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Abstract

The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-

effects models for estimating the narrow-sense heritability based on GWAS data of unre-

lated individuals without knowing and identifying the causal loci. Many methods have since

extended this approach to various situations. However, since the proportion of causal loci

among the variants is typically very small and GCTA uses all variants to calculate the simi-

larities among individuals, the estimation of heritability may be unstable, resulting in a large

variance of the estimates. Moreover, if the causal SNPs are not genotyped, GCTA some-

times greatly underestimates the true heritability. We present a novel narrow-sense herita-

bility estimator, named HERRA, using well-developed ultra-high dimensional machine-

learning methods, applicable to continuous or dichotomous outcomes, as other existing

methods. Additionally, HERRA is applicable to time-to-event or age-at-onset outcome,

which, to our knowledge, no existing method can handle. Compared to GCTA and LDAK for

continuous and binary outcomes, HERRA often has a smaller variance, and when causal

SNPs are not genotyped, HERRA has a much smaller empirical bias. We applied GCTA,

LDAK and HERRA to a large colorectal cancer dataset using dichotomous outcome (4,312

cases, 4,356 controls, genotyped using Illumina 300K), the respective heritability estimates

of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072 (SE = 0.021) and 0.110 (SE =

5.19 x 10−3). HERRA yields over 50% increase in heritability estimate compared to GCTA or

LDAK.
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Introduction

Heritability is a concept that summarizes the proportion of phenotypic variance that is due to

genetic factors, with broad-sense heritability referring to genetic variation that may include

effects due to additive genetic variation as well as dominance and epistasis, and narrow-sense

heritability, h2, referring to additive genetic variation only [1]. Breakthroughs in high through-

put technologies have enables researchers to conduct large-scale genome-wide associate stud-

ies for many complex diseases. A question of key interest is to estimate the (narrow-sense)

heritability from the genome-wide genotyped data and have an overall assessment of the extent

of genetic components associated with complex traits, providing guidance for future discover-

ies of genetic loci.

Random-effects models were used for heritability esitmation by animal breeders decades

ago, and have recently been introduced into human genetics by Yang et al. [2] to estimate heri-

tability based on genome-wide association studies (GWASs) of apparently unrelated individu-

als. This approach, known as genomic restricted maximum likelihood (GREML), is applied by

the Genome-wide Complex Trait Analysis (GCTA) software [3]. Since additional fixed effects

(e.g. sex) can also be included in the model, it is often referred to as a mixed-effects model

approach. The key advantage of their approach is that they allow estimation of the overall heri-

tability of traits without explicitly identifying causal loci. In this approach [2], each subject’s

trait is controlled by genetic random effects that are correlated across subjects by virtue of

sharing some of the genetic variants affecting the trait, and by an environmental random effect

that is uncorrelated among subjects. Since the identity of the causal SNPs is unknown, apply-

ing the standard maximum likelihood method for estimating the model parameters is impossi-

ble. Instead, Yang et al. [2] heuristically approximated the genetic correlation between each

pair of subjects across the causal SNPs by the observed correlation matrix of all genotyped

SNPs. To account for linkage disequilibrium (LD) between genotyped SNPs and causal SNPs

they heuristically corrected the observed correlation matrix using simulations.

Zaitlen et al. [4] extended the random-effects approach of Yang et al. [2] and provided an

identical-by-descent-based heritability estimator with closely and distantly related pairs of

individuals. Golan and Rosset [5] and Speed et al. [6] indicated that the efficiency of Yang

et al.’s [2] method seriously deteriorates as the proportion of causal SNPs decreases. It was

shown [5] that since most of the genotyped SNPs are not causative, the very large number of

SNPs used for estimating the genetic correlations masks the correlation on the set of causal

SNPs, which can lead to inefficient heritability estimation. Instead, Golan and Rosset [5] pro-

posed treating the identity of causal SNPs as missing data, and obtained the maximum likeli-

hood estimator based on the computationally-intensive Markov Chain Monte Carlo method.

However, this approach is not tractable computationally for situations consisting of *300K or

more genotyped SNPs, as considered here. Moser et al. [7] also extended Yang et al.’s approach

and used a Baysian mixture model of four normal distributions of the SNPs’ random effects

instead of just one distribution.

Speed et al. [6] raised another concern in which uneven LD between SNPs can generate a

large bias in the heritability estimator based on the mixed effects model approach. Causal vari-

ants tend to be overestimated in regions of strong LD and underestimated in regions of low

LD. In practice, if some of the causal variants are being tagged by multiple genotyped SNPs

more than others, it distorts their contributions to the heritability estimator. Hence, they pro-

posed to overcome the problem by replacing the observed correlation matrix by a weighted

matrix consisting of scaling SNP genotypes according to local LD patterns. The weights are

identified using a linear programming procedure. This approach can be applied by the LDAK

software.
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All the available methods for heritability estimation based on GWAS data of unrelated

individuals use continuous or dichotomous outcomes. A cohort dataset of a certain disease

usually consists of age-at-onset (or age at diagnosis) for diseased individuals, and current

age or age at death for disease-free individuals, known as survival outcome. The highly cited

paper [8] studied heritability of prostate cancer and reported heritability estimates of 0.42

(95% confidence limits 0.29–0.50) based on combined cohorts of 44,788 twin pairs from the

Nordic twin registries, suggesting a considerable genetic contribution to the development of

prostate cancer. This estimate is based on a polygenic liability-threshold model, quantified

the heritability on the liability scale, while ignoring the observed ages at onset and instead,

classifying subjects as cancer or cancer free (dichotomous outcome). Cancer-free individuals

include subjects who died without cancer, and those who were still alive but had not had

cancer by the end of the follow-up period. Since about 70% of the individuals were still

alive and cancer-free at the end of follow-up (known as right-censored observations), and

were treated as cancer free for the rest of their life, the heritability estimates of the targeted

population in this study could be severely biased. Indeed, Scheicke et al. [9] showed that her-

itability estimator based on a liability-threshold model of cohort twins data, yields a biased

estimator, where the bias may go in either directions, and strongly depends on the censoring

rate in a non-linear manner. Holst et al. [10] estimated prostate cancer heritability based on

15,509 male twins of Danish cohort twins, and showed that the liability-based heritability

estimate which wrongly ignores right-censoring equals 0.73 (0.64–0.81), while using sur-

vival-analysis methods that correctly considered censored observations yields heritability

estimate of 0.63 (0.49–0.77).

