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Abstract: Compressed sensing (CS) has been proposed to improve the efficiency of signal processing
by simultaneously sampling and compressing the signal of interest under the assumption that the
signal is sparse in a certain domain. This paper aims to improve the CS system performance by
constructing a novel sparsifying dictionary and optimizing the measurement matrix. Owing to the
adaptability and robustness of the Takenaka–Malmquist (TM) functions in system identification,
the use of it as the basis function of a sparsifying dictionary makes the represented signal exhibit
a sparser structure than the existing sparsifying dictionaries. To reduce the mutual coherence
between the dictionary and the measurement matrix, an equiangular tight frame (ETF) based iterative
minimization algorithm is proposed. In our approach, we modify the singular values without
changing the properties of the corresponding Gram matrix of the sensing matrix to enhance the
independence between the column vectors of the Gram matrix. Simulation results demonstrate
the promising performance of the proposed algorithm as well as the superiority of the CS system,
designed with the constructed sparsifying dictionary and the optimized measurement matrix, over
existing ones in terms of signal recovery accuracy.

Keywords: compressed sensing (CS); sparse representation; the Takenaka–Malmquist (TM) functions;
mutual coherence; equiangular tight frame (ETF)

1. Introduction

Sparse representation has become a powerful tool, as it can efficiently model signals
to facilitate compressing and processing [1–3]. Due to the redundancy in the majority
of signals in nature, transforming the original signal to a sparse or compressed version
through a certain domain is meaningful for reducing costs in transportation and storage. In
this case, the signal can be expressed as a linear combination of a few given basis functions,
which indicates that most of the representation’s coefficients are zero or close to zero.

Compressed sensing (CS), as one of the most attractive emerging fields in recent
years, has shown promising results in many applications, such as channel or spectrum
estimation [4,5], cognitive radio communications [6], color pattern detection [7,8], and
people-centric sensing [9]. CS states that signals which have sparse structures on an appro-
priate domain can be effectively recovered from the underdetermined linear projections.
However, it is often the case that signals of interest are not exactly sparse but compress-
ible. Projecting the signal into its proper sparse domain to obtain a sparser structure is
essential in CS [10]. Hence, one critical issue in sparse representation is how to choose the
dictionary (as well as the transform basis) to reduce the number of measurements required
for reconstruction [11]. In most cases, the original signal is sparse in a different transform
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domain, e.g., discrete cosine transform (DCT), discrete wavelet transform (DWT), and so
on. Despite being simple and having fast computations, these nonadaptive dictionaries
are unable to sparsely represent a given signal of interest well [12]. The approximate
solution after the sparse representation of signals still have many nonzero elements. In
fact, if an N-dimensional signal admits K-sparse representation in a dictionary, one can
reconstruct exactly the original signal with large probability with M = O(Klog(N/K)) mea-
surements [10,13]. This shows that only a small number of measurements are necessary
to accurately recover the original signal when the signal exhibits a sparser representation.
In our previous work [14], we presented an effective sparse representation approach for
wireless channels based on the modified Takenaka–Malmquist (TM) basis, under which
the represented wireless channel exhibits a sparser structure than the existing sparsifying
dictionaries. As the results shown, the approach facilitates to improve the performance of
CS. In this paper, we construct a sparse dictionary using the TM basis functions. Compared
with other sparse bases, the signal of interest can be represented more accurately with only
a limited number of TM basis functions.

