR; [27,28]).
Therefore, cows change their behavior [3,24], e.g., water ingestion, reducing movement
and seeking shaded areas to minimize heat load, leading to the subsequent decrease in
milk production, and finally a decline in fertility [29]. Although interdependency exists,
physiological, behavioral, and production indicators were examined separately to facilitate
the analyses [30,31].
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2.1.1. Physiological Indicators

The core body temperature in cattle indicates the temperature of the most important
organs of the body such as the heart, liver, and brain [32]. It is often used as an indicator of
heat stress and typical values of 38.0 to 39.3 ◦C are observed in non-heat-stressed cattle [27].
Rectal or vaginal temperature is used as a conventional “gold standard” measure of core
body temperature [33]. Yan et al. [34] studied the rectal temperature of dairy cows exposed
to several heat stress conditions, reporting an increase of 1 ◦C in rectal temperature (from
~38.5 to ~39.5 ◦C) from neutral to heat stress conditions. The rectal temperature is the
predominant method employed to measure the internal temperature of heat-stressed cows,
but other internal regions of the cow body, such as the vagina [35,36], the rumen [16], and
the tympanum [37], have also been studied and correlated with typical behavioral and
ambient conditions of heat stress. Nordlund et al. [35] monitored the vaginal temperature
of 20 high-producing cows, observing a temperature increase during lying bouts and a
temperature decrease when the cows were standing in pens (both free stall and milking
center holding pens). Another example, reported by Curtis et al. [16], is the delay in the
rumen temperature increase of 2 to 5 h when compared to ambient temperature, probably
due to the thermal inertia caused by the cow’s substantial body mass. One possible
approach to identifying animals affected by heat stress is by monitoring the external
temperature of the cow’s body. Several authors have been studying the temperature of
eyes, limbs, and udder and have correlated it with core temperature [28,38].

In some situations, the variation of other physiological indicators is more signifi-
cant than the core body temperature. For example, in moderate heat stress conditions,
Vizzoto et al. [27], compared shaded and non-shaded cows at 1300 h (GMT−0200 h) and ob-
served a significant increase in the respiratory and heart rates, but no significant differences
in the cow’s body temperature. Cows with access to shade had a lower respiratory rate of
5.9 breaths per minute and a lower heart rate of 20.5 beats per minute when compared with
those without access to shade. However, a significant increase in the core temperature of
not-shaded cows was observed later at 1700 h. Respiratory rate increase followed by a body
temperature increase was also reported by Ferrazza et al. [25] in Holstein cows exposed to
intense and prolonged heat stress conditions. Moreover, Brown-Brandl et al. [26] concluded
that the respiration rate is a good physiological indicator of heat stress because there was
little or no lag associated with it and it was consistently affected in all the categories of the
daily maximum temperature–humidity index (THI; i.e., it measures the risk of the animal
suffering from heat stress; see Section 3.1).

The endocrine response to heat stress is mainly reflected by elevated glucocorticoids
(cortisol), aldosterone, antidiuretic hormone, thyroxine, prolactin, and growth hormone.
However, their use as heat stress indicators would imply frequent blood sampling, an
invasive procedure that requires the handling of animals. A less invasive measurement is
milk cortisol (MC) concentration as it is highly correlated to plasma cortisol concentrations
sampled at the same time [39]. Glucocorticoid metabolites (produced by the liver and
excreted into the gut via the bile), but not the native glucocorticoids, can be detected in
feces [40]. These fecal Cortisol Metabolites (FCM) can thus provide an integrated measure
of stress over several hours, whereas MC provides a measure of stress occurring in the
previous minutes. Despite being recognized as useful indicators of the occurrence of heat
stress in cattle, their use in a heat stress study has several limitations besides laboratory
costs. In the case of MC, its measurement as short-term indicators would imply milking
cows outside milking hours, which could be a stressful event for the cows.

2.1.2. Behavioural Indicators

Under heat stress conditions, cows tend to adapt their body posture [41,42], spending
more time standing to increase the body surface area exposed to air, thus dissipating
more heat. Allen et al. [43] showed a direct correlation between the core temperature
and the duration of the standing period of lactating dairy cows experiencing mild to
moderate heat stress. When a cow’s vaginal temperature exceeded 38.93 ◦C, there was a
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50% likelihood that the cows would be standing. Furthermore, Yan et al. [34] correlated the
rectal temperature and temperature–humidity index of cows with different postures (i.e.,
laying or standing). They observed that recumbent cows showed higher rectal temperature
for lower values of THI, which indicates how the laying posture negatively affects the cows’
thermal state.

Heat stress also affects the cow’s disposition to display natural estrous behavior,
reducing both the duration and intensity of estrous expression [44,45] and is responsible for
a decrease of 20 to 30% in conception rates [46]. Furthermore, the decrease in conception
rates during summer is also explained by oocyte quality reduction, early embryonic death,
endometrium dysfunction, and reduced spermatogenesis in bulls [47,48].

Although less documented in the literature due to difficult quantification, it is un-
deniable the important changes in the emotional state, with evident signs of malaise,
disorientation and frustration in animals affected by heat stress [3].

Other changes in the social behavior of heat-stressed animals are also reported, such as
higher levels of aggression near water drinkers or competition for shade seeking [22,49,50].
Furthermore, the eating and drinking behavior of cows also changes [50]. For example,
the increase in heat load is accompanied by an increase in water intake and a significant
reduction in dry matter intake (DMI). This reduction in feed intake occurs in all mammalian
species under heat stress conditions. However, the extent of this reduction depends not only
on environmental conditions but also on the production level [30]. In heat-stressed lactating
cows, feed intake may be reduced by as much as 40%, according to the National Research
Council of the United States of America [51]. This causes a decline in milk production by
decreasing the availability of nutrients used for milk synthesis. Likewise, a change in milk
composition is to be expected such as a decline in total protein or fat content [52,53] but
also in fat composition [54]. These factors related to the yield and composition of milk are
often used as indicators of performance, as described in the following subsection.

2.1.3. Performance-Related Indicators

Under heat stress conditions, the activation of the cow’s thermoregulatory system
can increase metabolic maintenance requirements by 7 to 25% [55], exacerbating both
the existing metabolic stress and the reduction of milk production [3,30]. However, the
drop in milk production has a time delay associated with it, being clearly noticed a few
days after the first day of exposure to a high-temperature environment. For example,
Van Laer et al. [56] reported a significant decrease in milk yield after a lag period of two
days. Nevertheless, as the heat load decreases to thermoneutral conditions, the milk yield
progressively returns to values obtained in thermoneutral cows [30].

