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An important challenge in cancer immunotherapy is to expand the number of patients

that benefit from immune checkpoint inhibitors (CI), a fact that has been related to

the pre-existence of an efficient anti-tumor immune response. Different strategies are

being proposed to promote tumor immunity and to be used in combined therapies with

CI. Recently, we reported that intratumoral administration of naked poly A:U, a dsRNA

mimetic empirically used in early clinical trials with some success, delays tumor growth

and prolongsmice survival in several murine cancer models. Here, we show that CD103+

cDC1 and, to a much lesser extent CD11b+ cDC2, are the only populations expressing

TLR3 at the tumor site, and consequently could be potential targets of poly A:U. Upon

poly A:U administration these cells become activated and elicit profound changes in

the composition of the tumor immune infiltrate, switching the immune suppressive

tumor environment to anti-tumor immunity. The sole administration of naked poly A:U

promotes striking changes within the lymphoid compartment, with all the anti-tumoral

parameters being enhanced: a higher frequency of CD8+ Granzyme B+ T cells, (lower

Treg/CD8+ ratio) and an important expansion of tumor-antigen specific CD8+ T cells.

Also, PD1/PDL1 showed an increased expression indicating that neutralization of this axis

could be exploited in combination with poly A:U. Our results shed new light to promote

further assays in this dsRNA mimetic to the clinical field.
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INTRODUCTION

Cancer immunotherapy using checkpoint inhibitors (CI) is based on neutralizing powerful
inhibitory pathways that keep anti-tumor immunity lethargic and poorly effective. A necessary
condition for its success is the requirement of pre-existent cytotoxic T cells (CTLs) specific for
tumor antigens that will be unleashed through the administration of these CIs (1). Approximately
60% of patients under checkpoint blockade therapy do not respond, probably due to the existence
of an ineffective or absent tumor-specific T cell response (i.e., excluded from the tumor site) or an
efficient immunosuppressive tumor microenvironment (2).
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Indeed, tumors from non-responder patients are characterized
by low CD8+ T-cell density in their pre-dose biopsies with no
appreciable increase in T-cell proliferation post-treatment (3, 4).
Hence, great effort is being put into finding newways to prime the
CTL response against tumor antigens with the aim of designing
combined therapies that could boost the anti-tumor immune
response while keeping the inhibitory circuits in check.

Conventional dendritic cells (cDCs) are the clear candidates
to be targeted and among them, a particular subset of cDCs
characterized by the expression of the CD103 and CD8α/CD141
markers in mice and humans, respectively (5). CD8α+

and CD103+ cDC1 in mouse tumors are extremely sparse,
yet remarkably capable CTL stimulators. Their development
depends on IRF8, Zbtb46, and Batf3 transcription factors.
Moreover, cDC1 can produce key chemokines such as CXCL9/10
that will actively recruit more T cells to the tumor site (6, 7).
This unique DC subset plays a critical role in taking up antigens
inside the tumor bed, trafficking to the nearest tumor-draining
lymph node and performing the cross-priming needed to activate
the CTL response and eliminate the tumor (7). Therefore,
many attempts to target this particular cDC1 population in
combination with CI blockade approaches are in the spotlight.

Interestingly, among many innate immune receptors, Toll
like receptor 3 (TLR3) has been shown to be expressed almost
exclusively by mouse CD8α+ cDCs and CD103+ cDCs (8) and
human CD141+ cDCs (9, 10), at least at mRNA level. Therefore,
designing new agonists for TLR3 could open new avenues to
specifically target and activate these critical populations.

Polyadenylic-polyuridylic acid (poly A:U) is a double-
stranded RNA mimetic that was used empirically in cancer
immunotherapy in the early 80’s with promising results and non-
reported toxic effects (11–14). Interestingly, when naked poly
A:U is administered locally at the tumor site, it inhibits tumor
growth and prolongs survival in several murine cancer models
(15). These important anti-tumor effects rely on type I interferon
signaling on the host, since they are completely abolished in
IFNAR1−/− mice. We have recently shown in vivo production of
IFNβ as soon as 6 h after poly A:U intratumoral (i.t.) injection.
The intratumoral source of the IFNβ required for the efficacy
of the poly A:U treatment is a myeloid population within the
tumor, carrying the CD11c and LysMmarkers (15). Interestingly,
poly A:U mainly engages TLR3 and no other cytosolic receptors
since the production of IFNβ at the tumor site is completely
abolished in mice deficient for UNC93B1 signaling, a molecular
chaperone strictly required for the activity of nucleic acid sensors,
including TLR3 (15, 16). In this work, we usedmice heterozygous
for the Tlr3-EGFP allele (also known as B6-Tlr3tm2Ciphe and
called TLR3-GFP knock-in mice here) to identify TLR3+ cells
within the tumor that therefore represent potentially the main
targets of poly A:U and consequently, the putative source of IFNβ

inside the tumor. We show that CD103+ cDC1 and, to a much
lesser extent CD11b+ cDC2, are the only populations expressing
TLR3 at the tumor site. Upon poly A:U i.t. administration, these
cells become activated, and elicit an important tumor-antigen
specific CTL response, even in the absence of co-administered
tumor antigen (17). Three doses of poly A:U induced profound
changes in the composition of the tumor immune infiltrate,

switching the immune suppressive tumor environment to anti-
tumor immunity. Our results shed new light to promote further
assays in this forgotten dsRNA mimetic in the clinical field.

