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Abstract 

Background:  At present, the diagnostic ability of hepatocellular carcinoma (HCC) 
based on serum alpha-fetoprotein level is limited. Finding markers that can effectively 
distinguish cancer and non-cancerous tissues is important for improving the diagnos-
tic efficiency of HCC.

Results:  In this study, we developed a predictive model for HCC diagnosis using 
personalized biological pathways combined with a machine learning algorithm based 
on regularized regression and carry out relevant examinations. In two training sets, the 
overall cross-study-validated area under the receiver operating characteristic curve 
(AUROC), the area under the precision-recall curve and the Brier score of the diagnostic 
model were 0.987 [95%confidence interval (CI): 0.979–0.996], 0.981 and 0.091, respec-
tively. Besides, the model showed good transferability in external validation set. In 
TCGA-LIHC cohort, the AUROC, AURPC and Brier score were 0.992 (95%CI: 0.985–0.998), 
0.967 and 0.112, respectively. The diagnostic model has accomplished very impressive 
performance in distinguishing HCC from non-cancerous liver tissues. Moreover, we 
further analyzed the extracted biological pathways to explore molecular features and 
prognostic factors. The risk score generated from a 12-gene signature extracted from 
the characteristic pathways was correlated with some immune related pathways and 
served as an independent prognostic factor for HCC.

Conclusion:  We used personalized biological pathways analysis and machine learn-
ing algorithm to construct a highly accurate HCC diagnostic model. The excellent 
interpretable performance and good transferability of this model enables it with great 
potential for personalized medicine, which can assist clinicians in diagnosis for HCC 
patients.
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Introduction
Hepatocellular carcinoma (HCC), a quite common primary liver malignant tumor, is 
the major reason of cancer-associated death all over the world [1]. Timely and accurate 
diagnosis is essential for improving the therapeutic efficacy of HCC. In addition to path-
ological diagnosis, HCC is usually diagnosed by serum alpha-fetoprotein (AFP) levels 
and imaging results at present [2]. However, it is reported that the sensitivity of AFP for 
HCC diagnosis is about 60% even tested by a low-level cutoff [3]. And because AFP lev-
els also increase in other system disorders or benign liver diseases, the specificity of AFP 
to diagnose HCC is still insufficient [4]. Therefore, a great deal of new biomarker have 
been found to improve the diagnosis of HCC. But these biomarkers have not entered the 
stage of clinical trials yet, and many of them are still inadequate in terms of sensitivity 
such as Glypican-3 and Golgi protein-73 [5]. Thus, it’s of vital importance to ascertain 
more accurate predictors for diagnosis of HCC.

In recent years, the role of machine learning algorithm in supporting HCC medical 
work can not be ignored. In terms of prognosis, Santos et  al. utilized a cluster-based 
oversampling method based on the K-means clustering and SMOTE algorithm to build 
a model for predicting the 1-year survival of HCC patients, and the model achieved the 
best classification efficiency of 75.19% [6]; Chicco et al. used random forest algorithm 
for survival prediction and pointed out that alkaline phosphatase, AFP and hemoglobin 
levels were the most predictive survival factors for HCC, which brought great help to 
practical medical application [7]; Ksiazek et al. constructed two models to predict the 
survival of HCC patients with different approaches, one of which fused genetic algo-
rithms and logistic regression [8], and the other included neighborhood components 
analysis, genetic algorithm and support vector machine classifier [9]. Their accuracy was 
all over 94%, which meant they can be applied to the evaluation of HCC mortality in the 
future. As for diagnosis, previous studies have combined deep learning classifier with 
contrast-enhanced magnetic resonance imaging [10], computed-tomography images 
[11] and ultrasound images [12] respectively to build HCC diagnosis models, which have 
better performance than most doctors only diagnosing by images; More importantly, 
based on genomics, machine learning algorithms were used for HCC diagnosis, such 
as three models separately based on 3 genes, 5 CpG sites and 5 RNA transcripts con-
structed by Kaur et al. These models all utilized a variety of machine learning algorithms 
such as logistic regression, support vector machine, random forest and neural network, 
and all achieved accuracy of more than 95% [13, 14]. However, with the rapid expansion 
of data, the efficiency of machine learning model has more opportunities to be further 
improved. At the same time, previous algorithms are more and more difficult to adapt to 
more and more complex datasets, so the demand for new machine learning algorithms 
will not stop.