Another relevant performance-related indicator that might be affected by heat stress
is the milk composition which typically presents a reduction of lactose, protein, and/or
fat with increasing values of bioclimatic indexes [53,56]. Nonetheless, the decrease in milk
production is not always accompanied by a change in the composition of the milk [30].

2.2. Methods to Detect Heat-Stressed Cows

The complexity of cow physiological mechanisms and their interdependency with its
behavior and with environmental conditions recommend the measuring of indicators at
various levels: cow’s body, performance, behavior, and environment. The record of the
latter is straightforward, and the parameters often studied are the environment temper-
ature, humidity, air velocity, and solar radiation [57,58]. Several types of equipment are
available in the market such as temperature and humidity sensors for indoor/outdoor
conditions [23,59], anemometers for measuring wind direction and velocity [8,42,60], and
solar radiation sensors [57,61]. However, a broader range of methods may be used to
assess animal health and welfare [30], from equipment with different frequencies of data
acquisition (e.g., real-time vs. hourly measurements) to continuous or scan observations.
Thus, to facilitate the analyses of the methods used to study the animal physiological,
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behavioral, and performance-related indicators, the methods are described in the following
sections by these categories: equipment measurement frequency and observations.

2.2.1. Equipment with Low Data Acquisition Frequency

Over the last decades, manual detection has been the most used method for measur-
ing physiological parameters such as heart rate, sweating rate or rectal temperature [57].
However, these methods can be classified as invasive or, at least, disturbing to the animal,
since the interaction with the animal, e.g., by touching or inserting portable equipment in
the animal body [33], can add extra stress and consequently influence the measurements.
These methods are also time-consuming and may involve significant additional labor costs.
The advantage of these type of methods is that it often requires cheap and user-friendly
equipment, e.g., a thermometer for rectal temperature measurement [1,25] or a stethoscope
for heart rate measurement [25,27].

Sensors coupled with data loggers are also often used to record the measurements
over discrete time points [2,57,62]. An evaporimeter was used by Rungruang et al. [63]
to measure, four times a day, the sweating rate at the skin or hair-end level. In order to
avoid the displacement of cattle from their social group for restrainment in a crush, the
surface body temperature is often measured with thermal data loggers, e.g., a neck collar
attachment for skin temperature measurement [2].

Another rapidly developing promising alternative is infrared thermography [2]. Ther-
mal imaging cameras for Infrared Thermography (IRT) offer a remote, non-contact method
for recording surface temperature and have been explored as a proxy for core body temper-
ature measurements [28]. However, the use of such systems presents important operational
challenges since the successful determination of IRT of external body surfaces depends on
the effective minimization of confounding factors, e.g., the animal skin and hair, or external
factors such as ambient temperature, sunlight or wind [2,64]. In a study that used infrared
thermographic images to predict heat stress events in feedlot cattle, Unruh et al. [65] con-
cluded that it was an objective method to monitor beef calves for heat stress in research
settings, but at the time, they also noted that thermographic data was of little predictive
benefit compared, e.g., with forecasted weather conditions. Like Idris et al. [2], these
authors refer that the use of infrared thermography as a diagnostic tool to monitor heat
stress in cattle requires further research [65].

The research and development of monitoring technology have been accompanying
the modernization of the farm sector in the direction of a more efficient and automatized
system (i.e., livestock precision farming). To ensure a prompt response, the new monitoring
equipment should provide the continuous monitoring of the process (i.e., herd thermal
state and environment conditions), ideally in real-time.

2.2.2. Equipment with High Data Acquisition Frequency

Automated temperature monitoring devices can have several applications in livestock,
either to monitor animal health or to support scientists and farmers for precision farming
and remote monitoring. In 2018, Koltes et al. [66] analyzed different automated body
temperature monitoring technologies and discussed their use to develop new strategies to
control potential animal health problems. The authors highlighted that the measurement at
the animal level would be useful to manage heat stress and disease, despite the associated
investment costs. Furthermore, they pointed out a need for developing software for
complex data storage and treatments. A similar conclusion was drawn by Sellier et al. [62].
In order to avoid displacement of cattle from their social group and restraint in a crush,
thermal data loggers can be used to measure body temperature by, e.g., a neck collar
attachment (for skin temperature), a rumen bolus or a vaginal insert, recording temperature
at pre-determined time intervals or having a telemetric option to transmit recorded data in
real-time to a user-defined receiver [2]. As an alternative, the core body temperature can be
monitored in real-time using implantable biosensors [60].
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Rumen boluses provide prompt means of measuring rumen (or reticulum) tempera-
ture, but measurements may be influenced by the intake of fluids. One of the challenges
in using rumen temperature is the acute impact of water intake [58]. Ingestion of large
volumes (10 to 15% rumen volume) of cold water (0 to 8 ◦C) provokes a sudden drop
in rumen temperature (up to 10 ◦C) within 15 min of water consumption and required
approximately 2 to 3 h to return to baseline [67]. However, as water intake is directly related
to feed intake, it may also be reduced in heat-stressed animals compared to thermoneutral
controls [68]. Both feed and water intake can be monitored through several methods:
neck-mounted activity collars, ear tags and/or leg data logger, coupled with micro-electro-
mechanical accelerometers. This can provide important data regarding feeding behavior as
head movements toward the feed bunk are recorded while a ruminal bolus can provide
temperature data [69].

Sensors coupled with data loggers have also been used for high-frequency (minutes)
measures that can be considered continuous. Polsky et al. [36] used temperature-recording
data loggers coupled to an intra-vaginal progesterone implant for vaginal temperature
measurement with a 10 min frequency. Respiration sensors coupled with a micro-computer
have also been used to record the respiration rate with high incidence [61,70]. On the
downside, battery problems or malfunctions (e.g., sensor displacement or removal) are
usually only revealed at the end of the trial.

2.2.3. Observations

Respiration rate and panting serve as early indicators of increasing heat stress [24]
and provide an easy method for the non-invasive and distant assessment of heat stress
response [48,71], unless cattle are more than approximately 30 m away (at this distance it
is difficult to visualize the cow’s behavior [72]). The panting score is often assigned on a
scale of 0 to 4, in which zero is no panting and four is severe panting [27,28]. The ethogram
for panting scoring can be helpful to assess an individual or a group of animals’ response
to heat stress [37,72]. However, human observation adds uncertainty to the collected data
and the outcomes are extremely dependent on the researcher or farmer’s experience [2].
Additionally, it entails a substantial rise in labor costs.

The major limitation of these animal-based methods is the moment at which the heat
stress is detected. The methods identify the signs of heat stress and not the conditions
that potentially lead to heat stress (pre-heat stress conditions), so it fails to prevent the
deterioration of the animal’s health.