MATERIALS AND METHODS

Mice
Wild-type (WT) C57BL/6J mice were purchased from
Universidad Nacional de La Plata, Argentina and Charles
River laboratories, France. Mice were maintained at the animal
facility at Institut Curie. The mice were maintained at the Animal
Resource Facility of the Centro de Investigaciones en Bioquimica
Clinica e Inmunologia in accordance with the experimental ethics
committee guideline (CICUAL).

Construction of TLR3-EGFP Knock-in Mice
A 6.27 kb genomic fragment encompassing exons 5 to 7 of the
Tlr3 gene was isolated from a BAC clone of B6 origin (clone
n◦ RP23-420M9; http://www.lifesciences.sourcebioscience.com).
Using ET recombination, an EGFP-loxP-Cre-neoR-loxP cassette
was introduced in the 3′ untranslated region of the Tlr3
gene, with the EGFP sequence fused in frame with that
coded by exon 7. The targeting construct was abutted to a
cassette coding for the diphtheria toxin fragment A expression
cassette, and linearized with Pme1. JM8.F6 C57BL/6N ES
cells (18) were electroporated with the targeting vector. After
selection in G418, ES cell clones were screened for proper
homologous recombination by DNA-PCR. A neomycin-specific
probe was used to ensure that adventitious non-homologous
recombination events had not occurred in the selected ES
clones. Properly recombined ES cells were injected into FVB
blastocysts. Germline transmission led to the self-excision of
the loxP-Cre-NeoR-loxP cassette in male germinal cells. TLR3-
EGFP mice were identified by PCR of tail DNA. The pair
of primers: sense 5′- TAAACCATGCACTCTGTTTG−3′ and
antisense 5′-GAGTGAATAAACCAGATGTCAA-3′ amplifies a
322 bp band in case of the wild-type Tlr3 allele, whereas the pairs
of primers: sense 5′-GAGTACAACTACAACAGCCACA-3′ and
antisense 5′-GAGTGAATAAACCAGATGTCAA−3′ amplified a
567 bp band in the case of the Tlr3-EGFP allele. Only mice
heterozygous for the Tlr3-EGFP allele were used throughout this
work since homozygous mice did not respond properly to TLR3
stimulation (Supplemental Figures 1,2).

Cell Lines
B16-OVA cells were grown in RPMI-1640 containing 10% heat-
inactivated FBS (Biowest), 100 IU/ml penicillin, 100µg/mL
streptomycin, 2mM GlutaMAX (all from Thermo Fisher
Scientific). All cell lines were tested as mycoplasma-negative
by PCR.

Isolation of Tumor-Infiltrating
Mononuclear Cells
Tumors were harvested and sliced in small fragments that were
incubated in RPMI containing DNase at 150µg/mL (DN25-
100MG – Sigma) and Liberase TL at 150µg/mL (Roche) leaving
it in agitation for 20min at 37◦C for enzymatic digestion. Next,
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tumors were smashed and filtered through a 70µm cell strainer
(BD Cell strainer) and washed with PBS-2%FBS. Afterwards,
intratumoral mononuclear cells were purified by density gradient
centrifugation using Percoll (GE Healthcare Life Sciences) as
specified by the manufacturer.

Flow Cytometry
Flow cytometric analyses were performed using an LSR Fortessa
or FACSCanto II (BD Biosciences). Data were analyzed using
FlowJo 10 (Tree Star). DAPI (0.5 mg/mL, Sigma-Aldrich)
or a Live/Dead fixable cell stain kit (LIVE/DEAD Fixable
Aqua Dead Cell Stain - Thermo Fischer Scientific) was
used to exclude dead cells in all experiments. The following
antibodies were used for flow cytometry: anti-CD45.2 (clone
104), anti-CD103 (2E7), anti-MHC class II (MHCII) IA/IE
(M5/114.15.2), anti-F4/80 (BM8), anti-Ly6C (HK1.4), anti-CD8α
(53-6.7), anti-CD206/MMR (C068C2), anti-CD86 (GL1), anti-
CD24 (M1/69), anti-CD11c (N418), anti-CD11b (M1/70), anti-
CCR2 (SA203G11) anti-CD19 (6D5), anti-TCRβ (H57-597),
anti-NKp46 (29A1.4), anti-PDL1 (MIH5), anti-PD1 (29F.1A12),
anti-KLRG1 (2F1), anti-CD25 (PC61), anti-Granzyme B (GB11),
anti-CD4 (RM4-5). CD8+ T cells specific for the OVA peptide
SIINFEKL were detected by the iTAg Tetramer/PE - H-2Kb
OVA (SIINFEKL) (TB-5001-1). Refer to Supplemental Table 1

for further information.

Intracellular Flow Cytometry
For cytokine staining within myeloid cells, cell suspension from
tumors were cultured for 3 h at 37◦C in the presence of Brefeldin
A (catalog 555029; BD Biosciences) and/or Monensin (catalog
554724; BD Biosciences). After staining for surface markers
cells were fixed, permeabilized with Cytofix/Cytoperm (catalog
554722; BD Biosciences), and stained with anti-IL10 (JES5-16E3)
for cytokine or anti-Foxp3 (FJK-16s) for Treg identification.