The recent growing trend involves replacing the conventional random sensing matri-
ces by optimized ones in order to enhance CS performance further [15–19]. Some conditions
have been put forth to evaluate the qualities of a sensing matrix to guarantee exact signal
recovery. Candès et al. introduced the restricted isometry property (RIP) and proved that if
a sensing matrix satisfies RIP, the original signal can be recovered with high probability [13].
However, it is difficult to verify whether a given sensing matrix satisfies RIP. Another rela-
tively simple property is the mutual coherence [15–20]. The coherence of matrix A means
the maximum absolute correlation between different columns of A. Gaussian and Bernoulli
matrices are widely used due to their entries being generated by an independent identi-
cally distributed (i.i.d.) process and satisfying the RIP. However, it shows low recovery
accuracy in the CS system when using the class of matrices as a sensing matrix. In order
to improve the CS performance, researchers attempt to optimize the sensing matrix with
the hope of increasing the reconstruction probability and taking a fewer number of mea-
surements [15–18]. Elad proposed an optimized algorithm that iteratively minimizes the
t-averaged mutual coherence using shrinkage operation by singular value decomposition
(SVD) [15]. However, Elad’s method is time-consuming and creates some large values
of coherence. Duarte-Carvajalino and Sapiro proposed a framework for a joint sensing
matrix and dictionary design and optimization [16]. The method addressed the problem
by making the Gram matrix as close as possible to an identity matrix. Their proposed
approach is noniterative and does not have a clear meaning after multiple approximation
procedures. In this paper, we proposed a method based on the equiangular tight frame
(ETF) design. The optimization objective is to make the Gram matrix of the sensing matrix
as close as possible to an ETF. For clarity, the threefold main contributions of this paper are
summarized as follows:

• It is revealed that the existing dictionaries are unable to sparsely represent a given
signal well. The TM functions have adaptability and robustness in system identifi-
cation, which invoked us to use it as a basis to build a new dictionary for the sparse
representation of a given signal. The simulation results illustrate that compared to
other dictionaries, using the constructed dictionary to represent a given signal can
obtain a lower mean square error (MSE) under the same number of atoms.

• In order to improve the CS performance further, an ETF-based iterative minimization
algorithm is proposed for optimizing the measurement matrix. It is shown that the
approach leads to a lower coherence of the equivalent dictionary and significantly
improves the signal recovery accuracy than the methods in [15,16].

• The reconstruction quality obtained with our constructed dictionary and the optimal
measurement matrix by our approach is superior to that obtained with the existing
dictionary and random measurement matrix (such as wavelets or DCT). Moreover,
simulation experiments show that after the random measurement matrix optimized
by our proposed algorithm, the reconstruction success rate is also improved.
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The rest of the paper is organized as follows. In Section 2, we review the basic princi-
ples of the CS framework. Section 3 introduces the TM basis function and describes how
to construct a dictionary for sparse representation. An ETF-based iterative minimization
method is developed in Section 4 for optimizing the measurement matrix. Experimental
results are provided in Section 5. Section 6 concludes the paper.

2. Background and Preliminaries

CS states that it can enable exact signal reconstruction from far fewer samples than
required by the classical Nyquist–Shannon sampling theorem if the signal admits a sparse
representation in a certain domain. Consider a signal x ∈ RN , which is sparse over the
transformation basis matrix Ψ ∈ RN×N . Let s be the sparse representation of x over the
basis matrix Ψ. Accordingly, x can be described as

x = Ψs, (1)

where the signal x is said to be K-sparse in the Ψ domain if ‖s‖0 = K (K � N). The
`0-norm used here denotes the number of the nonzero elements in s.

The basic model of CS is as follows:

y = Φx, (2)

where the resulting signal vector y ∈ RM×1 is called the measurement vector, x ∈ RN×1 is
the given signal of interest, and Φ ∈ RM×N (with M× N) is called the measurement matrix.
Since the original signal x is sparse in the Ψ domain, we can rewrite the measurement
model as

y = ΦΨs = As, (3)

where A = ΦΨ ∈ RM×L (L ≥ N ≥ M) represents the sensing matrix, Ψ ∈ RN×L is the
sparsifying basis, e.g., an orthonormal or overcomplete dictionary.

To recover the high-dimensional original signal from the low-dimensional measure-
ment data, it is necessary to solve the following minimization problem

min
s
‖s‖0 subject to y = As. (4)

In general, the reconstruction problem in (4) is a nondeterministic polynomial hard (NP-
hard) problem. Fortunately, research in [21] and [22] has demonstrated that `1-norm
minimization is similar to sparse solutions with `0-norm minimization. Therefore, the
`1-norm is used to substitute for the `0-norm in (4). The solution to the above problem is
the same as the one to the `1-norm minimization below

min
s
‖s‖1 subject to y = As (5)

where (5) can be solved efficiently using convex relaxation algorithm such as basis pursuit
(BP) [23]. Another strategy to address the problem in (4) is to use greedy algorithms,
such as the orthogonal matching pursuit (OMP), to find a local optimal solution through
multiple iterations [24].