In this work, we provide a new heritability estimation approach using ultra-high dimen-

sional machine-learning methods. The approach can be applied to not only continuous or

dichotomous types of outcome, but also to time-to-event outcome, where right censoring is

properly accommodated. We show through extensive simulation study that our proposed

estimators have little bias for all outcomes, continuous, dichotomous and time-to-event. For

continuous and dichotomous outcomes, we show that our proposed estimators are more

efficient than that of GCTA and LDAK; and when causal SNPs are not tagged well, GCTA

and LDAK yield under-estimated heritability, while the proposed heritability estimator has

only a very small empirical bias. In practice, an estimator of a parameter is constructed as a

function of the sample of size N. An important question is what the limit of a sequence of

estimates (indexed by N) would be as the sample size N increased to infinity; a desirable

property of an estimator is that this sequence of estimates converges to the true parameter

value. Such an estimator is called a consistent estimator. We show that our heritability esti-

mators are consistent.

Applying GCTA, LDAK and HERRA in case-control colorectal cancer data using

binary outcome (4,312 cases and 4,356 controls genotyped using Illumina 300K), the respec-

tive heritability estimates of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072

(SE = 0.021) and 0.110 (SE = 5.19 x 10−3). HERRA yields over a 50% increase in heritability

estimate compared to GCTA or LDAK with substantially smaller standard error, and is

closer to the heritability estimates obtained from twins and family data, which range from

0.12 to 0.35 [11]. This is probably due to the fact that GWAS SNPs are tagging SNPs and

based on our simulation results presented in this paper, the GCTA or LDAK estimates are

biased downward, whereas our proposed estimates generally have a very small empirical

bias. A simple R code for HERRA used for analyzing the GECCO data is provided at http://

www.tau.ac.il/*gorfinem/, and a friendly R package for applying HERRA will be released

soon.
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Results

Case-control colorectal cancer data

We applied the proposed method, HERRA, and the GCTA [3] to a large genome-wide associa-

tion consortium, Genetics and Epidemiology of Colorectal Cancer Consoritum (GECCO)

(Peters et al. 2012). Colorectal cancer (CRC) is one of the most commonly diagnosed cancers,

and it remains the second leading cause of cancer death. It has a sizable genetic component

and well-established lifestyle and environmental risk factors. In this consoritum, various geno-

typing platforms (Illumina 300K, Illumina 550K, combined Illumina 300K&240K, Illumina

610K, or Illumina 730K chips) have been used over time. For this illustration we focused on

the largest subset of samples that were genotyped using the common platform, Illumina 300K.

Briefly, samples were excluded based on call rate, heterozygosity, unexpected duplicates, sex

discrepancy, and unexpectedly high identity-by-descent or unexpected genotype concordance

(> 65%) with another individual. All analyses were restricted to samples clustering with the

Utah residents with Northern and Western European ancestry in HapMap II based on princi-

pal component analysis. SNPs were excluded if they were triallelic, not assigned an rs number,

or were reported or observed as not performing consistently across platforms. Additionally,

genotyped SNPs were excluded based on call rate (< 98%) and lack of Hardy Weinberg Equi-

librium in controls (HWE, p< 1 × 10−4). In summary, there were a total of 4,312 cases and

4,356 controls, and 248,977 SNPs with minor allele frequency (MAF) > 0.01. Cases and con-

trols were frequency-matched by age and sex. The mean age at onset was approximately 65

years old and there were slightly fewer women than men except for the WHI study where all

were women (Table 1). The details of the studies are provided in S4 and S5 Text.

HERRA estimator consists of four main steps, described in details in Methods, which forms

the basis of our methodology. We first conducted iteratively thresholded ridge regression

screener [12] (ITRRS) using a linear model to the CRC data, to reduce the dimensionality of

the SNPs below the sample size N = 8,668, but still keeping the number of SNPs at this step to

be of a relatively large scale. In this step, we performed the iteratively thresholded ridge regres-

sion for 6 iterations, keeping the top 50% SNPs after each iteration, based on the absolute

value of the regression estimates. The ITRRS was performed for each choromosome separately

and the selected SNPs were combined. This completes Step 1 of our procedure. Since we

started with 248,977 SNPs, we assume sparsity such that the median of the ridge-regression

coefficients within each chromosome equals zero. Therefore, no asymptotic bias is introduced

by this dimensionality reduction step [13].

Using the selected SNPs by Step 1, we applied Step 2: the sample was randomly split into

two equals subsets, and we applied lasso (with 10-fold cross validation and the minimum

mean cross-validated error) for the first subset using a linear model with the SNPs of Step 1,

Table 1. Studies within GECCO used for heritability estimation.