Experimental Design
Tumor cell lines were established in syngeneic hosts by
subcutaneous injection of 5 × 105 B16-OVA cells in 100
µL sterile PBS into the right flank. Tumor development was
monitored every other day, with tumor volume determined by
the formula (L × W × W)/2 where L is tumor length and W
tumor width. When tumors reached a measurable size (∼day
7 post-inoculation), a group of mice was intratumorally treated
with 100 µL PBS or 100 µg pAU (in 100 µL of PBS) three times
every second day. Polyadenylic-polyuridylic acid (poly A:U) was
purchased from InvivoGen (catalog ID: tlrl-pau) and handled as
specified by the supplier.

Statistical Analysis
Data handling, analysis, and graphic representation (all shown as
mean±SEM, unless specified otherwise) were performed using
Prism 7.0 (GraphPad Software). For multiple comparison, one-
way or two-way analyses of variance (ANOVA) with Sidak’s post-
test were performed. For the comparison between two groups,
Student’s t-test was performed. A p < 0.05 was considered
statistically significant (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p
< 0.0001). Flow cytometer data were compensated, exported with

FlowJo software (version 10.0.8, TreeStar Inc.) and normalized
using Cyt MATLAB (version 2017b) followed by unsupervised
validated clustering approaches (tSNE, FlowSOM).

RESULTS

CD103+ cDC1 Are the Main Cells
Expressing TLR3 and Key Targets of Poly
A:U Inside the Tumor
In order to determine which cell population could be the
main target of poly A:U inside the tumor, B16-OVA tumor
cells were inoculated in heterozygous TLR3gfp/wt reporter mice.
At day 13 post-inoculation, the mice were sacrificed and
tumors were harvested to examine them for GFP expression
in tumor-infiltrating immune cells. Roughly 2% of the total
CD45+ cells infiltrating the tumor were GFP+ (Figure 1A) and
showed population markers broadly used to identify myeloid
cells with the following phenotype CD11blo/int, CD11cint,
F4/80lo/int, CD8αint, CD24hi, CD103hi, MHCIIhi (Figure 1B).
Following the gating strategy reported to discriminate distinct
myeloid populations infiltrating solid tumors (19), cDCs were
distinguished from macrophages based on CD24hi and F4/80lo

expression, within MHCIIhiCD11chi cells. Subsequently, cDCs
were found to parse into the two populations already described
based on differential expression of CD11b and CD103 (19). We
could readily visualize that the totality of the CD103+ cDC1
population expressedGFP and had the highestmean fluorescence
intensity (MFI) compared to the other myeloid populations. In
contrast, GFP expression was detected in ∼40% of the CD11b+

cDC2, although at significant lower MFI than in CD103+

cDC1s (Figure 1C). These findings were supported by reported
transcriptomic data that showed that CD8α+ cDCs (and some
subsets of B cells) were among the most important population
expressing TLR3 in mouse spleen (20, 21). These results were
verified with an unbiased overview by systematically reducing
the flow cytometry data to two dimensions by applying the t-
distributed stochastic neighbor embedding (t-SNE) algorithm
(22–24) (Figure 1D). By using this unbiased approach we
confirmed that, although cells with classical macrophage markers
such as F4/80 show some expression of TLR3-GFP, the highest
expression of TLR3-GFP was again observed in the CD103+

cDC1 Interestingly, similar findings were observed in tumor-
draining lymph nodes and non-draining lymph nodes, although
in both cases, GFP expression in CD11b+ cDC2 was hardly
detected (Figure 1E).

These findings indicate that cDCs, and particularly CD103+

cDC1 are the main target of poly A:U inside the tumor, and
support the hypothesis that they are themain source of IFNβ after
poly A:U administration (15).

Poly A:U Administration at the Tumor Site
Exhaustively Modifies the Tumor
Immune Infiltrate
As shown previously by our group, repeated poly A:U
administrations at the site of the tumor significantly inhibits
tumor growth, as seen by the reduced tumor weight at
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FIGURE 1 | TLR3 is mainly expressed by CD103+ cDC1 and a fraction of CD11b+ cDC2. (A) Expression of TLR3-GFP on tumor-infiltrating leukocytes (CD45+ cells)

isolated from B16-OVA tumors harvested from TLR3gfp/wt mice at day 13 after tumor cell inoculation. n = 6. (B) Intratumoral immune cells (Live CD45+ cells) from

TLR3gfp/wt mice showing expression of TLR3-GFP together with different population markers. (C) Gating strategy used to characterize tumor-infiltrating myeloid cells.

Expression of TLR3-GFP on different tumor-infiltrating myeloid cells (middle panel). Frequency of CD103+ cDC1 and CD11b+ cDC2 expressing TLR3-GFP among

total cells in each population (right panel). (D) tSNE dimensionality reduction showing concatenated flow cytometry data of intratumoral immune cells from TLR3gfp/wt

mice with heat-map showing the distribution of various surface markers on the different clusters. (E) Histograms showing TLR3-GFP expression on different myeloid

cells present in tumor-draining and non-draining inguinal lymph nodes. Data in (A,C) are shown as mean ± SEM.

the time of sacrifice of wild-type (WT) C57BL/6 mice
(Figure 2A). In order to exhaustively characterize the changes
in tumor infiltrate elicited by poly A:U administration,
we first dissected the myeloid compartment, using a 12-
color flow cytometry panel and a progressive gating strategy

(Supplemental Figures 3A,B). Subgating CD45+ infiltrating
cells by the myeloid-specific marker CD11b and the monocyte
marker Ly6C allowed the identification ofmonocyte-derived cells
inside the tumor that specifically express the chemokine receptor
CCR2. Interestingly, two populations of monocyte-derived cells
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could be distinguished according to their expression of MHC
class II (MHCII) molecule in approximately equal number and
frequency (Figure 2B and Supplemental Figures 3A,B).