2.3. Cooling Technologies

A wide range of alternative strategies to reduce heat load is used, from shifting
feeding times to cooler periods [3] to nutrition adaptation [73]. However, above certain
temperature and humidity conditions, only evaporative cooling and forced ventilation
systems are effective (e.g., fans [74] and sprinklers [20]). Several environmental control
systems for dairy cows exist based on the principles of convection, conduction, radiation,
and evaporation and most can mitigate or even avoid heat overload episodes [57,75]. Fan
installations, which facilitate air movement and increase convection, can decrease both
respiratory rate and rectal temperature and promote DMI [76]. Similar outcomes are
achievable with other forms of evaporative cooling systems that make use of high-pressure
mist injected into fans or large water droplets from low-pressure sprinkler systems that
completely soak the cow’s hair coat [20]. Despite advances in cooling technologies, primary
concerns, regarding energy and water consumption, arise with the use of these systems,
namely sprinkler systems. Depending on herd size, large volumes of water are needed
for cooling, reaching levels of water consumption (215 to 454 L per cow per day) that
may become economically and environmentally unsustainable in the near future [17,18].
Furthermore, one should not forget that these systems generate equally large amounts of
wastewater that must be managed. Along with drinking water and water needed during
the milking routine, water for evaporative cooling is one of the main three uses of potable
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water in commercial dairies and decreasing water usage and contamination is critical to
the sustainability of the industry [19]. Therefore, these cooling systems must be turned
on in time to provide immediate thermal relief for dairy cows but also turned off when
unnecessary, to avoid wasting energy and water.

3. Predictive Models

Determining the pre-heat stress conditions is essential to make environmental control
systems more capable of not only effectively preventing heat stress and related conditions,
but also making them more efficient in energy and water usage. Taking into account the
above-mentioned limitations of the assessment through animals, trying to determine this
condition only with environmental variables is the most logical step, as they are more
easily measurable using cheaper equipment. To achieve this objective, it will be necessary
first to develop algorithms based on predictive models that integrate all data from the
environment and animals, between situations transitioning from thermoneutral conditions
to thermal stress conditions and vice versa, and combining all variables that affect the cow’s
thermal state. This review summarizes three types of approaches with the potential to be
used as predictive models: bioclimatic indexes, machine learning, and mechanistic models.

3.1. Bioclimatic Indexes

The bioclimatic index is a measure often used to assess the risk of an animal suffering
from heat stress. This type of index was developed to model the combined effect of envi-
ronment, production, and animal welfare indicators, assuming uniform responses from
all the animals. As input variables, the indexes consider a combination of environmental
conditions, such as temperature, relative humidity, solar radiation, air velocity, and precipi-
tation [30,57,76,77], that are easily monitored (e.g., with weather stations or indoor/outdoor
sensors). Typically, these indexes are based on regression equations, usually with three
levels of stress (i.e., mild, moderate, and severe) represented by threshold values [57].
Therefore, the implementation of the indexes as an algorithm is straightforward. The main
concerns rely either on the selection of the most adequate index or its feasibility to be
integrated into a dairy farm cooling system.

The predominant index incorporates only air temperature and relative humidity, i.e.,
temperature–humidity index (THI; [30,34,78]). Probably due to the minimum requirement
of inputs (meteorological parameters) and the consequent simple application, the THI is a
popular approach among farmers and veterinary researchers. Several THI indexes have
been developed over the years, considering multiple modifications and refinements based
on different breeds and using different parameters to categorize heat stress levels (e.g.,
respiratory rate, rectal temperature). The input and output variables of some bioclimatic
indexes are described in Table 1. In fact, the THI is used to assess the thermal comfort
of animals, humans, or others. Thom [79] developed a well-known THI index for the
evaluation of human discomfort levels in warm weather using two parameters directly
related to sensible and latent heat transfer: dry bulb temperature and wet bulb temperature.
For livestock, the THI followed the same rationale to study the discomfort of, e.g., bull
calves [80], dairy animals (study cited in [81]), or cattle [7], in this case, considering
production (e.g., milk and protein yield; [82,83]) and animal comfort factors (painting
scores and rectal temperature [7,80]) as indicators of heat stress.

The THI models have been improved by considering more weather parameters and
by fine-tuning the thresholds [7,82–85]. For example, Mader et al. [7] adjusted a THI model
for cattle by including wind velocity and solar radiation in the model, and by assessing the
level of heat stress comfort through painting scores. The same model was correlated with
the milk yield of Holsteins cows in temperate regions [83], which identified a decline in
heat stress thresholds. The same tendency was observed by Gorniak et al. [82] in Germany,
for Holstein dairy cows but using a different THI model. Gaughan et al. [37] developed a
model that considers ambient temperature, humidity, solar radiation, and wind velocity, but
instead of one equation, the model has two. The model is called Heat Load Index (HLI), and
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the two regression equations are set for different black globe temperature ranges (threshold
of 25 ◦C). Further, the effect of different management strategies (e.g., access to shade) and
animal-related factors (e.g., genotype and coat color) are considered through specific heat
stress thresholds [37]. Other strategies were used to integrate the effect of wind and solar
radiation on the index predictions: indirectly, such as using a black globe temperature (in
the dairy heat load index (DHLI) [84]), through multiple non-linear equations (indexes
CCI and HLI [37,86]) or even considering the weather parameters interaction (equivalent
temperature index for cattle (ETIC) [85]).

The thermal state of a heat-stressed animal strongly depends on the intensity and
duration of heat-stress conditions, as well as the heat accumulated from previous exposures,
both time-related factors, that are often neglected by the broader bioclimatic indexes. Nev-
ertheless, Ji et al. [87] adjusted bioclimatic indexes to simultaneously quantify the intensity
and duration of heat stress, considering both short- and long-term effects. Multiple linear
regressions were correlated between DMY and the developed indexes considering the ani-
mal’s age, body mass and days in milk. Following a different approach, Gaughan et al. [37]
developed a model (i.e., accumulated heat load (AHL)) to predict the body heat load
balance over time, considering the total hours above a threshold HLI. For HLI values above
the threshold, the animal accumulates heat, and the opposite occurs if below the threshold
value. The AHL index showed a high correlation with the panting score for different beef
cattle genotypes.