Study Case Control Female Age (yrs)

N = 4312 N = 4356 No. % Mean Range

Colo2&3 87 125 95 44.8 65.2 38–86

DACHS1 1710 1708 1395 40.8 68.6 33–98

DALS2 410 464 414 47.4 65.4 30–79

MEC 328 346 313 46.4 63.0 45–76

PLCO2 486 415 383 42.5 63.6 55–75

VITAL 285 288 273 47.6 66.5 50–76

WHI2 1006 1010 2016 100 65.8 50–79

https://doi.org/10.1371/journal.pone.0181269.t001
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yielded a parsimonious model with a small set of selected SNPs. By the ordinary least-squares

method to the second subset, using only the selected SNPs, we obtained unbiased estimates of

the regression coefficients and the variance of the error term, s2
�
. In Step 3 we repeated Step

2 while switching the role of the first and second subset. The final estimate of s2
�
, bs2

�
, was

obtained by the mean of the above two estimates obtained in Steps 2 and 3 which completes

Step 4. Finally, HERRA estimate of the narrow-sense observed-scale heritability, as shown in

Methods section yielded bh2
o ¼ 1 � bs2

�
=bs2

D ¼ 0:244, where bs2
D is an empirical estimator of

the total variance of the binary outcome—the presence or absence of CRC. By the Robertson

transformation [14] (see Methods), and the ascertainment correction of [15], which is appro-

priate under low heritability values [16], the narrow-sense heritability in liability scale was

bh2
l ¼

bh2
oK2ð1 � K2Þ=fPð1 � PÞz2g ¼ 0:110, where P is the disease-prevalence in the study.

To obtain the variability of the heritability estimates, the weighted bootstrap with 100

weighted datasets was applied (see S3 Text for details). Using 10-fold cross validation, we

obtained the average of the complexity parameter values which provided the most regularized

model such that the error was within one standard error of the minimum, over 100 weighted

datasets. This average was expected to be higher than the complexity parameter of the original

data due to the added noise contributed by the weights. We then generated another 100

weighted datasets to obtain the standard error (SE) of the heritability estimates while fixing the

complexity parameter value.

In summary, HERRA’s heritability estimate on the observed scale was 0.244

(SE = 1.15 × 10−2) and the heritability estimate on the liability scale, assuming the preva-

lence of CRC equals 0.004, was 0.110 (SE = 5.19 × 10−3). In comparison, the GCTA estimate

was 0.068 (SE = 0.017) and LDAK estimate was 0.072 (SE = 0.021) [11]. Our proposed esti-

mate was greater than the GCTA and LDAK estimates with smaller standard error, and was

closer to heritability estimates from twins and family data, which range from 0.12 to 0.35

[11]. This is probably due to the fact that GWAS SNPs are tagging SNPs and based on our

simulation results, the GCTA estimates are biased downward, whereas our proposed esti-

mates generally have a very small empirical bias.

We also evaluated the sensitivity of the choices of the number of iterations and shrinkage

parameter values in the screening step on HERRA’s heritability estimation. We varied the

ridge shrinkage parameter value from 0.006 to 0.0104, and also iterated the screening for 5

times instead of 6 times within each chromosome. Evidently, the liability-scale heritability esti-

mates were reasonably consistent over a large range of penalty values, as were the iterations

(Table 2) except maybe to the case of 5 iterations with shrinkage value of 0.01.

Haseman-Elston regression, a popular approach that has recently re-emerged to correct the

well-known bias from applying GCTA to ascertained data, is a special case of the Phenotype

Correlation—Genotype Correlation (PCGC) of Golan et al. [16]. However, as evident by Fig

2-A and Table 1 of [16], under small values of h2 (as in our real-data analysis), GREML of

GCTA and PCGC are very similar.

Table 2. Heritability estimates in GECCO data: Sensitivity analysis.

Shrinkage 5 Iterations 6 Iterations

Observed Liability Observed Liability

0.0060 0.201 0.091 0.207 0.094

0.0080 0.256 0.116 0.236 0.107

0.0100 0.265 0.120 0.244 0.110

0.0102 0.221 0.100 0.218 0.099

0.0104 0.253 0.114 0.257 0.116

https://doi.org/10.1371/journal.pone.0181269.t002
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Simulation studies

The following simulation results demonstrate the performance of HERRA and compare it

with GCTA and LDAK under various scenarios which include different number of chromo-

somes and heritability levels. The simulated datasets of one chromosome are based on a phased

chromosome 22 of a GWAS study from a colorectal cancer consortium (see the Results section

for the details of the consortium), which included 6006 subjects and 9,344 SNPs. Haplotypes

were randomly paired to generate the desired sample size N. It is assumed that the true models

consist of p = 100 or 250 randomly chosen causal variants, A setting with p = 60 causal variants

will be discussed later in the “Additional practical settings” section. The estimation was per-

formed based on M = 9,344, or 35,760 observed SNPs when one and five chromosomes were

considered, respectively. To simulate data of five chromosomes, we randomly sampled, with

replacement, 12,012 haplotypes five times and a total of p causal SNPs were randomly selected

from a total of 46,720 SNPs. After excluding their corresponding SNPs and their five neighbor-

ing SNPs from each side, in the other four chromosomes, the data consisted of 35,760 SNPs.

By randomly pairing haplotypes, we generated N observations. Since repeatedly running

HERRA and GCTA with 35,760 SNPs is time consuming, only limited scenarios are presented

for the setting of five chromosomes. Two levels of heritability were considered, h2 = 0.1 or 0.6,

and s2
e ¼ 1 so the total variance explained by the additive genetic effect s2

g ¼ 0:111 or 1.5,

respectively. The effects of the standardized causal SNPs, u1, . . ., up, were randomly generated

from normal distribution with mean 0 and variance s2
g=p such that s2

g ¼
Pp

j¼1
u2

j . The results

are based on 100 random samples for each configuration. S6 Text presents the effect sizes used

in the simulation with p = 100 causal SNPs and h2 = 0.1, demonstrating that the simulation set-

tings consist of many small effect sizes.

Continuous outcome. Starting with a continuous trait and Model (1) in Methods, we

considered the case in which the true model consists of p = 100 or 250. With one chromosome

of M = 9,344 SNPs, the sure independent screening [12] (SIS) as a marginal-type screener

method was applied in Step 1 (see Methods). Such correlation learning screens those SNPs

that have weak marginal correlations with Y. Specifically, we ranked the SNPs according to the

magnitude of their sample marginal correlations with the response variable and the top 30%

SNPs were kept. Our numerical experience shows that the estimator of s2
e is fairly robust to the

number of SNPs excluded in Step 1 as long as the sparsity assumption holds. In Steps 2 and 3

(see Methods) only the selected SNPs of Step 1 were used, and lasso regression models were

applied with 10-fold cross validation and fixed regularization parameter, chosen based on the

average of the first ten samples for saving computational time. Finally, in Step 4 (see Methods)

bs2
e was calculated.