Intratumoral cDCs were distinguished from macrophages
as indicated above (CD24hiF4/80loMHCIIhiCD11chi) and
further divided into CD103+ cDC1 and CD11b+ cDC2. On
the other hand, parsing of the F4/80hiCD24lo compartment
revealed distinct types of macrophages further delineated by the
expression of MHCII and CD206 as M0 (MHCIInegCD206neg),
M1-like (MHCIIhiCD206neg) and M2-like macrophages
(MHCIIloCD206hi) (Supplemental Figure 3A) (25). The co-
stimulatory molecule CD86 was also differentially expressed by
these three subsets of macrophages (Supplemental Figure 3B).
Granulocytes (Ly6CintCCR2loCD24hi) were identified but
not analyzed.

In accordance with previous reports (26), the different
identified myeloid subsets composed almost 50% of tumor-
infiltrating leukocytes (CD45+), the monocyte-derived cells
(28%) and macrophages (14%) being the most abundant ones
(Supplemental Figures 4A,C, 5B). The administration of poly
A:U did not impact significantly on the density of monocyte-
derived cells nor M0 macrophages but decreased the density
of M1-like and M2-like macrophages as well as both subsets
of cDCs within the tumor (Figure 2B). We then dissected
the lymphoid compartment characterizing B (CD19+), NK
(NKp46+), and T (TCRβ+NKp46neg) cells by using a 14-color
flow cytometry panel (Supplemental Figure 3A). The major
impact of poly A:U administration was an increase in the density
of CD8+ T cells whose frequency varied from 8 to 22% among
CD45+ cells (Figure 2C) and (Supplemental Figures 4B,C). No
statistically significant changes were observed on the density nor
frequency of Tconv cells, Treg cells, and NK cells (Figure 2C and
Supplemental Figures 4B,C). Unexpectedly, tumor infiltrating
B cells show a dramatic 75% reduction in their absolute
numbers. Applying tSNE algorithms revealed the lymphocytic
compartment inside the tumor microenvironment: seven main
clusters were identified which confirmed our supervised
characterization (Figure 2D and Supplemental Figures 5A–C).

Therefore, recognition of poly A:U by TLR3-expressing
CD103+ cDC1 generates extensive changes in the number and
frequency of many immune cell populations inside the tumor,
with an important increase in infiltrating CD8+ T cell numbers,
which probably impacts the ability of the immune system to
control tumor growth.

Poly A:U Administration at the Tumor Site
Reduces the Number of IL10-Producing
M2-Like Macrophages, Increases the
Number of TNF+ Monocyte-Derived Cells
and Promotes the Maturation of cDCs
In order to investigate the impact of poly A:U on the production
of the immunosuppressive cytokine IL10 among intratumoral
myeloid cells, we looked for the intracellular expression of IL10
in ex vivo cells that were not stimulated with PMA/ionomycin,
in order to exclude lymphoid sources of this cytokine. Under
this condition, we found that the main source of intratumoral

IL10 were CD11b+F4/80+CD206+ cells, compatible with
M2-like macrophages (Figure 3A). Interestingly, poly A:U
decreased by half the density of M2-like macrophages
producing IL10 inside the tumor bed (Figure 3A), and at
the same time expanded the number of monocyte-derived cells
producing TNF, particularly among those that did not express
MHCII (Figure 3B).

Despite the reduced total number of cDCs (CD11b+ and
CD103+) found in tumor infiltrates from poly A:U-treated
animals, greater proportions of them were activated as judged
by CD86 expression level (Figure 3C). To evaluate whether
the reduced numbers of cDCs in the tumor infiltrate was a
consequence of a reduced/increased trafficking of cDCs to the
lymph node, we analyzed the cDC composition of the tumor-
draining lymph nodes. Although the number of cDCs in lymph
nodes from treated animals was not modified compared to
controls (data not shown), a higher frequency of CD103+ cDC1
(but not of CD11b+ cDC2) expressing the activation/maturation
marker CD86 was observed (Figure 3D).

These results indicate that, besides predictable cDC
maturation after poly A:U engagement of TLR3, dynamic
and still unraveled processes take place that will end up shaping
the immune infiltrate, diminishing IL10-producing macrophages
and increasing intratumoral TNF among other changes.