High-throughput technologies can provide a huge number of features and high-
dimensional data for tumor [15]. Then omics research can take what we receive as a 
whole and extract meaningful information from it [16]. Nevertheless, because of small 
sample sizes of high-throughput technology, the problem of High-Dimension Low 
Sample Size (HDLSS) arises, which brings great challenges to our studies, such as the 
so-called “curse of dimension” [15]. Besides that, on account of the intrinsic multicol-
linearity among predictors, traditional methods generally fail to select predictors from 
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omics data. In addition, many nonlinear approaches for variable selection may overfit 
the data. Thus linear models have proved to be more recommended at present [17].

The least absolute shrinkage and selection operator (Lasso) and ridge regression are 
common regularized regressions with a capability to provide an approach to fit gen-
eralized linear models whose coefficients are limited [18]. Lasso, a frequently-used 
penalized regression method, achieves variable selection by imposing the L1 penalty 
to traditional least squares and offering sparsity inducing estimation. However, if mul-
ticollinearity occurs among predictors, lasso tends to select only one of them. When 
the number of predictors is greater than the number of observations (n), at most n pre-
dictors can be selected in the model. Therefore, some important variables will be lost, 
resulting in the model performance failing to meet expectations [19]. Ridge regression 
reduces the loss of function which contains the sum of squared regression residuals to 
the minimum through the L2 norm of the coefficients [20]. Ridge will not have lasso’s 
problems, but the results of ridge regression are not concise relatively. Partly because the 
elastic-net penalty combines L1 and L2 norm penalties, elastic-net regression overcomes 
the defects of lasso and ridge. Previous studies have shown that elastic-net performs bet-
ter than the first two methods in dealing with high-dimensional data [21], which makes 
elastic-net a preferred choice when facing HDLSS.

Nowadays, the amount of omics data is growing exponentially, presenting both oppor-
tunities and challenges for many researchers. In the age of biomedical big data, the major 
trouble of research is how to analyze data of different types and sources to obtain novel 
viewpoints. Especially when dealing with large-scale datasets, varieties of data types and 
complicated designs, omics data analysis lacks universal systematic methods, and its 
performance is also far from ideal [22]. Nevertheless, it was demonstrated that pathway 
activity scoring approaches and prediction methods can improve the robustness, accu-
racy and biological interpretability of models through dimension reduction approaches 
[23]. Pathifier algorithm is an effective method for pathway-related research, which has 
been successfully applied in diagnostic model development of papillary thyroid carcino-
mas [24]. Pathifier can convert gene-level information into pathway-level after dimen-
sion reduction and generate a pathway deregulation scores (PDS) for each sample, which 
could successfully reflect the level of pathway-related dysregulation, so as to realize per-
sonalized pathway-level analysis [25].

In this study, we used personalized biological pathways analysis and machine learning 
algorithm consisting of regularized regression to construct a highly accurate and multi-
study-derived HCC diagnostic model, which showed very impressive performance in the 
validation set. This was a diagnostic prediction model based on gene pathway informa-
tion, which might be used as a supplement to clinical pathological diagnosis and a ref-
erence for follow-up gene-related therapy of HCC patients. And its high accuracy and 
transferability makes it play a great role in personalized medicine, making accurate diag-
nosis for HCC patients to enhance clinicians’ decision. Moreover, we also found new 
changes in pathways and prognostic characteristics of HCC, which could provide direc-
tions for subsequent study. The study design was shown in Fig. 1.
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Results
Construction of a PDS matrix to transform gene information into pathway features