Fig 1 and S1 Table compare the simulation results of the proposed approach (HERRA),

GCTA and LDAK. In the plots of the left column, colored bars present the mean of estimated

heritability, and vertical black lines are mean ± two standard errors. The plots of the right col-

umn present the relative efficiency (RE) and the mean squared error (MSE) of the estimators.

For HERRA or LDAK, RE is defined as the ratio of the variance of GCTA’s estimator to the

respective variance of HERRA or LDAK estimators. RE greater (less) than 1 indicates that

HERRA or LDAK estimators are more (less) efficient compared to GCTA; i.e., it requires fewer

(more) samples than GCTA to achieve a given performance. MSE is defined as the squared bias

plus the variance, and minimizing the MSE is a well-known desirable key criterion. Fig 1 sug-

gests that the three methods perform well in terms of bias, while HERRA usually has smaller

standard errors and smaller MSEs in estimating h2, and thus we conclude that HERRA is often

more efficient than GCTA or LDAK. S1 Table indicates that HERRA usually has smaller stan-

dard errors in estimating s2
�
. In S1 Text we showed that HERRA is a consistent estimator.

Heritability Estimation using a Regularized Regression Approach (HERRA)
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Dichotomous outcome. The simulated datasets for a dichotomous trait and Model (2) in

Methods were generated in a similar fashion. In particular, a continuous outcome Y was first

generated as described above, and D was set to 1 if Y> 0 and 0 otherwise, thus K = 0.5. Fig 2

and S2 Table summarize the results of a dichotomous outcome with K = 0.5. Similar results

were found with other values of K, so those results are not shown. Evidently, also for a dichoto-

mous outcome, the three methods perform well in terms of bias, while HERRA usually has

smaller standard errors and MSEs in estimating s2
�
, h2

o and h2
l , and thus we again conclude that

HERRA is often more efficient than GCTA or LDAK. In S2 Text we showed that HERRA is a

consistent estimator.

Additional practical settings. Following Yang et al. [3], two additional practically rele-

vant settings were studied: (I) all the causal SNPs have a MAF (denoted by θ) less than or equal

0.05 or 0.1; (II) all the causal SNPs are excluded from the estimation procedure, demonstrating

the performance of the estimators when the causal variants are not genotyed. Fig 3 and S3

Table summarize the results of the continuous outcome with p = 60, h2 = 0.1 and N = 5000.

p = 60 was chosen due to small number of SNPs with MAF� 0.05. Similar results were

observed for h2 = 0.6 and for the binary outcome setting, and thus those results are not shown.

Evidently, the superiority of HERRA is most prominent in Scenario II in which all the causal

SNPs were not included in the estimation procedure. In this case, GCTA and LDAK tend to

underestimate the true heritability while HERRA shows very small empirical bias. All the

three methods, GCTA, LDAK and HERRA exploit the high association between the causal

SNPs and their neighboring SNPs, but this is done more successfully by HERRA, due to the

Fig 1. Simulation results of continuous trait and one chromosome: left-top figure is of h2 = 0.1, left-bottom figure is of h2 = 0.6;

in the left figures colored bar represents the mean of estimated heritability, and vertical black bars are mean ± two standard

errors; right figures present the relative efficiency (RE), and mean-squared error (MSE) × 104. For HERRA and LDAK, RE is

defined as the ratio of the variance of GCTA’s estimator to the respective variance of HERRA and LDAK estimators.

https://doi.org/10.1371/journal.pone.0181269.g001
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screening and variable selection of Steps 1–3 (see Methods). In contrast, GCTA and LDAK

estimate similarities but the fact that causal variants are not in the genotyped data makes the

estimation of similarities more difficult.

Next, we compared HERRA, GCTA and LDAK when the data consisted of five chromo-

somes. In Step 1 of HERRA’s algorithm, the ITRRS was applied separately for each chromo-

some, with 5 iterations. In each iteration, the top 50% of the SNPs were selected based on the

absolute value of the estimated regression coefficient. Finally, all the selected SNPs of the five

chromosomes were combined. The rest of the estimation procedure follows the same steps

as in the real data analysis and other simulation settings. Fig 4 and the top of S4 Table summa-

rize the results of the continuous and binary settings where all of the p = 250 causal SNPs were

genotyped. Fig 5 and the bottom of S4 Table summarize the results of Scenario II, of the con-

tinuous trait, in which all the causal SNPs had a MAF less than θ, and were excluded at the

estimation stage. Again, as long as the causal SNPs are genotyped, the three methods provide

heritability estimators with no evidence for empirical bias while HERRA is more efficient.

However, under Scenario II, GCTA and LDAK tend to underestimate the heritabilty whereas

HERRA still shows very small empirical bias.

The reported simulation results of HERRA are based on selecting the top 50% of the SNPs

with largest absolute values of estimated ridge-regression coefficients. Although a smaller sub-

set can be selected (e.g., top 20%) with fewer rounds of ridge regression analyses, we recom-

mend on a moderate cutoff and multiple rounds of ridge regression analysis. This is because

the presence of a very large number of non-causal SNPs in the model can cause high variability

Fig 2. Simulation results of dichotomous trait and one chromosome: left-top figure is of h2 = 0.1, left-bottom figure is of h2 =

0.6; in the left figures colored bar represents the mean of estimated heritability, and vertical black bars are mean ± two

standard errors; right figures present the relative efficiency (RE), and mean-squared error (MSE) × 104. For HERRA and

LDAK, RE is defined as the ratio of the variance of GCTA’s estimator to the respective variance of HERRA and LDAK

estimators.

https://doi.org/10.1371/journal.pone.0181269.g002
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in the regression coefficient estimates, a graduate dimension-reduction process is preferable.