Poly A:U Administration at the Tumor Site
Modifies the Overall Distribution of the T
Cell Compartment, Favoring
Tumor-Specific Immunity
After characterization of the myeloid component of the tumor
infiltrate, we dissected the lymphoid compartment. Poly A:U-
treated tumors harvested fromWTC57BL/6 mice exhibited large
modifications in the overall distribution of the various infiltrating
T cell populations (Figure 4A). Poly A:U treatment did not
modify the Treg/Tconv ratio inside the tumor, but strikingly
reduced the Treg/CD8 ratio, a fact that has been associated with a
good prognostic outcome (27) (Figure 4A). Poly A:U treatment
also substantially increased the percentage of granzyme B+ CD8+

T cells (Figure 4B). Moreover, these cells expressed higher levels
of granzyme B compared to PBS-treated controls (Figure 4B).
Looking at the antigen-specific T cell response, we used OVA-
tetramer to quantify the proportion of tumor-antigen specific
CD8+ T cells. Interestingly, the proportion of OVA-tetramer+

CD8+ T cells increased in frequency and most of these cells
appeared activated as judged by their high level of expression
of program cell death-1 (PD1) (Figure 4C). Looking at the
NK cell compartment, we observed that poly A:U-treatment
also resulted in a higher proportion of granzyme B+ and
KLRG1+ NK cells and higher expression levels of these effector
molecules (Figure 4D). The latter results obtained by manual
gating, were also validated by the unbiased analysis performed by
applying the t-SNE algorithm (Figure 4E). tSNE plots revealed
not only the increase in the frequency of CD8+ T cells in
poly A:U-treated tumor infiltrate, but also that the cluster
of OVA-tetramer+ CD8+ T cells encompassed two definite
zones within the CD8+ T cell area (Figure 4E). Granzyme B

Frontiers in Immunology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 503

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Roselli et al. TLR3+ CD103+ DCs and Anti-tumor Immunity

FIGURE 2 | Poly A:U administration at the tumor site exhaustively modifies the tumor immune infiltrate. (A) WT C57BL/6 mice bearing B16-OVA tumors were

intratumorally -treated with either poly A:U (100 µg/mice/dose) or PBS (control) every other day as indicated in the upper scheme. Plot of individual tumor volume of

poly A:U and PBS groups. Tumor weight was evaluated at day 13 post-inoculation. (B) Total number of intratumoral myeloid cells per gram of tumor (density). (C) Total

number of intratumoral lymphoid cells per gram of tumor (density). (D) tSNE plots showing concatenated flow cytometry data of intratumoral immune cells from mice

treated with PBS (control) or poly A:U (pAU) showing the distribution of the lymphoid populations. Ex vivo analyses were performed at day 13 post-tumor inoculation.

Data in (A–C) are shown as mean and pooled over two cohorts with significance determined by unpaired t-test. n = 9/group. *p < 0.05; **p < 0.01.

expression on the tSNE projection suggested the existence of
a population of CD8+ T cells specific for OVA, which do not
produce granzyme B. The unsupervised analysis also confirmed

that NK cells produced greater levels of granzyme B in poly
A:U-treated than in non-treated tumors (Figure 4E). Our data
so far indicated that the administration of poly A:U alone
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FIGURE 3 | Poly A:U administration at the tumor site reduces the number of IL10-producing M2-like macrophages, increases intratumoral TNF, and promotes

maturation/activation of cDCs. (A) Representative dot-plots displaying IL10 expression by M2-like macrophages (Ly6C−CD11b+F4/80+CD206+). Total number of

M2-like macrophages positive for IL10. (B) Total number of TNF+ cells infiltrating B16-OVA tumors from poly A:U-treated (pAU) and control (PBS) groups. (C)

Frequency of CD86+ cells among intratumoral CD11b+ cDC2 and CD103+ cDC1 from mice treated with poly A:U (pAU) or control (PBS). Shown are representative

histograms for each condition with meanMFI±SEM. (D) Frequency of CD86+ cells among CD11b+ cDC2 and CD103+ cDC1 present in both tumor-draining lymph

nodes (DLN) and non-draining lymph nodes (N-DLN) from mice treated with poly A:U (pAU) or control (PBS). MFI for CD86 in CD11b+ cDC2 and CD103+ cDC1

among the positive population for this marker. Shown are representative histograms for each condition with meanMFI±SEM. Ex vivo analyses were performed at day

13 post-tumor inoculation from WT C57BL/6 mice. Data are shown as mean with significance determined by unpaired t-test. n = 4–5/group. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.

at the tumor site, was capable of increasing the frequency
of granzyme B+ CD8+ T cells. Even though poly A:U was
administered in the absence of exogenously administered OVA as
the tumor-antigen, it was capable of amplifying an OVA-specific
CTL response.

In order to investigate the PD1/PDL1 axis in our model, we
evaluated PD1 expression on CD8+ T cells, Treg cells and Tconv

cells. Our results applying manual gating analysis indicated
that the frequency of PD1+ CD8+ T cells, but not of Treg
nor Tconv, was highly increased in poly A:U-treated tumors
(Figure 5A). This was corroborated by unsupervised analysis
using the t-SNE algorithm: PD1+ cells mostly clustered in the
Treg, Tconv and CD8+ T cell areas. However, there was a
striking increase in the size of the CD8+ T cell cluster. We then
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FIGURE 4 | Treatment with poly A:U modifies the T cell compartment, favoring a tumor-specific immune response. (A) Frequency of CD8+ T cells, CD4+ Tconv cells

and CD4+ Treg cells among intratumoral TCRβ+ cells. Intratumoral Treg:CD8+ ratio and Treg:Tconv ratio obtained from tumors treated with PBS (control) or poly A:U

(pAU) calculated using total number of cells per gram of tumor. (B) Frequency of granzyme B+ cells among intratumoral CD8+ T cells. MFI for granzyme B in

intratumoral CD8+ T cells among the positive population for this marker. Shown are representative histograms for each condition with meanMFI±SEM. (C) Frequency

of OVA-tetramer+ cells among intratumoral CD8+ T cells. Shown are representative dot-plots for each condition showing OVA-tetramer+ cells expressing PD1.