The premise of CS is to ensure that the original signal is sparse or can be represented
sparsely. The well-known RIP provides a sufficient condition for an exact or approximate
recovery of a sparse representation s from the low-dimensional measurements y. An M ×
L sensing matrix A is said to satisfy the RIP of order K if there exists a restricted isometry
constant δK (0 < δK < 1), such that

(1− δK)‖s‖2
2 ≤ ‖s‖

2
2 ≤ (1 + δK)‖s‖2

2, (6)

where ‖s‖0 = K.
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RIP measures the degree to which each submatrix consisting of the most K columns
of A is close to being an isometry. However, the RIP is too strict and difficult to be used
for proving whether a sensing matrix A satisfies the condition or not. Therefore, the
most known constructions of matrices satisfying RIP are random matrices, including the
Gaussian matrix, Bernoulli matrix, and almost other matrices with i.i.d. entries. Another
relatively simple and feasible property for evaluating the quality of sensing matrices is
the mutual coherence. It requires that the rows of measurement matrix Φ cannot sparsely
represent the columns of the sparse basis Ψ and vice versa. The mutual coherence µ(A)
is defined as the largest absolute normalized inner product between different columns in
sensing matrix A. Formally, that is expressed as

µ(A) = max
1≤i,j≤L, i 6=j

∣∣aT
i aj
∣∣

‖ai‖2·‖aj‖2
, (7)

where ai is the i-th column of A.
The mutual coherence can intuitively reflect the quality of a sensing matrix and play

important role in the signal reconstruction performance. A smaller value of µ(A) means
that the measurement matrix Φ and the sparsifying dictionary Ψ are less relevant. It means
that the two matrices are orthogonal if µ(A) equals to zero.

An alternative way to measure the mutual coherence is considering the corresponding

Gram matrix G = Ã
T

Ã, in which Ã is obtained by normalizing each column of A. The
maximum value of the off-diagonal elements in G denotes the mutual coherence, that is

µ(A) = max
1≤i,j≤L, i 6=j

∣∣∣gij

∣∣∣. (8)

Generally, a K-sparse signal s can be recovered from (3) by (4) or (5) if the following
inequality holds [25–27]:

K <
1
2

(
1 +

1
µ(A)

)
. (9)

Even though in many situations a small µ(A) is desired, the following well-known
result of Welch indicates that µ(A) is bounded below:

µ(A) ≥ µE =

√
L−M

M(L− 1)
. (10)

It should be noted that the Welch bound µE is approximately equal to 1√
M

when
L ≥M.

3. Construction Procedure of the Dictionary

In this section, we briefly introduce and analyze the Takenaka–Malmquist basis
functions. In addition, we show how to construct a new dictionary using the TM basis
functions for sparse representation in CS. The preliminary results show the representation
advantages of this new approach.

3.1. The Takenaka–Malmquist Functions

The TM basis functions were first widely used in the field of control engineering.
Extensive research has examined how the TM basis is suitable for linear time-invariant
(LTI) system identification [14,28–30]. For a deterministic signal, we can learn from the
idea of system identification and represent it using the TM basis. The TM functions are
defined as follows:

Fk(z) =

√
1− |bk|2

z− bk

k−1

∏
i=1

1− biz
z− bi

, k = 1, 2, · · · (11)
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where bi ∈ C, |bi| < 1, C represents an open unit circle in the complex plane, and bi denotes
the conjugation of bi.