A small-scale sensitivity analysis with various cutoff values, top 40%, 50%, and 60%, five chro-

mosomes, five iterated ridge analyses, h2 = 0.1, and continuous outcome, yields, bh2 ¼ 0:0965

(SE = 9.57 × 10−2), bh2 ¼ 0:0991 (SE = 8.56 × 10−2) and bh2 ¼ 0:0956 (SE = 8.08 × 10−2), respec-

tively. These estimates are similar, suggesting the estimation is relatively robust against the

choice of the percentage of top SNPs being selected.

Age-at-onset outcome. Lastly, we studied age-at-onset with right-censored data using the

log-normal accelerated failure time (AFT) Model (3) in Methods. Table 3 presents the results

of 100 causal SNPs that were randomly selected from five chromosomes. The censoring times

were assumed to be zero-mean normally distributed with standard deviation equals 2, yielded

50% censoring rate. Here we considered sample sizes of N = 10,000, 15,000 and 20,000, since

the presence of censoring requires large sample size. In terms of estimation technique, the

main difference between continuous or binary outcomes and age-at-onset with possibly right-

censored outcome, is that the heritability estimator for age-at-onset consists of additional

weights that are estimated by the data (for details see the Methods). Thus, based on a 10-fold

cross validation, the regularization parameter of lasso was chosen to be the one which gives the

most regularized model such that error is within one standard error of the minimum. This

modification is required due to the added noise contributed by the estimated weights. Since no

available heritability estimator can handle right-censored data, Table 3 summarized only the

Fig 3. Simulation results of continuous trait, one chromosome, N = 5000, p = 60, h2 = 0.1, s2
e ¼ 1, s2

Y ¼ 1:111, s2
g ¼ 0:111, all

causal SNPs had a MAF� θ: left-top figure presents the results in which all causal SNPs are included in the analysis; in left-

bottom figure all the causal SNPs were excluded from the estimating procedure; in the left figures colored bar represents the

mean of estimated heritability, and vertical black bars are mean ± two standard errors; right figures present the relative

efficiency (RE), and mean-squared error (MSE) × 104. For HERRA and LDAK, RE is defined as the ratio of the variance of

GCTA’s estimator to the respective variance of HERRA and LDAK estimators.

https://doi.org/10.1371/journal.pone.0181269.g003
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Fig 4. Simulation results of five chromosomes, M = 35,760, N = 10,000, p = 250: left-top figure is of h2 = 0.1,

left-bottom figure is of h2 = 0.6; in the left figures colored bar represents the mean of estimated heritability, and

vertical black bars are mean ± two standard errors; right figures present the relative efficiency (RE), and

mean-squared error (MSE) × 104. For HERRA and LDAK, RE is defined as the ratio of the variance of GCTA’s

estimator to the respective variance of HERRA and LDAK estimators.

https://doi.org/10.1371/journal.pone.0181269.g004

Fig 5. Simulation results of five chromosomes, continuous trait, h2 = 0.1, M = 35,760, N = 10,000, p = 250, all

causal SNPs had a MAF� θ: lef-top figure shows means of estimated hertiability that are represented by

colored bars, mean ± two standard errors are the vertical black bars; right-top figure presents relative

efficiency (RE); left-bottom figure presents the mean-squared error (MSE) × 104. For HERRA and LDAK, RE

is defined as the ratio of the variance of GCTA’s estimator to the variance of HERRA’s and LDAK’s estimator,

respectively.

https://doi.org/10.1371/journal.pone.0181269.g005
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results of HERRA. Evidently, the proposed estimator performs very well in terms of bias. The

small empirical bias of HERRA’s estimate observed in the simulation, is along the line of the

theoretical results indicate that our proposed estimator is consistent.

Discussion

We provided simple, efficient, and consistent estimators (see Supporting Information for con-

sistency proofs) of the narrow-sense heritability based on GWAS data, for a continuous, cate-

gorical or age-at-onset outcome where covariates can be readily incorporated. We showed, by

simulation, that HERRA provides essentially unbiased results even if the causal SNPs are not

genotyped, in contrast to GCTA’s and LDAK’s estimator. For age-at-onset outcome, we are

the first to provide a narrow-sense heritability estimator based on GWAS data of unrelated

individuals. The analysis of the case-control GECCO data demonstrates that the heritability

estimates of GCTA, LDAK and HERRA could be substantially different.

The current methods in the literature assume that the effect sizes of causal SNPs are inde-

pendent and identically distributed random variables, and often conveniently the normal dis-

tribution is adopted. The working-random-effects assumption is used for simplifying the

estimation procedure: instead of estimating the individual causal effect sizes, one needs to esti-

mate only the variance of causal effect sizes. Thus estimation of thousands of parameters is

replaced by estimating only one parameter. However, in order to do this, a kinship correlation

matrix based on whole genome-wide variants is calculated. While corrections have been made

to account for including vastly null markers in this calculation, as shown in our simulation

and others’ works [5], in some situations the heritability can be underestimated. In contrast,

HERRA assumes a fixed effect model and uses modern machine learning algorithms that have

been developed in recent years to explicitly select the variants associated with the phenotype.