(D) Frequency of granzyme B+/KRLG1+ cells among intratumoral NK cells. MFI for granzyme B/KLRG1 in intratumoral NK cells among the positive population for this

(Continued)
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FIGURE 4 | marker. Shown are representative histograms for each condition with meanMFI±SEM. (E) tSNE dimensionality reduction showing concatenated flow

cytometry data of intratumoral immune cells from mice treated with PBS (control) or poly A:U (pAU) with heat-map showing the distribution of OVA-tetramer+ cells

indicated by arrows (upper panel) and granzyme B+ cells (lower panel). Ex vivo analyses were performed at day 13 post-tumor inoculation from WT C57BL/6 mice.

Data in (A–D) are shown as mean with significance determined by unpaired t-test. n = 4/group. *p < 0.05; **p < 0.01; ***p < 0.001.

examined PD-L1 expression within the myeloid compartment.
Most intratumoral myeloid cells expressed PD-L1 at high levels
(Figure 5B), and the frequency of PD-L1+ cells was consistently
high in every population infiltrating non-treated tumors. Indeed,
the frequency of PD-L1+ cells was >50% in all the myeloid
populations analyzed except for Ly6C+CCR2+MHCIIneg cells.
Treatment with poly A:U significantly increased the percentage
of M0, M2-like, and Ly6C+CCR2+MHCIIneg cells expressing
PD-L1 (Figure 5B), supporting the hypothesis that combining
poly A:U with anti PD1/PDL1 inhibitors could potentiate anti-
tumor immunity.

DISCUSSION

Nowadays, the major concern regarding CI blockade
immunotherapy is how to enlarge the number of responder
patients. Several combinatorial approaches have been explored,
mostly in preclinical settings, with the idea of boosting the
immune response against the tumor and guaranteeing the
accomplishment of CI blockade immunotherapy. These
approaches included simple vaccine preparations consisting
of specific peptides and proteins, as well as more complex
strategies, such as engineered cellular vaccines, DC vaccines, and
virus-vectored vaccines (28).

When CD103+ cDC1 were identified as the intratumoral
population responsible for transporting and cross-presenting
antigens and recruiting effector cells to the tumor site, the focus
of investigations switched to finding new targets exclusively
expressed on this population in order to increase these abilities
with a consequential improved anti-tumor immune response. In
general, the strategies reported so far have used costimulatory
molecules agonists (i.e., CD40 antibodies) (29) or innate immune
receptor agonists (Toll-like receptor ligands) (30) which strongly
activate CD103+ cDC1 but also other cell populations, with
consequently unpredicted risks. Recently, it was shown that
neutralizing TIM-3, which is expressed on many cell types
under homeostatic conditions but is restricted to CD103+

cDC1 inside the tumor, promotes CXCL9 expression by these
cells and indirectly enhances the CD8+ T cell response in a
breast cancer model (31). Moreover, expansion and activation of
CD103+ cDC1 progenitors at the tumor site by simultaneously
administering FLT3L and poly I:C enhances tumor responses to
BRAF inhibitors and PD-L1 blockade (26).

By using a newly developed TLR3-GFP reporter mouse,
we showed that inside B16-OVA tumors, cDCs are the main
immune cells expressing TLR3. In our model, the totality of
intratumoral CD103+ cDC1 express high levels of TLR3, whereas
just a proportion of CD11b+ cDC2 do so and at lower levels.
Interestingly, in draining lymph nodes only the CD103+ cDC1
express TLR3 while CD11b+ cDC2 present there did not,
suggesting that TLR3 expression is induced in CD11b+ cDC2

inside the tumor by an unknown mechanism. Whereas, the
global distribution of TLRs and other innate immune receptors
is largely known (32) and the use of TLR agonists in cancer
immunotherapy has been in the spotlight for many years, the
fact that TLR3 is particularly found in CD103+ cDC1 inside the
tumor, sets it apart from the rest of TLRs and turns it into an
attractive target for immunotherapy.

Newly developed TLR3 agonists have been generated:
ARNAX, for example, seems to engage only TLR3, and not
the MAVS/RIG-like receptors, and it is also highly effective
in combination with PD1/PDL1 blockade (33). Interestingly,
ARNAX also licenses DCs to activate functional tumor-specific
CTLs when administered in combination with tumor-associated
antigens (33). Unlike poly I:C, poly A:U seems to be recognized
only by TLR3 and no other cytosolic receptors, it was included
in large clinical trials in the 80’s showing promising results (12,
13, 34). More recent studies in gastric cancer patients revealed
a beneficial outcome of this immunotherapy with no reported
toxic side effects (35). In the present work, we have deepened
our studies regarding the therapeutic efficacy of poly A:U and we
exhaustively characterized the changes in the immune infiltrate
after intratumoral poly A:U administration. Poly A:U treatment
inhibits tumor growth and prolongs tumor-bearing mice survival
in several murinemodels of cancer (15). This effect relies on IFNβ

production in the tumor bed, readily visible a few hours after
the first dose of poly A:U (15), which allows us to assume that
CD103+ cDC1 and CD11b+ cDC2, are the initial source of IFNβ.
This first encounter and its consequences profoundly shapes
the immune infiltrate, enhancing the frequency of CD86+ cells
among both cDC1 and cDC2 within the tumor. Interestingly,
when studying these two cDCs subsets present in the tumor-
draining lymph node, we detected a more activated phenotype
only on CD103+ cDC1 and not on CD11b+ cDC2, indicating
that either activated CD103+ cDC1 traffic to the lymph node
or poly A:U reaches the lymph node activating the only TLR3-
expressing population there, i.e., CD103+ cDC1.