First of all, two training sets were merged with the empirical Bayes algorithm (Addi-
tional file  1: Fig. S1). Pathifier algorithm was utilized to transform gene expression 
level data from the merged training sets into a pathway level matrix in training sets. 
Pathifier took advantage of an algorithm by Hastie and Stuetzle to get a principal 
curve that was nonparametric and nonlinear generalization of the first several prin-
cipal components with regard to dimension reduction [26]. In this way, a one-dimen-
sional principal curve was yielded by analyzing data points from a cloud in the high 
dimensional space, and every sample’s PDS was calculated by the distance from the 
starting point of the principal curve (the centroid of the control samples) to the target 
point of the personalized pathway projection. Then for every sample, we could yield a 
compact pathway representation ultimately.

We merged two training datasets and one external validation dataset accord-
ing to genes after annotation. Finally, 10,401 shared genes were obtained and used 
as input features. Then we conducted each pathway’s principal component analysis 
(Fig. 2B) and constructed the pathway signatures, namely a PDS matrix with 742 rows 
(Fig. 2A). According to the method of regularized regression, we used the PDS matrix 
to established a diagnostic model for HCC. Elastic-net regularization was an awesome 

Fig. 1  The flowchart of study design
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method for statistical modeling based on a combination of the ridge and lasso regres-
sion, in which two hyperparameters (α and λ) needed be fine-tuned to obtain a suit-
able elastic-net penalty function. The trade-off between the ridge and lasso penalties 
was dominated by α, while the total amount of penalization was controlled by λ [27]. 
Due to the high arbitrariness of the generally used fixed grid search approaches, an 
algorithm called Efficient Parameter Selection via Global Optimization (EPSGO) 
[28] was chosen to seek the best value of α and λ with minimum binomial deviance 
(Fig.  2C). When the binomial deviance given from the regularization parameter 

Fig. 2  Construction of diagnostic model. AConstruction of a PDS matrix for the training cohort. B 
Principal component analysis of selected pathways. C Elastic-net penalized regression models with 
EPSGO were performed to obtain the optimal hyperparameters α and λ (α = 0.85372, λ = 0.004230762, 
deviance = 0.03503). Among them, α represents the balance between lasso and ridge penalties. A closer α 
to the arrow direction indicates that the model was more like lasso regression, otherwise it was more like 
ridge regression. And the total amount of penalization was controlled by λ. As for CVM (cross-study validation 
method), the deviance of cross-study validation, was used to measure the effectiveness of modeling. Thus 
the lowest point of the curve with the minimum deviance was the final EPSGO solution. D The selection 
of non-zero coefficients regard to hyperparameter λ. Each curve corresponds to a predictor. The numbers 
above the box mean the numbers of non-zero coefficients with their corresponding log(λ). And the Y-axis 
was each predictor’s coefficient, gradually approaching 0 as λ increases. E Heatmap of 24 non-zero coefficient 
pathways. F Cross-study validation for estimated probabilities of each sample. PC, principal component; 
EPSGO, efficient parameter selection via global optimization; NT, non-tumoral
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became the lowest, EPSGO-tuned elastic-net managed to generate a group of pre-
dictors containing 24 pathways with non-zero dysregulation coefficients (Fig. 2D–E). 
And the model performed well in cross-study validation eventually (Fig. 2F).