Instead of estimating individual SNP effects that can be highly variable, we propose to estimate

the total sum of squared regression effects, which is shown to provide a more robust and effi-

cient estimator of the heritability comparing to existing random-effects approaches. Further-

more, it also naturally incorporates both known and unknown causal loci. For example,

should the known causal loci be treated as fixed or random effects? Treating known loci as

fixed effects but other SNPs’ effects as random effects doesn’t seem reasonable as those

unknown causal loci may be discovered in the near future. On the other hand, treating all

causal SNPs, known or unknown, as random, might wrongly weaken the effect of the known

causal ones, as the kinship correlation matrix is constructed based on the known causal SNPs

and also SNPs with very weak effect sizes (if any). In contrast, the fixed-effect approach as in

Table 3. Simulation results of HERRA’s estimator for age-at-onset cohort data, five chromosomes, M = 35,760, p = 100, 50% censoring rate: Empiri-

cal mean and SD × 102.

h2
s2
e s2

Yo

N mean SD × 102 mean SD × 102 mean SD × 102

true values: h2 = 0.1; s2
e ¼ 1:0; s2

Yo ¼ 1:111

10000 0.086 6.602 1.009 7.353 1.105 2.467

15000 0.102 4.502 0.994 5.387 1.106 1.868

20000 0.108 4.094 0.987 4.889 1.107 1.843

true values: h2 = 0.6; s2
e ¼ 1:0; s2

Yo ¼ 2:5

10000 0.569 3.676 1.055 8.253 2.453 7.206

15000 0.576 2.414 1.039 5.379 2.454 6.312

20000 0.575 1.866 1.045 4.401 2.461 5.395

https://doi.org/10.1371/journal.pone.0181269.t003
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our paper, is more appropriate. Known causal loci can naturally be included in the model as

fixed effects and will not be included in the SNP selection procedure (e.g., ridge and lasso).

HERRA uses dimension reduction methods to deal with the large number of SNPs. With

dimensionality reduction from large or huge scale (i.e. exp(O(Nc)), for some c> 0) to a rela-

tively large scale (i.e. o(N)), an accurate estimator is obtained by using well-developed lower

dimensional methods. With a relatively small number of SNPs (e.g. 10,000) we showed that

SIS provides a useful screener procedure. However, for a larger number of SNPs (e.g. 35,000 as

in the simulations or 250,000 as in the GECCO data) we would recommend the ITRRS as a

screener. For example, under a binary outcome, h2
l ¼ 0:1, M� 40,000 and p = 250, the esti-

mated narrow-sense heritability on liability scale by HERRA with ITRRS and SIS are 0.095

(SE = 0.12 × 102) and 0.224 (SE = 1.26 × 102), respectively. Well-known challenges with high

dimensionality are that causal SNPs can be highly correlated with non-causal SNPs and the

number of spurious correlations grows with dimensionality. Hence, with such a high number

of SNPs, the top SNPs selected by SIS are overloaded with spurious correlated SNPs because

SIS, as a marginal association screener, does not account for the correlation among the SNPs.

Screening or variable selection in high- or ultra-high-dimensional methods is very complex.

Each method, such as SIS, ITRRS and lasso, is associated with tuning parameter(s) that need to

be determined or estimated. The tuning parameters control the amount of regularization and

therefore their values may affect the final results. Specifically, SIS requires the determination of

a threshold value so that d> 0 top ranked covariates are selected. In ITRRS, the number of

iterations should be determined, and within each iteration the regularization parameter of the

ridge regression model should be chosen. Lasso also requires estimation of the regularization

parameter. Estimation of the optimal value of the regularization parameter is often done by

one of the following methods: Akaike information criterion (AIC), the Bayes Information cri-

terion (BIC), and cross validation. Each of these methods has its own pros and cons, and not

one of them is considered the best approach in general. Moreover, what might be considered

as a good choice of tuning parameter depends on whether the goal is prediction accuracy

(closer to our interest) or recovering the true model for interpretation purposes (not in our

current interest). Based on our extensive numerical experience, choosing between AIC, BIC,

and cross validation seems to be obvious as often only one of them keeps a reasonable number

of SNPs (for example, AIC keeps hundreds of SNPs while BIC and cross validation keep less

than 100). For many complex diseases that have a genetic component, we often have some

sense of the ball park number of causal SNPs involved in the disease etiology [17]. Therefore,

our practical recommendation is to use threshold values that well accommodate the sparsity

assumption. For example, in the GECCO application, we started with 248,977 SNPs, so given

the sparsity assumption, the median of the ridge-regression coefficients within each chromo-

some equals zero. Therefore, no bias is introduced by the dimensionality reduction step. In

general, we strongly recommend on performing a sensitivity analysis, as presented in the

GECCO data analysis.

Obviously, in practice, by using variable selection techniques such as SIS, ITRRS and lasso,

not all the causal SNPs are retained in the selected and instead well-tagging neighboring SNPs

are being selected. However, since our aim of the variable selection step is estimating the envi-

ronmental-effect variance, s2
e , and not identifying the causal SNPs, this selection step is not

introducing asymptotic bias, as showed by [13] and verified in our simulation study. There-

fore, HERRA’s heritability estimators converges to the true parameters’ values.

Applying HERRA in age-at-onset outcome requires large sample size due to censoring. For

estimating s2
Yo consistently, it is assumed that the support of the failure time, Yo, will be cov-

ered by the support of the censoring time, C. The IPCW-type estimator is consistent if the
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weight is correctly specified. In case the censoring distribution depends on some covariates, a

model (e.g. Cox, AFT) that accommodates this dependency must be correctly specified in the

weight estimation stage. However, our heritability estimator of age-at-onset data can be easily

applied using the regularized rank-based estimation procedure with Lasso-type penalty [18]

and avoid estimating the censored survival function.

Although genome-wide association studies (GWASs) have resulted in the discovery of

thousands of variants associated with common diseases and traits, these variants explain only

a small portion of the heritability [19]. This has been called the missing heritability problem

[20]. For instance, the heritability of human height is about 80% [1, 21] but the *700 pub-

lished SNPs identified from GWAS as associated with height explain only about 20% of the

total variance of height [22]; and based on all genotyped SNPs, narrow-sense heritability was

estimated to be 45% [2, 6]. Various hypotheses have been proposed for explaining the missing

heritability: the existence of many presently unidentified common variants with small effect

sizes; some of the causal loci not being in perfect linkage disequilibrium (LD) with the underly-

ing functional SNPs; rare variants not captured by current genotyping platforms; missing epi-

static interaction in the model; missing gene-environment interaction in the model; parent-

of-origin effect; or inflated heritability estimates based on blood related individuals such as

monozygotic and dizygotic twins [4, 23–30]. In this paper we presented a useful methodology

for heritability estimation that can be directly extended to include epistatic and gene-environ-

ment interactions, as will be presented in future communications.