Several more advanced indexes have been studied. However, they were devel-
oped for different geographic locations, on varied diets, and farm systems. For that
reason, numerous studies comparing the performance of bioclimatic indexes under spe-
cific conditions [11,88,89], have been drawing distinct conclusions. For example, Van
Laer et al. [11] likened six bioclimatic indices and found that the HLI was the best predictor
of cow thermal discomfort. The authors evaluated the summer conditions and shade avail-
ability for two herds (i.e., Holstein dairy cows and Belgian Blue beef cows) kept on pasture
in a temperate area. However, in another study of lactating cows, in this case, housed in a
naturally ventilated barn [88], it was concluded that the HLI underestimate the degree of
heat stress (originally developed for unshaded animals [37]) while the CCI was indicated
as a promising index to estimate heat stress of housed dairy cows. Ji et al. [57] showed a
straightforward comparison of bioclimatic indices under several ambient conditions, i.e.,
temperature (20 to ~35 ◦C), humidity (~50 to ~86%), wind velocity (0 to ~7 m·s−1), and
solar radiation (0 to ~1100 W·m−2). According to Ji et al. (2020, [57]), it is clear that the use
of different bioclimatic indexes can lead to opposing conclusions: from neutral conditions,
with one index, to moderate heat stress conditions, with another one, or even odd outcomes.
For example, for critical hot-wet conditions, only a maximum level of moderate heat stress
was obtained with one of the indexes evaluated (HLI1 [57]), in opposition to the level
of severe heat stress predicted by the remaining indexes. This emphasizes the need to
study the index accuracy and possibly adjust the thresholds to both local farm features and
cattle traits.

In order to build an algorithm based on the mentioned indexes, the values above which
the animal starts feeling uncomfortable need to be defined. However, the threshold values
that define if the animal is in mild, moderate, or severe heat stress, are very dependent on
the index selected. For instance, as an indicator of a mild level of heat stress, values around
25 (to 30), 65 (to 74), and 70 (to 80) are, respectively, reported in studies based on CCI [86,88],
THI [7,34,78], and HLI indexes [11,37]. Additionally, it is unrealistic to assume uniform
thresholds for categorizing the level of heat stress of all animals on a farm as the animals
have varied biological attributes (age, genotype, and production level), and the animal
thermal state is highly dependent on the specific environmental conditions each animal
is exposed to. As an example, Ji et al. [90] adjusted the thresholds, by using a machine
learning technique to obtain accurate levels of heat stress for individual cows, although
uniform thresholds were found adequate to predict the decline of daily milk yield of the
herd in a previous study [76].
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The effect of animal individual characteristics on heat load threshold has been recently
studied [7,34,78,90]. For example, Pinto et al. [78] determined the heat load thresholds
of THI based on respiration rate for different postures (standing or laying) of Holstein-
Friesian lactating cows. More cow-related factors were considered by Yan et al. [34],
namely milk yield, days in milk, and parity, in a study with Chinese Holstein lactating
cows. In both studies, the heat load thresholds were significantly affected by the animal
physiological and behavior indicators. Though, under a daily farm routine, it is not
feasible to monitor the mentioned indicators. For instance, the continuum tracking of
an individual cow’s physiological and behavior indicators can be compromised due to
technical issues (sensors displacement or total removal), requiring significant expenses on
human and equipment resources (e.g., a high number of measurements were reported in
studies evaluating painting scores; in Table 1). Under this perspective, it seems reasonable
to disregard individual indicators (physiological and behavioral), focusing instead on the
measurement of parameters already monitored by the farm system (e.g., milk production)
and relying more on relatively inexpensive equipment, such as environmental sensors.
Nevertheless, the animal individual response can be considered through mechanistic
models as proposed by Berman [91]. The author developed an index based on data
simulation of a mechanistic model considering the variety of animal-specific data (e.g.,
metabolic heat production, skin water loss, coat thickness, tissue and coat insulation).
A correlation between respiratory heat loss (HER, [91]), air temperature, velocity and
humidity was expressed by two regression equations. Furthermore, a similar mechanistic
model was used to evaluate the accuracy of two indexes (THI and CCI) to predict the
cow thermal status considering different cooling methods (e.g., fans and sprinklers; [89]).
Devoe et al. [89] concluded that the index that accounted for the airspeed (CCI) was the
most suitable to predict heat stress level of shaded cows regarding mitigation methods. As
already mentioned, another possibility for adjusting the heat stress threshold is the use of
machine learning. Ji et al. [90] calculated the thresholds considering the individual variance
of body mass, age, and days in milk, as described in the following section.

The predictions of the mentioned bioclimatic indexes are estimations, always associ-
ated with a certain degree of uncertainty, that can be minimized by testing and validation of
the indexes for the farm conditions, considering the management strategies (e.g., shade and
cooling methods), and the animals’ physiological variables. Nowadays, research and devel-
opment of full extended indexes can benefit from the available technological solutions and
techniques to create a virtual environment for testing and refinement, e.g., through machine
learning algorithms (Section 3.2) and/or by using mechanistic models (Section 3.3).
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Table 1. Example of bioclimatic indexes and the corresponding input and output variables.

Study Goal Population Inputs Outputs Observations Ref.

Temperature-humidity index (THI)
developed for bull calves

Four Ayrshire bull calves (9
months old)

Dry-bulb temperature; Wet-bulb
temperature.

Rectal
temperature

One equation. For five hours, each animal was
kept inside a climate chamber. The trials were

repeated 3 times per animal.
[80]

Correlation between milk production
and ambient temperature

and humidity

56 Holstein cows (with
several stages of lactation and

production levels ranging
from 6 to 70 lb per day)

Dry-bulb temperature; Wet-bulb
temperature; Normal

production level.
Production level

One equation. A good relationship between a
THI index and milk production was obtained. A
new equation was proposed considering besides
air temperature and humidity also the normal

production level.

[92]

Adjusted THI for cattle, considering
wind and solar radiation

Three experiments with a
varied number of animals

(from 72 to 192)

Air temperature; Relative
humidity; Wind velocity;

Solar radiation.
Panting score

One equation. Required more than 2000
individual panting score assessments derived

from ~12 d of observations.
[7]

Linear regression equation to
estimate respiration rate of no-shade

feedlot cattle
Eight crossbred steers

Dry-bulb temperature; Relative
humidity; Wind velocity;

Solar radiation.
Respiration rate

Two equations. Responses were studied during
eight periods within 4-months. Animals

randomly assigned to concrete surfaced pens
with shade or no-shade option.

[61]

Respiratory heat loss (HER) Simulation data

Air temperature; Relative
humidity; Wind velocity;

Animal-related factors (e.g., coat
insulation and thickness)

Respiratory
heat loss

Lumped model. Outputs of simulations were
used to produce estimates of thresholds of

maximal respiratory response as a function of
ambient conditions for different

cows-related factors.

[91]

Heat load index (HLI)
Feedlot cattle for seven
genotypes (more than

10,000 animals)

Air temperature; Relative
humidity; Wind velocity; Solar

radiation; Animal-related factors
(e.g., genotype, coat color,

health status).

Panting score

Two equations. Responses were studied for
eight summers. Approximately 162

observations were made per animal (3 times per
day for 54 days).

[37]

Comprehensive climate index (CCI)
for application under a wide range of

environmental conditions (hot
and cold)

Livestock cattle (number
not defined)

Air temperature; Relative
humidity; Wind velocity;

Solar radiation.