Multi‑index estimation of the diagnostic model’s accuracy

The confusion matrix of training set and validation set were shown in Tables  1 and 2 
respectively. The area under the receiver operating characteristic curve (AUROC) of 
training cohort was 0.987 (95%CI: 0.979–0.996) and the area under the precision-recall 
curve (AUPRC) was 0.981. The Brier score was 0.091. The sensitivity, precision and Mat-
thews correlation coefficient (MCC) were 0.965, 0.976 and 0.934 respectively (Table 3, 
Fig. 3A). As for external validation cohort TCGA-LIHC, its AUROC, AURPC and Brier 
score were 0.992 (95%CI: 0.985–0.998), 0.967 and 0.112 respectively and with a sensitiv-
ity of 0.849, a precision of 1 and a MCC of 0.639 (Fig. 3B, Table 3), which was indeed 
encouraging and confirmed that our diagnostic model had great performance. Although 
some high-confidence HCC models have been developed, the inconsistent research 
methods limit their directly comparison. If assessed from the AUROC, the AUROC 

Table 1  The confusion matrix of training set

GSE14520 and GSE76427 True condition

HCC Non-HCC 
liver 
tissues

Predicted condition HCC 328 8

Non-HCC liver tissues 12 264

Table 2  The confusion matrix of validation set

TCGA-LIHC True condition

HCC Non-HCC 
liver 
tissues

Predicted condition HCC 298 0

Non-HCC liver tissues 53 49

Table 3  Performance evaluation of training and external validation sets

Overall cross-study validation External cohort validation
GSE14520, GSE76427 TCGA-LIHC

AUPRC 0.981 0.967

AUROC 0.987(0.979–0.996) 0.992(0.985–0.998)

Brier score 0.091 0.112

ACC​ 0.967 0.868

Precision 0.976 1

Sensitivity (recall) 0.965 0.849

F1 0.97 0.918

MCC 0.934 0.639
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values of our model were higher than those of most diagnostic models that have been 
reported so far (Additional file 8: Table S1).

Analysis of hub gene network in pathway features

Based on regression and path information, our machine learning algorithms provide 
more biologically explainable results than other so-called “black box” machine learning 
algorithms. The algorithm generated 24 non-zero coefficient HCC related pathways with 
the largest amount of information in the elastic network model. Among these pathways, 
824 characteristic genes were identified. Based on these genes, we constructed pro-
tein protein interaction (PPI) network using STRING database (Additional file  2: Fig. 
S2A) and finally 753 characteristic genes were extracted from the network. We further 
conducted pathway enrichment analysis through g:Profiler database [29]. The top ten 
pathways enriched by KEGG were Cytokine-cytokine receptor interaction, Pathways in 
cancer, JAK-STAT signaling pathway, PI3K-Akt signaling pathway, Melanoma, Hemat-
opoietic cell lineage, Viral protein interaction with cytokine and cytokine receptor, 
Hepatitis B, Human cytomegalovirus infection, and Measles. The detailed enrichment 
results referred to the supplemental materials (Additional file 9: Table S2). Then a hub 

Fig. 3  Internal A and external B validation of model performance for distinguishing HCC and non-tumor 
samples by using receiver operating characteristic (ROC) and precision-recall curve
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network was built based on the top 20 genes ranked by degree via Cytohubba (Addi-
tional file 2: Fig. S2B).

Prognostic significance of genes involved in model‑related pathways

Based on 824 characteristic genes mentioned above, we performed univariate Cox sur-
vival analysis on TCGA cohort to evaluate the prognostic values of these genes and even-
tually we found 33 genes correlated with overall survival (OS) (P < 0.001, C-index ≥ 0.6) 
(Fig. 4A, Additional file 10: Table S3). Among them, PIK3R1 was also identified in the 
hub network mentioned above (Additional file 2: Fig. S2B). Through Cox survival esti-
mation and Kaplan–Meier survival analysis, HDAC2 was the most significant negative 

Fig. 4  Prognostic values of characteristic genes. A HR statistics of 33 prognostic-related genes. B The Kaplan–
Meier survival curve of OS for DYNC1H1. C The Kaplan–Meier survival curve of RFS for DYNC1H1. D Lambda 
distribution of lasso regression. The left line indicated the optimal values (λ = 0.01988275). E lasso regression 
coefficient of 12 genes. F Analysis of the correlation between the risk score and survival status. G The Kaplan–
Meier survival curve of 12-gene signature in TCGA cohort. H The AUC curve of 12-gene signature in TCGA 
cohort. *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001, *****: P ≤ 0.00001
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prognostic factor for OS, while ALDH2 became the most significant positive prognostic 
factor. Moreover, only DYNC1H1 high expression exhibited both worse OS (Fig. 4B) and 
relapse-free survival (RFS) (Fig. 4C) with significant difference by Kaplan–Meier survival 
analysis of 33 genes (Additional file 3: Fig. S3).