Monocyte-derived cells and macrophages are the most
abundant cells among tumor-infiltrating leukocytes. It has
been proposed that all macrophages inside the tumor are
derived from CD11b+Ly6Chi monocytes, which proliferate and
differentiate into the heterogeneous pool of tumor associated
macrophages (TAM). Movahedi et al. (36) showed that the
main type of monocytes recruited to the tumor are Ly6Chi

monocytes and downregulation of Ly6C would be the first
step toward macrophage differentiation: monocytes would first
give rise to Ly6Cint TAMs, which would then differentiate into
MHCIIhi and MHCIIlow TAMs. These latter populations present
a highly differential gene expression profile that could easily be
associated with a M1 or M2 polarization state. According to
this, CD11b+Ly6ChiCCR2+ cells in our analysis could correlate
with recently recruited monocytes that have not yet diminish
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FIGURE 5 | Administration with poly A:U at the tumor bed impacts the PD1/PDL1 axis. (A) Frequency of PD1+ cells among intratumoral CD8+ T cells, CD4+ Treg

cells and CD4+ Tconv cells. MFI for PD1 in CD8+ T cells (upper panel), CD4+ Treg cells (middle panel), and CD4+ Tconv cells (lower panel) among the positive

population for this marker. Shown are representative histograms for each condition with meanMFI±SEM. tSNE dimensionality reduction showing concatenated flow

cytometry data of intratumoral immune cells from mice treated with PBS (control) or poly A:U (pAU) with heat-map showing the distribution of PD1+ cells among the

CD8+ T cells, CD4+ Treg cells, and CD4+ Tconv cells clusters (dotted lines). (B) Frequency of PD-L1+ cells within the different subsets of intratumoral immune cells

(upper panel). PD-L1 expression in representative histograms for each condition (lower panel). Ex vivo analyses were performed at day 13 post-tumor inoculation from

WT C57BL/6 mice. Data in (A,B) are shown as mean with significance determined by unpaired t-test. n = 4–9/group. *p < 0.05; **p < 0.01; ****p < 0.0001.

too much their Ly6C expression but somehow are modulating
their MHCII expression levels as they infiltrate the tumor. In
our model, both MHCII+ and MHCII− Ly6ChiCCR2+ cells

are present approximately at the same number but the amount
of these monocyte-derived cells producing TNF increases after
the administration of poly A:U, in accordance with previous
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in vitro reports, that show that tumor-supporting myeloid cells
can be converted to tumoricidal effectors by activating TLR3 (37).
Moreover, we observed a decrease in the frequency and total
number of M1-like andM2-like macrophages within the myeloid
compartment, the latter being a key source of intratumoral
IL10, indicating that poly A:U reduces the amount of this
immunosuppressive cytokine present in the tumor (38, 39).
Unexpectedly, cDCs also decrease in number and this does not
seem to be a consequence of migration to lymph nodes. Rather, it
could reflect their activation or a direct effect of the IFNβ elicited
after TLR3 triggering. Indeed, it has been shown in different
infection models that type I IFN elicited by the microorganism
is responsible for macrophage and dendritic cell death (40–42).

Nonetheless, the most striking changes are seen within the
lymphoid compartment, with all the anti-tumoral parameters
being enhanced: a higher frequency of CD8+ Granzyme B+

T cells, (lower Treg/CD8+ ratio) and an important expansion
of OVA-Tet+ CD8+ T cells. It is interesting to note that the
mere administration of naked poly A:U alone was capable of
expanding and activating tumor-specific clones. Interestingly,
unsupervised analysis of the flow cytometry data indicate that
granzyme B expression in the CD8+ T cell cluster, largely exceeds
the area in which OVA-Tet+ CD8+ T cells clusters are found,
indicating that the treatment expands and activates many more
CD8+ T cell clones than the OVA-specific ones. This could
be due to bystander activation of CD8+ T cells (43) or that
clones specific for other tumor-antigens are being activated. Poly
A:U also impacts profoundly on NK activation, which besides
their well-known ability for killing cancer cells, can modulate
the tumor microenvironment and act synergistically with CI
blockade against the tumor (44, 45).

B cells are also drastically reduced in poly A:U -treated tumors.
B cells have a controversial role in anti-tumor immunity with
reports indicating an augmented T cell-mediated tumor response
in genetically B cell-deficient mice (46, 47). On the other hand,
many reports show that B cells enhance the anti-tumor activity
of T cells (48, 49). Further studies should be done to understand
if poly A:U treatment promotes a decrease in regulatory B cells,
or conversely if it depletes the tumor site of effector B cells.
Moreover, the role of B cells in B16 melanoma has been also
a matter of discussion (50, 51) and so far, no clear data is
available regarding the benefit of manipulating this population
in solid tumors.