Methods

Continuous outcome

Let Yi be the continuous phenotype of subject i such that

Yi ¼ mþ
Xp

j¼1

Xijuj þ ei ¼ mþ XT
i uþ ei i ¼ 1; . . . ;N ð1Þ

where XT
i ¼ ðXi1; . . . ;XipÞ is the vector of genotypes of subject i, p is the total number of latent

trait-associated variants, Xij is the standardized genotype of individual i at the jth diallelic

causal variant given an additive coding of genotypes. Therefore, E(Xij) = 0, var(Xij) = 1,

j = 1. . ., p, E and var denote expectation and variance, respectively. Also, uT = (u1, � � �, up), uj is

the j-th variant regression coefficient, ei, i = 1,. . ., N, are independent environmental random

effects assumed to follow a normal distribution with mean 0 and variance s2
e . μ, s2

e and u are

unknown parameters. A common working independence assumption among Xij, for all i and j
[31], yields that the total variance explained by the additive genetic effect equals s2

g ¼
Pp

j¼1
u2

j .

Our main concern is estimating

h2 ¼ s2

g=ðs
2

g þ s2

eÞ;

the proportion of the total variance explained by the additive genetic effect. The most popular

estimators of h2 are based on plugging in a type of GREML estimator of ðs2
g ; s

2
eÞ [2–6]. Specifi-

cally, the GCTA software [3] estimates heritability by treating u1, . . ., up as zero-mean indepen-

dent normally distributed random variables with variance s2
g=p, and estimates s2

g directly (not

through
Pp

j¼1
u2

j ). Additionally, the GREML-type estimators use several crucial calibrating

steps. Since the p trait-associated variants are unknown, GCTA uses all the M� p observed

SNPs from dense GWAS data for estimating the similarities between individuals. However,

the heritability estimator may become unstable if the proportion of causal variants is low due
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to the large number of non-causal variants that mask the true similarities [5, 6]. This concern

motivates us to consider an alternative approach: First, we select variants by using modern reg-

ularized regression techniques, and then estimate heritability using the selected variants, as

elaborated in the following section.

The phenotypic variance equals s2
Y ¼ s2

g þ s2
e . However, estimating heritability based on

estimating ðs2
g ; s

2
eÞ, as in GCTA, is not the same as estimating heritability based on estimating

ðs2
Y ; s

2
eÞ, since the identity of the p causal SNPs is unknown which requires estimating the

variance components based on a working model instead of the correct Model 1. Our novel

approach is to estimate heritability by estimating ðs2
Y ; s

2
eÞ and then to use the identity

h2 ¼ 1 � s2
e=s2

Y :

The reason for estimating s2
Y instead of s2

g is that in finite sample sizes, the large number of var-

iants and the LD among variants can cause unreliable estimates of the regression coefficients

{uj} and hence of s2
g ¼

Pp
j¼1

u2
j . In contrast, s2

Y can be simply and reliably estimated by the

usual unbiased empirical variance estimator bs2
Y ¼

PN
i¼1
ðYi �

�Y Þ2=ðN � 1Þ, �Y ¼
PN

i¼1
Yi=N.

A stable consistent estimator of s2
e based on M observed SNPs from GWAS data is a refitted

cross-validation variance estimator in the spirit of Fan et al. [13] that can handle high or ultra-

high dimensions. In particular, we propose the following algorithm:

Step 1 Apply a joint-type screening method such as the iteratively thresholded ridge regres-

sion screener [12] (ITRRS) or a marginal-type sure independent screening [12] (SIS)

and reduce the ultra-high dimensionality to a relatively large scale but below the sam-

ple size N. This step is to filter out SNPs that are unlikely to be associated with the

trait.

Step 2 Use only those SNPs that are selected in the screening stage of Step 1, and randomly

split the sample into two equals subsets. Then, apply a high-dimensional variable

selection method, such as lasso, to the first subset, yielding a parsimonious model

with a small set of selected SNPs. Apply the ordinary least-squares method to the sec-

ond subset using only the selected SNPs to obtain unbiased estimates of the regression

coefficients and s2
e .

Step 3 Repeat Step 2 while switching the role of the first and second subsets.

Step 4 The final estimator of s2
e is defined as the mean of the above two estimators obtained

in Steps 2 and 3, denoted by bs2
e .

Finally, our simple consistent heritability estimator is defined as

bh2 ¼ 1 � bs2
e=bs

2
Y :

Based on our extensive simulation study, we conclude that a marginal-type screening tech-

nique such as SIS could provide good results in terms of bias, as long as the number of SNPs

involved is not large, e.g., 10,000. For higher numbers of SNPs, a joint-type screener, such as

the ITRRS, should be used so that the LD between the SNPs is considered and the truly associ-

ated SNPs can be better selected.

Our procedure can be modified to estimate heritability to account for known factors such

as smoking and dietary variables, as is often of interest in practice, to account for the con-

founding effect and reduce the error variance so that the additive genetic effects in the herita-

bility can be more accurately estimated. Specifically, the known risk factors W are included in

the model and will not be subject to variable selection, either in Step 1, or in Step 2. Then the
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heritability estimator accounting for risk factors W is defined by 1 � fbs2
e þ

bβT cvarðWÞbβg=bs2
Y ,

where bβ is the regression coefficient estimator of W.