The TM basis functions are constructed to be orthonormal by using the Gram–Schmidt
procedure. According to the Cauchy integral formula, it is easy to prove the orthogonality
between TM basis functions by

〈Fk, F1〉 = Fk

(
1/b1

)√
1− |b1|2 = 0, ∀k > 1 (12)

which forces Fk(z) to have a zero at 1/b1.
The orthogonality between the TM basis functions allowed it to serve as a dictionary,

from which the representation coefficients of a signal could be efficiently selected. Hence,
only a limited number of linear combinations of TM basis functions are required to approx-
imate the original signal. This provides us with a theoretical basis and feasibility to build a
dictionary next.

3.2. Construction of the Dictionary

The number of nonzero terms K of the sparse representation coefficient s of a signal x
in a sparsifying dictionary Ψ is a very important factor. The smaller the value of K, the fewer
the number of measurements are required for signal recovery. Therefore, the sparsifying
dictionary Ψ should be properly selected so that the signal has a sparser representation
structure. In other words, K should be reduced as close to zero as possible. The most
commonly used approach is using basis function to construct a sparsifying dictionary, such
as DWT, DCT, and so forth. For a given dictionary, a signal is approximately represented
as a linear combination of the dictionary atoms:

x ≈∑n
k=1 skψk. (13)

The approximate solution after the sparse representation of signals in a DCT (or
DWT) domain still have many nonzero elements. Under the same number of atoms, the
approximate representation of the signal has a large error. To further improve the sparse
representation performance, we construct a sparsity dictionary by using the TM basis
functions. The detailed construction process is as follows.

For a given signal x ∈ RN , N poles are uniformly selected in the unit circle, and then
the poles are set as the poles of the TM basis functions, forming an initial sparsifying
dictionary Ψ =

[
F1(z), · · · , Fξ(z), · · · , FN(z)

]
. Then, the TM basis function corresponding

to each pole takes ωk =
2π(k−1)

N , k = 1, 2, · · · , N as the sampling frequency to sample the
signal x at equal intervals. In this way, the column vector corresponding to each TM basis
function is set by

Fξ =



Fξ

(
ej0)
...

Fξ

(
ejωk

)
...

Fξ

(
ej 2π(N−1)

N

)


. (14)

Therefore, the constructed dictionary can be expressed as follows

Ψ =



F1
(
ej0) · · · Fξ

(
ej0) · · · FN

(
ej0)

...
. . .

...
. . .

...
F1
(
ejωk

)
· · · Fξ

(
ejωk

)
· · · FN

(
ejωk

)
...

. . .
...

. . .
...

F1;

(
ej 2π(N−1)

N

)
· · · Fξ

(
ej 2π(N−1)

N

)
· · · FN

(
ej 2π(N−1)

N

)


. (15)
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To illustrate the performance of the constructed dictionary, we provide a comparison
of the results in Figure 1.
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As a performance measurement between the original signal and the reconstructed
signal, the MSE is defined as follows:

MSE =
1
N ∑N

K=1 ‖x− x‖2
2. (16)

Without loss of generality, a Rayleigh-distributed signal is taken here as an example.
The length of the signal is 256. A random dictionary of size 256 × 256 is considered,
which is drawn from i.i.d. zero mean and unit variance Gaussian distribution. The DCT,
DWT, and the constructed TM dictionary of the same dimension are compared. The
OMP algorithm is used to compare the MSE of the reconstructed signal after the sparse
representation of the original signal under different numbers of decomposed atoms. The
results demonstrate that compared with the random, DCT, and DWT dictionaries, using
the constructed TM dictionary to represent a given signal can get lower MSE under the
same number of decompositions.

4. Optimizing the Measurement Matrix

In this section, we investigate the problem of optimizing the measurement matrix
given a sparsifying dictionary to increase CS performance further. To address the problem,
an ETF-based iterative minimization algorithm is proposed.