In order to reduce the number of those genes with prognostic value, we performed 
lasso regression analysis on above-mentioned 33 genes and obtained 12 notable charac-
teristic genes (Fig. 4D–E). We further investigated whether these 12 characteristic genes 
were differentially expressed between non-cancer tissues and cancer tissues of different 
stages (stage I-IV). The results showed that ADA, ATP1B3, DYNC1H1 and FTCD were 
differently expressed in non-cancer vs. cancer tissues of different stages, in cancer tis-
sues of stage I vs. stage II or stage I vs. stage III (Additional file  4: Fig. S4). This will 
help determine the markers for early stages of tumorigenesis and cancer progression. 
Based on these 12 genes, we carried out multivariate Cox regression analysis in TCGA 
cohort (Additional file 11: Table S4) to construct the risk signature and took the sum of 
the product of each gene’s coefficient and each gene’s expression as the risk score. The 
formula was as follows: risk score = (0.008107*ADA e​xpr​ess​ion) + (0.035155*ALAS1) + 
(−  0.032727*ATP1B3) + (0.217810*DYNC1H1) + (0.101323*EPO) + (−  0.280598*GP1B
A) + (0.160445*IL15RA) + (0.023708*MMP1) + (0.098353*RANBP1) + (0.055255*SPP1) 
+ (0.301356*MTMR2) + (− 0.083692*FTCD). The survival analysis based on risk score 
showed that in the TCGA cohort, there was a remarkable survival difference between 
high- and low-risk groups which were divided by the median of risk scores (Fig.  4F, 
G) The AUCs of 1-year, 3-year and 5-year survival analysis were all greater than 0.76 
(Fig. 4H). Moreover, the multivariate Cox regression analysis pointed out that the risk 
score could serve as an independent prognostic factor (Additional file 12: Table S5).

Subgroup analysis of the risk signature for prognosis prediction

For evaluating efficiency and stability of the risk signature, we extracted clinical charac-
teristics from the TCGA cohort, including age, gender, clinical stage, stage_T, stage_N, 
stage_M, grade and recurrence. In view of above information, we compared survival dif-
ference of the 12-gene risk signature in the subgroups, and found that this risk signature 
could also predict the significant prognostic differences in these subgroups (Additional 
file 5: Fig. S5), which indicated that the efficiency and stability of prognosis prediction of 
this signature were pretty good.

Correlation between the risk signature and immune related pathways

We collected 19 immune-related pathways, and analyzed the relationship between the 
GSVA enrichment scores and the risk score of 12-gene risk signature. Then we found 
that risk score was positively correlated with cell cycle, DNA replication and homolo-
gous recombination, but negatively related to CD8 + T. These results indicated that high 
risk score was associated with enhanced cell proliferation and suppression of immune 
response (Additional file 6: Fig. S6).