Dry Matter
Intake

Multiple non-linear equations. Based on
experimental results reported in the literature.
Responses were studied for nine summers and

six winters. The model performance was
compared with wind-chill and heat indexes.

[86]
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3.2. Machine Learning

Most of the developed bioclimatic indexes assume either linear relationships between
environmental factors and the physiological responses, or relationships with a specific form,
which are still relatively simple representations of the heat stress on dairy cows. In recent
years, several technologies have been developed allowing the collection of a large amount
of data about these animals from a generalized use of sensors to automatic milking systems.
With the increase in available data, it is also important to use methods that allow a better
understanding as well as the treatment of large quantities of data to help a farmer run
operations more efficiently. These methods leverage data to go beyond linear relationships
and other simple models. Among them, are the machine learning (ML) tools [93].

3.2.1. Fundamentals of Machine Learning (ML)

Machine learning is a powerful concept, part of Artificial Intelligence, that enables
systems to learn complex non-linear relationships in data without being explicitly pro-
grammed to do so [94,95]. By learning by themselves, machine learning systems also
minimize bias regarding the expected relationships, such as between environmental factors
and physiological responses [96]. Machine learning has been used in different areas from
petroleum reservoir characterization [97] to predictions in the stock market [98]. ML has
also been applied to assess dairy cow behavior as well as milk production [99,100], and
ultimately the effect of heat stress on the cow’s body response [101].

Machine learning has three main categories: supervised, unsupervised, and reinforce-
ment learning. Most studies dedicated to predicting dairy cow behavior are supported by
supervised learning methods, thus, a brief description of these methods is provided.

Supervised learning means that the model is fed with a set of inputs for which the
outputs are known. The program already knows the result for an initial set of conditions.
The algorithm will then learn the necessary steps that allow it to go from the inputs to
the outputs. This type of machine learning is one of the most prevalent and it tackles
different scenarios: regression (outputs are real numbers) or classification (the outputs
are categorical; [102]). Supervised learning algorithms include linear regression, logistic
regression [103], naïve Bayes, Support-Vector machines [104], decision trees [105], and
Artificial Neural Networks (ANN) as well as several variations of these and other entirely
separate algorithms altogether. These algorithms can also be combined with different
methods to improve their functionality.

These systems are data-driven so the right quality/quantity of data points is essential
to have a reliable tool to attend to the problem. As such, the first requirement to implement
this type of method is to have an adequate dataset. A part of this data (60% to 80%) will be
used to train the algorithm. Once a model is trained, the ability of the model to predict new
results is tested against new values that were not part of the training data set. The approach
can be iterated upon and changed until the model shows a good prediction performance.
At this point, the model can be used for new inputs for which the outputs are not known.
Figure 1 shows a schematic representation of how the ML can be used to predict a heat
stress event and help the farmer in choosing when to turn on or off the cooling techniques.

Building a highly accurate prediction model comes with multiple challenges such as
which data and features to use, which algorithm to choose, how to deal with large amounts
of data, as well as how to guarantee the performance of the model in a real-world context.
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3.2.2. Prediction of Heat-Stressed Cows

As previously mentioned, the use of ML in the domain of cattle has already been
reported in the literature. This chapter focuses on the use of these technologies to predict
events or possible indicators of heat stress on cattle. A robust tool able to predict the
conditions in which the animal will face heat stress is the desired output. This will provide
a non-invasive method to prevent the animal from being exposed to extreme conditions
while allowing more efficient management of the resources (water/energy) to cool down
the animal.

In several studies, ML is used to predict physiological responses (outputs), from the
environmental variables as well as other easy-to-measure inputs. Table 2 shows a summary
of some machine learning studies and the corresponding input and output variables.

One of the first studies aiming to evaluate heat stress on heifers was presented by
Brown-Brandl et al. [106]. This study considered different techniques to predict the phys-
iological response (in the form of respiration rate) to evaluate if the animal was under
heat stress. As inputs, several environmental parameters were considered (dry bulb tem-
perature, dew point temperature, solar radiation, and wind speed) as well as the breed
of the animal (average temperatures of hair coat surface in the afternoon; animal color).
The authors concluded that different breeds are affected differently by environmental
conditions, and as such, taking into account the breed is necessary to predict the effect of
the different factors on thermal stress. In terms of models, it is shown that ANN is slightly
better at predicting respiration rate than regressions. However, if more information is
desired, other than simply the value of the physiological response, fuzzy inference systems
(data-dependent) may be more useful. The authors also pointed out that even though
these techniques are promising, the available data was not yet enough to lead to accurate
predictions. Furthermore, they suggested that a factor accounting for heat accumulation
could be a method for improving these models.

The work of Hernandez-Julio [101] also uses different ML tools to predict the physio-
logical response of dairy cows (rectal temperature and respiratory rate) based on dry-bulb
air temperature and relative humidity as inputs. Two ANNs are proposed to obtain the
physiological response of the animal (one for each output), based on both experimental



Vet. Sci. 2022, 9, 416 13 of 24

data and data from the literature. The latter avoids carrying out further experiments, hence
minimizing the costs related to equipment and human resources.

Another example of using ML to predict the physiological response of the animal is
the work presented by Gorczyca and Gebremedhina [96]. This study evaluated how the
environmental factors (air temperature, relative humidity, solar radiation, and wind speed)
influenced physiological responses (respiration rate, skin temperature, and vaginal temper-
ature) and it also tried to rank the environmental factors according to their “contribution”
on heat stress events. This study, once again, showed the usefulness of ML algorithms in
predicting the physiological response of the animal. Besides, it indicated air temperature as
the factor that had the highest impact on the physiological response, while wind speed had
the lowest.

Sousa [107] performed a study to predict the rectal temperature (an indicator of heat
stress) of feedlot cattle using the head surface temperature of the animal (IRT), dry bulb
temperature, and wet bulb temperature. The predicted and measured rectal temperatures
were classified on levels of thermal stress and compared with the classification based on
traditional THI (temperature–humidity index). An ANN and a linear regression model
were compared. The ANN led to models that are better at predicting the rectal temperature
than standard correlations, in addition to allowing individual assessments.

Hempel [8] showed a different approach to the heat stress prediction problem. The
goal was to infer the conditions inside the barn at any moment just by assessing the
environmental conditions near it. Using the conditions inside the barn, the authors used
empirical models to evaluate the comfort and discomfort of the animals—THI and ETIC
(equivalent temperature index for cattle). Economic and environmental impacts were also
estimated based on the heat stress events (heat stress risk).