The object is to optimize the measurement matrix Φ to minimize the mutual coherence
µ(A). In other words, it is to find a measurement matrix Φ making the corresponding
Gram matrix as close to an identity matrix as possible. The column-normalized form of the
sensing matrix A is called an ETF. However, it is often that such an ETF does not exist for
any arbitrary dimension [25,31]. Therefore, our optimization goal is to make the sensing
matrix A as close as possible to an ETF. The minimization problem is formulated as follows:

min
Φ,HεΛset

‖ATA−H‖2
F. (17)

where ‖·‖F is the Frobenius norm. The Λset denotes a convex set that leads the optimization
problem to have solutions. For any arbitrary dimension, Λset is regularized as
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Λset =

{
H ∈ RL×L : H = HT , diag H = 1, max

i 6=j

∣∣hij
∣∣ ≤ µE

}
. (18)

As mentioned before, µE is the Welch bound and is used here as a prescribed parame-
ter.

The alternate optimization method is usually used to address the minimization prob-
lem in (17). The difference between our proposed method and others is that we assign
weight values to the Gram matrix of the previous iteration as well as the Gram matrix of the
current iteration in the stage of updating the Gram matrix. We modify the singular value
without changing the properties of the Gram matrix, so that the minimum singular value
of the updated Gram matrix increases and the maximum singular value decreases, and
then the linear independence between the column vectors of the Gram matrix is enhanced.
In this way, a new diagonal matrix is obtained by using the eigenvalue averaging method
for the updated Gram matrix to construct an optimized measurement matrix. The detailed
optimization procedure is shown in Algorithm 1.

In this algorithm, the Gram matrix of the normalized sensing matrix is computed. In
order to make it close to an ETF, the Gram matrix is projected onto the convex set Λset by
the shrinking operation function:

gij =


1 i = j
gij i 6= j,

∣∣gij
∣∣ ≤ µE

sign
(

gij
)
·µE i 6= j,

∣∣gij
∣∣µE

. (19)

Since the Gram matrix is projected onto Λset, its structure changes significantly. In
order to retain some of its feature information and approximate the ETF, we give weights
to the Gram matrix before and after the update:

G(t+1) = βG(t) + (1− β)G(t−1). (20)

In general, the aforementioned shrinking operation causes the rank of the Gram matrix
to be full. Therefore, the next step is to force a rank M by a singular value decomposition of
the obtained Gram matrix, i.e., UΛVT = G, in which rank(Λ) = M� L. Let λ1, λ2, · · · , λM
be the eigenvalues of the diagonal matrix Λ. According to singular value decomposition,
the smaller the maximum singular value, the better the incoherence of the matrix. There-
fore, in order to reduce the mutual coherence between the different columns of A, we
modify the eigenvalues by averaging all eigenvalues of the obtained Gram matrix and
get a new diagonal matrix Λ̃. Let λ̃i(i = 1, 2, · · · , M) be the diagonal elements of Λ̃, and
λ̃i =

1
M ∑M

i=1 λi. Then, we build the squared root of the obtained Gram matrix, G = STS,

where S =
√

Λ̃VT . Now, the solution of optimizing the measurement matrix is equivalent
to solving

min
Φ
‖S−ΦΨ‖2

F. (21)

The solution process is as follows:

‖S−ΦΨ‖2
F = tr

[
(S−ΦΨ)T(S−ΦΨ)

]
= tr

(
STS

)
− 2tr

(
ΨTΦTS

)
+ tr

(
ΨTΦTΦΨ

)
.

(22)

Here, tr(·) denotes the matrix trace operation.

∂‖S−ΦΨ‖2
F

∂Φ
= −2

∂tr
(
ΨTΦTS

)
∂Φ

+
∂tr
(
ΨTΦTΦΨ

)
∂Φ

= −2
∂tr
(
ΦTSΨT)
∂Φ

+
∂tr
(
ΦΨΨTΦT)

∂Φ
= −2SΨT + 2ΦΨΨT .

(23)
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Solved by least squares, it is now easy to find the optimized solutions Φ =
√

Λ̃VTΨ†,
where † denotes pseudoinverse.

Algorithm 1: The proposed optimization algorithm.