The PD1-PDL1 axis is also affected by poly A:U treatment;
most OVA-Tet+ CD8+ T cells express PD1 accompanied by
an increase in the percentage of total CD8+ T cells positive
for this marker. Similarly, there is an increase in the frequency
of PDL1+ cells among some myeloid populations, placing poly
A:U as a great candidate to be used in combination with anti-
PD1/PDL1 therapies. Therapeutic settings combining poly I:C
with anti PD1/PDL1 have been assayed although it is well-known
that poly I:C binds other cytosolic receptors (52, 53) and its use
in clinical trials has been associated with many toxic side effects
(54–56). Poly A:U can be proposed as an alternative adjuvant
because of its accurate specificity for TLR3 shown by the lack
of IFNβ response in UNC93B1 mutant mice and in TLR3−/−

mice (57). Intriguingly, the use of poly A:U in clinical trials has

come to an impasse, and no clinical evaluation of its efficacy is
being performed at the moment. Our results shed new light to
promote further assays in this forgotten dsRNA mimetic to the
clinical field.
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Supplemental Figure 1 | In vivo and in vitro characterization of Tlr3-EGFP

(B6-Tlr3tm2Ciphe) mice. (A) Mice homozygous for the Tlr3-EGFP allele

(TLR3-KIgfp/gfp) together with mice heterozygous for this allele (TLR3-KIgfp/wt)

and its wild-type control (TLR3-KIwt/wt) were intraperitoneally (i.p.) treated with

either poly I:C (pIC-200 µg/mouse) or PBS as control, 24 h later the spleen was

harvested and analyzed by flow cytometry for the expression of GFP. (B)

Splenocytes from the three strains of mice were analyzed by flow cytometry

showing the frequency of GFP+ cells among the different analyzed populations.

(C) Dot plots from a representative animal from each strain of mice showing the

frequency of GFP+ cells within total splenic DCs (CD11c+MHCII+), splenic

CD8α+ DCs (CD11c+MHCII+CD8α+), and splenic CD8α− DCs

(CD11c+MHCII+CD8α−). (D) Expression level of CD86 (upper panel) and MHCII

(lower panel) shown as MFI in splenic CD8α+ DCs both positive and negative for

GFP isolated from the three strains of mice, treated with pIC or PBS as control. (E)

Bone marrow-derived macrophages (BMDMs) from the three strains of TLR3-KI

mice together with TLR3KO mice were treated with poly A:U (pAU) at two

concentrations (25 and 50µg/mL) and pIC (50µg/mL) for 24 h and analyzed for

surface expression of CD80, CD86, and PDL1 by flow cytometry. Data is show as

mean±SEM and each condition was statistically compared to control (RPMI) by

two-way ANOVA. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.0001.

Supplemental Figure 2 | Side by side comparison of the frequencies of immune

cell populations in spleens from wild type, homozygous (TLR3-KIgfp/gfp) and

heterozygous TLR3-GFP reporter (TLR3-KIgfp/wt) mice. (A) Mice homozygous for

the Tlr3-EGFP allele (TLR3-KIgfp/gfp) together with mice heterozygous for this

allele (TLR3-KIgfp/wt) and its wild-type control (TLR3-KIwt/wt) were

intraperitoneally (i.p.) treated with either poly I:C (pIC-200 µg/mouse) or PBS as

control, 24 h later the spleen was harvested and analyzed by flow cytometry for

the expression of T, B, myeloid, and dendritic cells. Results are expressed as

percentages of CD45+ cells; each dot represents an animal.

Supplemental Figure 3 | Characterization of tumor-infiltrating immune cells after

poly A:U treatment. (A) Gating strategy used to characterize both myeloid and

lymphoid cells infiltrating B16-OVA tumors. (B) Representative histogram showing

the expression of different surface markers on tumor-infiltrating myeloid cells from

a control animal (PBS) shaded in gray together with the respective isotype control.

Ex vivo analyses were performed at day 13 post-tumor inoculation from WT

C57BL/6 mice.

Supplemental Figure 4 | Frequencies of tumor-infiltrating immune populations

after administration of poly A:U. (A) Frequency among CD45+ cells of the different

myeloid cells infiltrating poly A:U-treated (pAU) and non-treated (PBS) B16-OVA

tumors. (B) Frequency among CD45+ cells of the different lymphoid cells

infiltrating poly A:U-treated (pAU) and non-treated (PBS) B16-OVA tumors. (C)

Frequency among CD45+ cells of the different immune populations infiltrating poly

A:U-treated (pAU) and non-treated (PBS) B16-OVA tumors. Ex vivo analyses were

performed at day 13 post-tumor inoculation from WT C57BL/6 mice. ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

Supplemental Figure 5 | tSNE analysis objectively delineates the different

immune cell subsets present within B16-OVA tumor. (A) tSNE dimensionality

reduction showing concatenated flow cytometry data of intratumoral immune cells

from mice treated with PBS (control) or poly A:U (pAU) with heat-map showing the

distribution of various surface markers on the different clusters. (B) Frequency of

the different tumor-infiltrating immune cells obtained by FlowSOM clustering on

each individual mouse. Box and whiskers plots showing frequencies of the

different populations in PBS (control) or poly A:U treated animals. (C) Heat-map

showing the MFI for the specified markers on the different tumor-infiltrating

immune cells from the control (PBS) mice obtained by an unsupervised analysis.

Ex vivo analyses were performed at day 13 post-tumor inoculation from WT

C57BL/6 mice.

Supplemental Table 1 | Antibodies used for flow cytometry analysis.
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