Mutation estimation of characteristic genes

Next, we analyzed the mutations of 33 genes related to prognosis in univariate Cox 
analysis. As shown in Fig. 5A, single nucleotide variations (SNVs) were detected in 18 
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Fig. 5  Mutation assessment of characteristic genes. A Single nucleotide variations of 33 genes. B Analysis 
of correlation between the expression level of 11 genes and methylation and copy number variation level. *: 
P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001
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of these 33 genes and these mutated genes were distributed in 42 samples. Especially, 
DYNC1H1 harbored the largest number of SNVs in TCGA-LIHC cohort. But among the 
12 characteristic genes, only 5 with SNVs were detected in 14 samples (Additional file 6: 
Fig. S6), which indicated that the functional alteration caused by SNV in these genes 
may not be an important pathogenic factor in HCC. Therefore, we then focused on the 
relationship between the expression of 12 characteristic genes and the levels of copy 
number variation (CNV) and methylation (MMP1 was excluded because of no methyla-
tion data). Except for EPO and GP1BA, the other 9 genes showed significant differences 
in their expressions between HCC and non-tumor tissues in TCGA cohort (Fig.  5B, 
right panel). We further validated the expression of 12 characteristic genes in HCCDB 
database (Additional file 7: Fig. S7). The expression of most genes from TCGA datasets 
were consistent with the results from some other datasets. For instance, DYNC1H1 and 
SPP1 were consensus up-regulated in 4 and 7 datasets, respectively. While ALAS1 and 
FTCD were consensus down-regulated in 5 and 10 datasets, respectively. It indicated 
that the expressions of these genes are relatively stable in HCC. In addition, the expres-
sions of these genes in HCC samples were also varied with CNV and mostly positively 
correlated with copy number. (Fig. 5B, middle panel). In order to simplify the analysis 
and ensure the comparability between different genes, the correlation of gene methyla-
tion levels and expression levels was analyzed using linear model through pearson cor-
relation analysis. The results showed that the expressions of DYNC1H1, EPO, FTCD, 
MTMR2 and SPP1 were negatively correlated with methylation levels while most others 
showed the opposite patterns (Fig. 5B, left panel).

Discussion
With the rapid growth of genetic information in recent years, machine learning has 
turned into an extremely important research tool because it can find complicated pat-
terns in high-dimensional data to achieve various purposes [30]. However, because of 
the inner complexity, it is still very challenging in interpreting machine learning model, 
which is the so-called ‘black box’ [31]. Black box models have caused obstacles to the 
follow-up research and application. In order to solve this problem, the surrogate model 
strategy was utilized to increase the interpretability [32]. But owing to very complex 
logic principles behind black box models, the traditional surrogate model, such as deci-
sion trees, unable to learn the whole [31]. Therefore, for the sake of conquering these 
shortcomings, we converted gene expression levels of two training sets into pathway 
expression levels to reduce the dimension. Then we established the HCC prediction 
model through regularized regression and worked out 24 non-zero pathway predictors. 
The excellent interpretable performance of this model enables it with great potential for 
personalized medicine.

Despite the AUROC of 0.987 in our training sets has indicated the outstanding 
performance of this model, we have also used other evaluation approaches for fur-
ther verification. Compared with ROC, PRC is more sensitive to imbalance and can 
better reflect the classification performance when there exists large proportion of 
difference between positive and negative samples [33]. As expected, the AUPRC of 
0.981 in training sets demonstrates that our model has strong robustness. Due to dis-
crimination and calibration, the Brier score is usually used to measure the accuracy 
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of probability prediction [34]. The Brier score of 0.091 was also obtained to reflect 
the high accuracy of our model. Compared with accuracy and F1 score, the MCC is 
more informative and reliable [35]. The MCC of 0.934 makes the great performance 
of our model more realistic. Besides, the excellent statistical metrics of the model in 
training sets achieved a good reproduction in the verification set with an AUROC of 
0.992, an AUPRC of 0.967, a Brier score of 0.112 and a MCC of 0.639, which illus-
trated the good transferability of the model. Compared with most previous reports 
(Additional file 8: Table S1), the diagnostic model of this study could achieve better 
diagnostic performance in both the training and the validation groups, suggesting 
that it has good application potential. In previous studies, Kaur et al. used a variety of 
traditional machine-learning algorithms to construct classifiers for HCC and normal 
tissues. If assessed from the AUROC, the AUROC values of their three models based 
on 3 genes [13], 5 CpG sites and 5 RNA transcripts [14] were 0.96–0.99, 0.94–99 and 
0.93–97 respectively, showing slightly worse performance than ours. In addition, it 
has been reported that pathway based analysis can provide more insights into the 
complex biological mechanisms of diseases than genomics based analysis [25]. So bio-
logical interpretation is an important characteristic of our model, which is also what 
previous models lack. The clinical stage is one of the important prognostic factors for 
HCC. Interestingly, our diagnostic model could also obtain the AUC of 0.932 (95%CI: 
0.900–0.963) for the distinguishment of stage I-II from stage III-IV. However, it may 
not be the optimal model because our diagnostic model was designed for distinguish-
ing HCC from non-cancer cases but not for distinguishing the different stages of 
HCC. We will try to develop the diagnostic model for different stages in future.