Input: The given sparsifying dictionary Ψ ∈ RN×L,the number of iterations Iter, and threshold
µE.
Output: The measurement matrix Φ.
1: Initialization: Set Φ ∈ RM×N to be a random matrix.
2: for l = 1 : Iter do
3: Normalize the columns of the sensing matrix A = ΦΨ to obtain Ã.
4: Compute the Gram matrix G = ÃTÃ.
5: Update the Gram matrix by the shrinking operation (19).
6: Assign weight values between the previous and current Gram matrix to update the Gram
matrix: G(t + 1) = βG(t) + (1 − β)G(t − 1).
7: Apply SVD UΛVT = G and force the rank of G to be equal to M.
8: Average the eigenvalues to get new diagonal matrix Λ̃.
9: Update the measurement matrix Φ =

√
Λ̃VTΨ†.

10: end for

5. Experimental Results

In this section, we carry out various numerical simulations to support the effectiveness
of the proposed approach. The experiments include a performance evaluation of the
proposed algorithm and a performance comparison of different sparsifying dictionaries. In
Section 5.1, we present some experiments to illustrate the performance of the proposed
algorithm and compare it with other algorithms. In Section 5.2 we demonstrate the
superiority of the CS system designed with the constructed sparsifying dictionary over the
existing ones under the same measurement matrix. In addition, the signal recovery quality
are evaluated to compare the performance of the different sparsifying dictionaries under
the optimized measurement matrix using our proposed approach.

5.1. Performance Evaluation of the Proposed Algorithm

In this subsection, the performance of the proposed algorithm in the CS system is
evaluated. Several comparison simulations are given to verify the effectiveness of the
proposed algorithm in terms of the measures µ(A) and the signal recovery performance.
Here, a random dictionary (every entry is drawn from i.i.d. zero mean and unit variance
Gaussian distribution) of size 256 × 400 was used. We generated a Gaussian matrix with
a size of 64 × 256 as a random measurement matrix and used it as an initial condition to
obtain the corresponding optimized measurement matrix by using the proposed algorithm
and the algorithm in [15,16], respectively.

The parameter settings in the abovementioned algorithms are shown as follows. For
Elad’s algorithm, the parameters t, γ are set to 0.2 and 0.55, respectively. The iteration
number Iter is set to 30 for both Elad’s and our algorithm. It is worth noting that the
Duarte-Carvajalino and Sapiro algorithm is noniterative.

Since the corresponding Gram matrices with smaller nonzero terms result in good
reconstruction performance, the local cumulative coherence values can be used to eval-
uate the performance of the sensing matrix. The histogram of the absolute off-diagonal
entries of the corresponding normalized Gram matrix to each sensing matrix is depicted in
Figure 2. As can be seen, both the method proposed in [15,16] and our proposed method
reduce the number of large absolute values in the Gram matrix. Compared with Elad’s
method and Sapiro’s method, it easy to find in Figure 2 that the largest absolute values
are smaller. Furthermore, the histogram of our method shows that the local cumulative
mutual coherence values shift significantly to the left and concentrate within 0.2, which
means that the local coherence is also smaller.
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Figure 2. Histogram of the absolute off-diagonal entries of the corresponding normalized Gram
matrix to each of the four sensing matrices.

To illustrate the behavior of the proposed algorithm, the evolution of the mutual coher-
ence versus iteration number is shown in Figure 3. Since Sapiro’s method is noniterative,
its optimized value is shown as a point in the graph. Both Elad’s method and our proposed
method demonstrate the mutual coherence value decreases with the number of iterations.
However, our method shows that the rate of decline is significantly faster. Moreover, the
final value of µ(A) is also smaller than the first two.
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Next, the signal reconstruction performance via the abovementioned measurement
matrices are further investigated. We use the percentage of successful recovery to eval-
uate the sparse signal recovery quality. It is considered to be a successful recovery if

the reconstruction error ‖x− ^
x‖2/‖x‖2 < 10−3. The known OMP algorithm is used for

signal recovery.
In the first experiment, we generate 1000 K-sparse vectors with nonzero entries chosen