Since the lasso possesses the oracle property, it can be shown (details in S1 and S2 Text)

that, as the sample size increases, bh2 converges to the true heritability value, i.e., bh2 is a consis-

tent estimator. In addition, the asymptotic variance of
ffiffiffiffi
N
p

bh2 equals 4h2(1 − h2)2. Although the

oracle property of the lasso estimators allows one to carry out statistical inference on the non-

zero regression parameters and h2, following variable selection, the accuracy of the resulting

inference remains unknown [32]. Alternatively, we proposed a weighted bootstrap variance

estimator, and based on the oracle property of bs2
e , Step 1 of the estimation procedure need not

be included in the bootstrap procedure (see S3 Text for details).

Categorical outcome

The heritability of all-or-none (0/1) traits, such as disease status, can be defined, as for the con-

tinuous outcome, as the proportion of variation that is due to additive genetic factors. How-

ever, variances and heritabilty calculated on an observed scale, for example, 0 or 1, are

functions of the prevalence of the trait in the population [33, 34]. Wright [35] suggested that

all-or-none traits can be represented by an underlying normally-distributed liability trait.

Namely, as described by Falconer [36], we assume there is in fact an underlying gradation of

some attribute immediately related to the causation of the disease. If we could measure this

attribute, it would give us a graded scale of the degree of affectedness or of normality, and we

would find that all individuals above a certain value exhibited the disease and all below it did

not. This hypothetical graded attribute is referred to as the individual’s liability for the disease.

A liability trait, as for a continuous trait, is defined as the sum of independent normally-dis-

tributed genetic and environmental components [14, 36]. The advantage of the liability scale is

that heritability is independent of prevalence and can therefore be compared across traits or

populations.

In recent works [6, 15] the all-or-none trait was expressed as a linear function of the sum of

the additive effects due to SNPs associated with causal variants and homoscedastic normally-

distributed residual effect. Based on the random-effects model approach, the variance compo-

nents of the model were estimated using a type of GREML method, and the resulting heritabil-

ity estimator was on the observed scale. Then, the Robertson transformation [14] was applied

yielding a heritability estimator on the liability scale. However, we proposed a simpler and

more efficient estimator where the random-effects approach is replaced by a regularized

regression approach, as described below.

Let Di, i = 1, . . ., N, be a binary outcome and consider the linear working model of the form

Di ¼ aþ XT
i v þ �i; ð2Þ

where vT = (v1, � � �, vp), vj is the variant’s regression coefficient of causal SNP j, s2
og ¼

Pp
j¼1

v2
j ,

�i, i = 1, . . ., N, are independent random zero-mean normally-distributed variables with vari-

ance s2
�
, and α, v and s2

�
are unknown parameters. First we estimate h2

o ¼ 1 � s2
�
=s2

D, and then,

by the Robertson transformation [14] we get heritability in liability scale, h2
l .

We start by estimating s2
�

by bs2
�
, based on Steps 1—Step 4 above. The estimator of the

total variance of the binary outcome is defined as bs2
D ¼

�Dð1 � �DÞ, where �D ¼
PN

i¼1
Di=N,

and finally, the proposed heritability estimator in the observed 0/1 scale is defined as

bh2
o ¼ 1 � bs2

�
=bs2

D. Applying the Robertson transformation yields a heritability estimator on

the liability scale bh2
l ¼

bh2
oKð1 � KÞ=z2, where z is the height of the standard normal curve at

Heritability Estimation using a Regularized Regression Approach (HERRA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0181269 August 16, 2017 15 / 19

https://doi.org/10.1371/journal.pone.0181269


the threshold that truncates the proportion K. In S2 Text, we show that bh2
l is a consistent

estimator of the true heritability on liability scale. To account for known risk factors, W, the

modification described in the continuous setting, applies here as well. The variance of bh2
l is

estimated by the weighted bootstrap approach (see S3 Text for details).

Age-at-onset outcome

Consider the following popular parametric accelerated failure time model

Yo
i ¼ mþ XT

ijuþ ei i ¼ 1; . . . ;N ð3Þ

where Yo
i ¼ log Ti, Ti is the failure-time random variable, and the eis are independent nor-

mally distributed with mean zero and variance s2
e . The log-scale censoring times Ci, i = 1, . . .,

N, are assumed independent and identically distributed. The log-scale observed times are then

Yi ¼ min ðYo
i ;CiÞ and the event indicators are defined by δi = I(Yi� Ci), i = 1, . . ., N. Hence

the available data can be summarized by fYi;XT
i ; dig, i = 1, . . ., N, independent observations.

Our goal is estimating h2 ¼ 1 � s2
e=s2

Yo .

By adopting the inverse probability censoring weighting (IPCW) approach, the strategy of

heritability estimation of continuous trait can be used here as well, with several modifications.

Specifically, let bScð�Þ be the Kaplan-Meier estimator of the censoring survival distribution and

define the weights Wi ¼ di=
bScðYiÞ, i = 1, . . ., N. Then, s2

e is estimated by Steps 1–4 while using

weighted linear least squares with the IPCW weights W1, . . ., WN. Finally, s2
e is estimated by

bs2
Yo ¼ V1

Xn

i¼1

WiðYi �
�Y wÞ

2
=ðV2 � V1Þ;

where �Y w ¼
Pn

i¼1
WiYi=V1, V1 ¼

Pn
i¼1

Wi, and with V2 ¼
Pn

i¼1
W2

i . The consistency of bs2
e

and bs2
Yo to the true variances hold due to the consistency property of the Kaplan-Meier estima-

tor. Thus, the consistency proof of bh2 ¼ 1 � bs2
e=bs

2
Yo is similar to that of continuous outcome.

Supporting information

S1 Table. Tables of simulation results. Details of simulation results that are summarized by

figures in the main text—continuous trait, one chromosome.
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S2 Table. Tables of simulation results. Details of simulation results that are summarized by

figures in the main text—dichotomous trait, one chromosome.
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S3 Table. Tables of simulation results. Details of simulation results that are summarized by

figures in the main text—continuous trait, one chromosome, Scenarios I and II.
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S4 Table. Tables of simulation results. Details of simulation results that are summarized by
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