Ji et al. [90] also used ML techniques to define dynamic thresholds for heat stress
alerts with auto-calibration. Data to be used was collected from a robotic farm: body mass,
days in milk, daily milk yields, and milk temperature, as well as ambient temperature
(minimum and mean value). Heat stress thresholds were redefined for the herd taking into
consideration the daily milk yield as well as the milk temperature. Then, at an individual
scale, a decision tree (machine learning model) was used to artificially define new thresholds
where specific groups were summarized as classification factors (age, body mass, and days
in milk). Taking the minimum (representing night-time cooling conditions) and the mean
temperature (daily thermal conditions), these models were able to predict new heat stress
thresholds. The authors also stated that while a large quantity of data was used, it all
came from a single farm. Therefore, data from other sources are desirable to generalize
these conclusions.

Some studies do not deal with heat stress directly but report other parameters (like
milk quality) that can be an indicator that the cow is under thermal stress. One example is
the work of Bonieck et al. [99]. In this research, the authors used air temperature around
cowsheds (maximum temperature of the day) to build an ANN capable of predicting milk
yield under different thermal conditions.

Sugiono et al. [108] also used ML to develop a model for the selection of the best
cow management to improve milk yield. Once again, the main goal was not to evaluate
the heat stress, but it did take into consideration environmental data (temperature, wind
speed, and relative humidity) and physiological aspects (heart rate and body temperature)
to correlate with milk yield. A sensitive analysis was also performed, and it pointed to
relative humidity, heart rate, environment temperature, and cow body temperature as the
factors that had a higher effect on milk production. The authors still recommended the
improvement of this model by adding more points, testing different learning algorithms,
and including other factors such as age and weight, among others.
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Table 2. Example of machine learning studies and the corresponding input and output variables.

Study Goal Population Inputs Outputs Algorithms Ref.

Evaluate the heat
stress of cattle 128 heifers

Environmental data: dry
bulb temperature, dew point
temperature, solar radiation,
wind speed. Animal related
parameter: temperature of

the hair coat color.

Respiration rate.
Regression models;

Fuzzy inference
systems; ANN.

[106]

Predict the
physiological

response of dairy
cows

Holstein
dairy cows
(experimen-

tal +
literature

data)

Environmental data:
dry-bulb air temperature,

relative humidity.

Rectal temperature;
respiratory rate.

Regression; ANN;
Neurofuzzy
networks.

[101]

Effect of the
environmental

factors on
physiological

responses

19 dairy
cows

Environmental data: air
temperature; relative

humidity, solar radiation,
and wind speed.

Respiration rate;
Skin temperature;

Vaginal
temperature.

Penalized linear
regression; random

forests; Gradient
boosted machines;

ANN.

[96]

Predicting the
heat stress for
feedlot cattle

26 Nellore
steers

Environmental data: dry and
wet bulb temperature.

Physiological parameter:
temperature of head surface.

Rectal temperature. Correlations; ANN. [107]

Evaluate the heat
stress in
naturally

ventilated barns
for dairy cows

Outdoor conditions:
temperature, relative
humidity, zonal and

meridional wind, sea level
pressure, and global

radiation;

Conditions inside
the husbandries:

temperature,
relative humidity,

and wind
components.

Linear regression
with and without

regularization;
random forest;

ANN;
Support-vector

models.

[8]

Definition of
dynamic

thresholds for
heat stress alerts

126 cows

Environmental data:
minimum and mean

ambient temperature. Body
mass, days in milk, daily

milk yields, and milk
temperature.

Heat stress
thresholds were
redefined for the
herd taking into

consideration the
daily milk yield and
milk temperature.

Decision tree [90]

Evaluate the
milk yield under
different thermal

conditions

Holstein-
Friesian

cows

Air temperature around
cowsheds. Milk yield ANN [99]

Best cow
treatment to

improve the milk
yield

dairy cows
in Indonesia

Environmental data:
temperature, wind speed,

and relative humidity.
Physiological parameters:

heart rate, body
temperature.

Milk yield ANN [108]

Prediction of the
milk yield

91 dairy
cows

Barn environmental data:
relative humidity and

temperature. Days in milk of
the cow.

Daily milk yield Random forest [100]
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Bovo et al. [100] used a random forest algorithm to evaluate the daily milk yield
of a single cow. The authors used data from dairy cows collected by automatic milking
systems (AMSs) as well as the environmental conditions of the barn (relative humidity and
temperature) that were incorporated in the form of THI. This algorithm considered the THI
on the test day and on the previous five days. It was tested for the data set available and the
authors reported that it could predict the daily milk yield with a relative error of just 18%.

Overall, these studies showed that machine learning can be very useful to help pre-
dict/monitor heat stress to which the animals are exposed. However, as some of these
works have pointed out, much remains to be done. More data are necessary, as well as
a better understanding of the critical factors (like accounting for heat accumulation) to
predict heat stress. Once reliable tools to predict heat stress are available, it will be possible
to trigger the cooling systems only when necessary and minimize the use of invasive
techniques to obtain information from the animals. As mentioned by Gorczyca [96], even
though this is a powerful set of tools it does not mean that these algorithms/models will
be consistently the best option to predict heat stress. This is in part because computational
and large amounts of data resources are necessary to train and optimize these methods but
may not always be available. As an option, alternative mathematical models (mechanistic
models) can be used to generate the necessary numerical data to feed the machine learning
models. Different types of input variables can be assumed from environmental and animal
data to numerical results obtained through mechanistic models.

3.3. Mechanistic Models

A mechanistic model can be defined as a mathematical model that correlates physical
phenomena in a deterministic way. The mathematical models used to predict animals’ ther-
mal responses are few and extremely restricted to the considered scenario (e.g., neglecting
body region characteristics [109–111]). Even fewer models consider cattle thermoregulation
mechanisms (e.g., panting, sweating; [112–114]). Nevertheless, the latter model [114] has
the potential to simulate the dynamic thermal balance of the cow. As the main assumption,
the animal body is assumed as one horizontal cylinder with closed ends, and the model
has three layers: core, skin, and coat (model 1, Figure 2). As a lumped element model,
the calculated loads at every time step assume a quasi-steady state. Furthermore, the
model allows the study of a wide combination of environmental conditions (temperature,
humidity, air velocity, and solar radiation). However, only one asymmetrical environment
condition option is considered (i.e., exposed area to shadow or direct sunlight) and, for that
reason, it is not possible to analyze the effect of non-uniform distribution of environmental
conditions on cow thermal state (e.g., it is not possible to simulate the heat transfer between
the body region of a laying cow and the ground). To approximate realistic scenarios, it is
necessary to determine proper boundary conditions by body region. Additionally, another
relevant requirement is the reference values used to characterize the neutral conditions
(e.g., temperature by body layers) according to the cow’s physical conditions (e.g., age,
days in milk).
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the cow: entire body (model 1, [114]), coat (model 2, [110]), and udder (model 3, [115]).