at random for each sparsity level K. These sparse vectors are used as test signals to evaluate
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the CS performance. Figure 4 shows the signal reconstruction performance of the CS
system before and after the measurement matrix optimization using different optimization
methods, with signal sparsity level K varying from 4 to 28 and M = 64. As can be seen, all
the optimization methods lead to improved CS performance. In addition, the result shown
in Figure 4 indicates that the proposed method performs better than both Elad’s method
and Duarte-Carvajalino and Sapiro’s method.
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In the second experiment, the sparsity level K is fixed, and the measurement value M
is changeable. Figure 5 shows the comparison of the reconstruction performances using
various measurement matrices under the same sparsity level K = 10. As the number
of measurements increases, the percentage of signal reconstruction also increases. As
expected, it is shown in Figure 5 once again that the proposed method outperforms the
other two methods.
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5.2. Performance Comparison of Different Sparsifying Dictionaries

In this subsection, we investigate the performance of different sparsifying dictionaries
in the CS system. As in the previous section, we quantify the performance by measuring
the percentage of successful recovery signals. We previously verified that compared to
DCT, DWT, and random dictionaries, using the constructed TM dictionary to represent
a given signal can get lower MSE under the same number of atoms. Here, we further
evaluate the reconstruction performance in CS systems using the constructed TM, DCT,
DWT, and random matrices as sparsifying dictionaries.

We set up a new experiment, in which the dimension of the sparsifying dictionaries
is set to 256 × 256. In addition, we generate a measurement matrix Φ ∈ R64×256 with
random Gaussian distribution. By multiplying it with the above sparsifying dictionaries,
we obtain four sensing matrices. Then, the OMP algorithm is used to recover the signal.
In the experiments, we tested 1000 sparse signals in each trial. We evaluated the perfor-
mance of a sparsifying dictionary in the CS system by the percentage of successful signal
recovery. The error threshold between the original signal and the reconstructed signal is
the same as in the previous subsection, which is 10−3. Figure 6 shows the comparison of
the reconstruction performances using different sparsifying dictionaries under the same
random measurement matrix. The results demonstrate that the constructed TM dictionary
has a better performance in terms of reconstruction quality compared with the random,
DCT, and DWT dictionaries. Using TM as a sparsifying dictionary can achieve a higher
reconstruction rate among these dictionaries under the same sparsity level.
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In addition, we fixed the sparsity level of the signal and performed comparison
experiments by changing the measurement numbers of the measurement matrix. The
sparsity level K is set to 25. Figure 7 reveals that by using the TM dictionary as Ψ, one can
use a fewer number of measurements to achieve the same performance as that obtained
using the DCT, DWT, and random dictionaries.
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To further evaluate the performance of the constructed TM sparsifying dictionary, we
used the proposed algorithm to optimize the measurement matrix in order to reduce the
mutual coherence between the dictionary and the measurement matrix. Different from
previous experiments, we compared the performance of different sparsifying dictionaries
in CS systems under an optimized measurement matrix. As shown in Figures 8 and 9, after
using the proposed algorithm to optimize the measurement matrix, the performance of the
signal recovery is improved. It was observed that using the initial random measurement
matrix and the constructed TM dictionary in the CS system can allow us to still obtain
a better performance than using the optimized measurement matrices with the random,
DCT, and DWT dictionaries. This proves that our constructed TM dictionary is more robust
and effective.
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6. Conclusions

In this paper, we constructed a novel sparsifying dictionary using the TM functions
for the sparse representation of a given signal. The advantages are higher performance
in sparsely representing signals of interest at the same degree of atomic decomposition.
Our proposed iterative algorithm is based on the equiangular tight frame, for which its
related mutual coherence between the measurement matrix and the sparsifying dictionary
is reduced. Simulation results demonstrated the promising performance of the algorithm
and the superiority of the CS system, designed with the constructed dictionary and the
optimized measurement matrix, over the existing ones in terms of signal recovery accuracy.

In the future, we will try to combine the constructed sparsifying dictionary with the
measurement matrix to optimize both simultaneously. We will also try to apply our method
in practical applications, such as channel estimation. Further investigation of this topic
is needed.
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