The McGovern and Bruce model [114] could not be used to predict the cow thermal
balance at low temperatures since cold-induced thermogenesis is neglected. This simplifica-
tion can put at stake the accuracy of the analyses of cooling technologies’ performance, or, in
some cases, the prediction of cow cooling during the night. Furthermore, proper cutaneous
and respiratory evaporation rates must be considered [91,116], since the original model
set some correlations (e.g., tidal volume of the respiratory system) and animal parameters
(e.g., tissue thermal resistance) based on the available literature on different breeds [114],
and, consequently, only the qualitative behavior of the numerical results were assessed.
Berman [91] adjusted seven animal parameters in the model, specifically for the Holstein
cow breed. The author concluded that this modification increased the accuracy of total
skin and respiratory heat loss predictions. However, the described validation assumptions
do not allow us to infer the accuracy of the cow thermal state predictions during highly
transient ambient conditions. Nevertheless, these mechanistic models were used to develop
a bioclimatic index considering animal-related factors [91] and to create contour maps with
optimal cooling system recommendations throughout the United States [89].

At the surface of the cow body, the sensible and latent heat losses are generally ruled
by convection (heat and mass) and radiation phenomena. For that reason, and to reduce the
effect of thermal stress on dairy cattle, the main cooling technologies are shade structures to
diminish incoming radiation, forced convection to increase heat/mass removal or water to
remove heat by evaporation. To predict the evaporative and convective heat loss from a cow
body, Gebremedhin and Wu [117] developed a one-dimensional model, considering the
heat and mass transfer model along with the hair coat of a cow, in steady-state conditions.
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Several parameters can be studied as different levels of wetness, air velocity, ambient
temperature, relative humidity, and hair properties. As a practical application, the model
can provide insights into the effectiveness of evaporative cooling such as, for example,
ventilated spaces [118] or water sprays coupled with fans [110]. Gebremedhin and Wu [118]
studied the (sensible and latent) heat loss from cattle in a ventilated space occupied by
10 cows. It should be noted that the fluid flow around each cow is highly dependent
on the air inlet velocity and the geometric features of the surrounding obstacles (i.e.,
chamber dimensions and other cows). Therefore, numerical simulations were conducted to
characterize the fluid flow around the cattle using Computation Fluid Dynamics software.
Therefore, the numerical results of fluid flow were used as inputs of the coupled model of
heat and mass transfer through cow fur. The total heat loss from the cows changed from
215 to 710 W due to the different characteristics of the flow field surrounding the animals.
A similar one-dimensional model was used by Chen et al. [110] to study the transient
behavior of wetted fur (model 2, Figure 2). The authors estimated the drying time and heat
removal as a function of ambient conditions (air temperature, air speed, humidity, and
mean radiant temperature). Furthermore, the numerical results were used to develop a
correlation for a control algorithm of a sprinkler–fan system. The equipment frequency was
related to cooling load thresholds obtained for outdoor conditions. Moreover, the use of the
control algorithm was estimated to reduce electricity and water consumption by 25% and
50%, respectively. This highlights the potential ability of mechanistic models to improve the
performance of cooling systems while contributing to a more sustainable dairy industry.

An often-used mechanistic model to simulate heat transfer in human tissues is the
Pennes’ bioheat model [119,120], which was the same used by Gebremedhin and Wu [115]
to predict the udder heat loss in cows under different conditions of ambient temperature.
At the udder skin (model 3, Figure 2), the heat was transferred to the environment by
convection and eliminated by evaporation. At the core of the udder, a fixed temperature
was assumed. The model quantifies the total heat loss, which can be useful to estimate the
performance of cooling technologies that promote convection and/or evaporation [115].
Furthermore, this model can be used to study the thermal behavior of different body
regions under different scenarios of air velocity and temperature.

The potential of artificial cooling methods to alleviate the heat stress of dairy cattle
has been proven. However, the economic benefits of a particular cooling method depend
on farm features and geographical location. Thus, the benefits/limitations should be
assessed prior to the installation of any equipment [74,89]. For example, Herzog et al. [121]
concluded that the advantage of using basket fans for heat abatement is slightly higher
than the environmental costs associated with fan production and operation, highlighting
the necessity of studies based on primary data regarding the effectiveness of fan cooling
to improve cow productivity. Mechanistic models can also be used as a support tool to
analyze the environmental impact of the equipment’s implementation. Based on numerical
data, Devoe et al. [89] obtained multiple maps of the U.S. that help producers determine
which cooling strategy is the most economical in their region.

The complexity of the mechanistic models (several input variables and equations)
makes them difficult to be used by an ordinary end-user without a background in transfer
phenomena [58]. However, and to overcome this problem, the mechanistic models can be
integrated as predictive algorithms for controlling systems, running in the background,
and being automatically fed by input variables measured through emergent monitoring
technologies (e.g., sensors/wireless/cloud-based).

Table 3 shows a summary of some studies that used mechanistic models and the
corresponding input and output variables.
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Table 3. Example of mechanistic model studies and the corresponding input and output variables.

Model Description Main Mathematical Assumptions Inputs Outputs Observations Ref.

Thermal balance for
cattle in hot
conditions.

Three node model: core, skin, and coat. Main
transfer phenomena at the cow surface (skin + hair):
heat transfer by convection and radiation, and mass

transfer by convection. Main thermoregulation
mechanisms: panting and sweating.

Environmental conditions:
temperature, humidity, air velocity,

solar radiation.
Animal-related parameters: e.g.,

weight, metabolic heat, body-specific
heat, coat reflection coefficient

and thickness.

Core, skin, and coat
temperature. Sensible and
heat loss from respiration.

Stored heat. Latent heat loss
from the skin.

Only qualitative behavior of
the numerical results

was assessed.
[114]

Thermal balance for
Holstein cows in hot

conditions.

Based on [118]. Additionally, the author adjusted
several animal-related parameters. Based on [118]. Based on [118].

Improvement of the accuracy
of total skin and respiratory

heat loss prediction.
[91]

Thermal balance
of livestock.

Three node model: core, skin, and coat. Main
transfer phenomena at the cow surface: convection,
evaporation, radiation, and solar radiation gain (for
animals outdoors). Furthermore, considers the rain
effect. Physiological responses: vasomotor action,

sweating and panting.

Environmental conditions:
temperature, humidity, air velocity,

precipitation, direct and diffuse solar
radiation. Animal-related
parameters: e.g., tissues

thermal resistance.

Skin and coat temperature
Sensible and latent heat loss.

Simplification of the physical
and physiological

mechanisms to simulate long
data sets for climate change

impact analysis.

[109]

Simulation of udder
heat loss.

One dimensional approach (heat transfer through
skin; from core to ambient). Main phenomena at the

skin surface: convection and sweat evaporation.
Main phenomena through the skin: conduction,
convection (heating by infused blood flow), and

metabolic heat production.

Environmental conditions: air
temperature and velocity.

Animal-related factors: e.g., tissue
density and specific heat, metabolic

heat production.

Udder skin temperature.
Evaporative heat loss from
the udder skin. Convective

heat loss from the udder skin.

The approach can be used to
study the heat loss of other

body zones and the
performance of cooling
technologies (e.g., fans).

[115]

Heat and mass
transfer model to

estimate drying time
of a wetted fur.

One dimensional approach. Simulation domain:
hair coat. Main phenomena: heat conduction,

diffusion of water vapor, and evaporation.

Environmental conditions: air
temperature, humidity and velocity.
Animal-related factors: e.g., tissue

thermal resistance, fur thermal
conductivity, coat thickness.

Skin temperature. Total heat
flux at the skin and coat

surfaces. Water mass fraction.

It can be used to study the
efficiency of water sprays
coupled with fan-induced

air flow.

[110]

Heat loss from cattle
randomly distributed

along a
ventilated barn.

Domain: ventilated space occupied by 10 cows.
Fluid flow fields characterized through

3-dimensional simulation. Cows thermal balance
calculated through a coupled heat and mass transfer

model (based on [114,121]).

Environmental conditions: air
temperature, humidity, and air

velocity. Animal-related factors: e.g.,
tissue thermal resistance, fur thermal

conductivity, coat thickness, and
animal position inside the barn.

Fluid field around each cow.
Skin temperature. Total heat
loss for each cow convective

and radiant heat losses,
sensible and latent heat

components).

The approach can be used to
obtain realistic convective

heat and mass transfer
coefficients, assuming

different cows’ dimensions
and spatial distribution.

[118]
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4. Future Considerations

As a predictive algorithm, the mechanistic models have more degrees of freedom and
flexibility to be easily adapted to ever-changing situations (e.g., days in milk of the cows)
or to assess several types of cooling technologies (e.g., basket fans, sprinklers) than the
bioclimatic indexes and machine learning algorithms.

The next step in the development of more robust mechanistic models is the incremental
improvement of the thermal model complexity by considering a virtual cow with different
body segments, following the approach often used in human thermoregulation models:
fitting the physiological dimensions to a suitable geometry [115]. Furthermore, more layers
can be considered in each body segment (i.e., core, muscle, fat, and skin), and a central
core to which the heat of each body layer is transferred by blood flow [122]. Therefore, it is
necessary to determine the distribution of the heat generated along body segments and
layers due to different mechanisms (e.g., heat generated by external work occurs only in
the muscle layer). Another relevant requirement is the definition of reference values of
parameters/properties obtained in neutral conditions, such as the temperature of body
layers, or local heat produced (metabolic heat), according to the cow’s physical conditions
(e.g., age, days in milk).

The simulation of a countless number of scenarios with precise outcomes entails the
definition of proper boundary conditions of heat and mass transfer phenomena. For in-
stance, the fluid flow around the animal body is dependent on the animal posture (laying
or standing), the location (inside/outside the barn), and the surrounding obstacles (trees or
other cows), and it will be significantly different between body regions (e.g., due to geome-
try considerations, and hair coat density). This affects the net of heat and mass exchange
between the cow skin and the environment and further studies should be carried out to as-
sess realistic heat and mass transfer coefficients. Radiation is another relevant heat transfer
phenomenon, which is significantly constrained by the surrounding surfaces’ thermal state
(e.g., region–region, body–environment, and cow–cow body exchange). Representative
boundary conditions of radiation should be studied, consisting, e.g., in the determination
of suitable radiative coefficients distribution along the different body regions.

Additionally, the results of these mechanistic models combined with data collected
from real case scenarios can be used as inputs to develop new and more robust machine
learning models (as proposed in Figure 1). Machine learning can be a useful tool to
predict heat stress conditions, but it requires significant quantities of data to make reliable
predictions about any phenomena. Mechanistic models, as well as the generalized use of
sensors, can be useful to obtain a great volume of important information on heat stress
conditions, which may help to overcome the actual problems associated with the use of
machine learning models. Besides, the continuous monitoring of several features associated
with animal well-being and productivity (in a robotic farm, for example), may also be
useful to monitor and improve the performance of these tools.

5. Conclusions

Under certain environmental conditions, only cooling systems are efficient to mitigate
dairy cattle heat stress. The integration of predictive algorithms in the operation of these
systems is a possible method of efficiently regulating environmental conditions while
reducing the associated energy and water consumption. Three potential approaches to be
used as predictive models were analyzed in this review.

Bioclimatic indexes have been studied for several years, and they were developed for
different geographic locations, on varying diets and farm systems. From a practical perspec-
tive, the selection of a suitable bioclimate index for a farm implies carrying out a local study,
which is time-consuming and can also be expensive. Furthermore, the typical bioclimatic
indexes are based on average daily measurements, presenting direct relationships between
the environmental factors. Additionally, they consider the general physiological conditions
of the herd, rather than the individual or herd-specific characteristics. In a complementary
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way, machine learning and mechanistic models are two methods capable of predicting
individual and herd responses, assuming more complex relationships between factors.

The application of machine learning to predict the cow’s discomfort level is a recent
trend, with several studies using ML to predict physiological responses. The application of
these models can provide a non-invasive tool that predicts the conditions that lead to heat
stress in animals, providing information on when and for how long to use cooling types of
equipment. Nevertheless, one must consider important limitations such as the apparent
inability to understand the fundamental aspects of heat stress in dairy cattle and the need
for large amounts of data, with more efficient and comprehensive models implying the
acquisition of data from more sources. The use of an ML model in a specific farm implies, at
least, the validation of the results and, in the worst-case scenario, carrying out a new set of
experiments to fine-tune the model. As an alternative, mathematical models (mechanistic
models) can be used to generate numerical data to feed machine learning models.

Mechanistic models are a less popular approach than bioclimatic indexes and machine
learning but they are the most transversal ones. Their capacity to simulate the individual
cow’s thermal state, exposed to countless dynamic ambient conditions, offers an advanced
tool for research, development of new bioclimatic indexes, and training of machine learning
algorithms. Currently, there are several mechanistic models that allow us to study at differ-
ent scales (e.g., considering only the animal hair coat or the entire body of the cow), with
the potential to evaluate the efficiency of cooling technologies or management strategies
(e.g., early access to pasture).

We believe that the integration of suitable predictive models will be a step forward for
dairy industry productivity, animal welfare, and the research and development of more
efficient technologies for the sustainable use of water and energy.
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