Based on the 824 characteristic genes in 24 pathway predictors, 33 were determined 
as significant prognostic factors. Previous studies have demonstrated the important role 
of some characteristic genes, such as HDAC2, RAN and PLCB3, involving in the pro-
gression of HCC [36–38]. which may aid in the development of diagnostic and prognos-
tic biomarkers for HCC. Among these genes, DYNC1H1 was the only prognostic factor 
both related to OS and RFS and a gene with the largest number of single nucleotide 
mutations. A recent study reported that mutant DYNC1H1 may serve as a biomarker for 
the therapy of microtubule inhibitors in gastric cancer with high immune activity [39]. 
However, there is still a lack of study on the relationship between DYNC1H1 mutation 
and HCC, which is also the direction of our future research.

Utilizing lasso and multivariate Cox regression analysis, we screened 12 characteris-
tic genes to construct a risk signature. High risk score generated by the risk signature 
was positively correlated with the poor survival outcome of HCC patients. In addition, 
the risk stratification revealed significant prognostic differences within the subgroups 
including age, gender, grade, stage and recurrence, which suggested that the risk signa-
ture has a great potential in clinical use. Moreover, we also found that risk score is posi-
tively correlated with cell cycle, DNA replication and homologous recombination, all of 
which have been confirmed to have relation to the progression of HCC [40–42]. Mean-
while, risk score was negatively related to CD8 + T. And the exhaustion of CD8 + T cell 
has been verified to be associated with HCC progression [43]. These findings indicated 
that high risk score was associated with enhanced cell proliferation and suppression of 
immune response, which partly accounted for the poor prognosis in the high-risk group.
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There were several limitations in this study. First, the data included in this study were 
related to very diverse HCC subtypes, and only the gene expression data in cancer and 
non-cancer tissues were used for diagnostic model development. Due to the limitations 
of the original data, we cannot evaluate the normal purity of non-cancerous tissue, the 
condition of pre-malignant and the early malignant transformation such as the carci-
noma in situ. Therefore, the constructed diagnostic model in this study can only be used 
to distinguish cancer from non-cancer, but not distinguish very early events from purely 
normal cases. Second, one of the current difficulties for clinical application is the lack of 
highly sensitive and accurate gene signature. Although our diagnostic model performed 
well on datasets with different sample sizes from different sequencing platforms, it still 
needs to be validated in some other cohorts to evaluate its clinical significance for HCC. 
Third, some key genes related to prognosis were screened out through lasso regression. 
However, the use of lasso regression cannot consider the biological information of genes, 
thus some genetic information will inevitably be lost. This is the limitation of the analyti-
cal method used in this study.

Conclusions
In conclusion, this study established the HCC diagnostic model through personalized 
biological pathways analysis and machine learning algorithm. This model is not only 
capable of achieving highly accurate diagnosis of HCC, but also has a high degree of 
interpretability for HCC patients’ pathological results because of its personal pathway 
information, which provides substantial help for clinicians to determine each HCC 
patient’s diagnosis and treatments. We also found out some important characteristic 
genes related to prognosis, gene mutation as well as immune-related pathways, which 
is of significance for the understanding of HCC. Although the HCC diagnostic model 
harbored good performance, it still needs more verification sets to be continuously 
improved.

Methods
Data collection

The microarray data of GSE14520 [44] and GSE76427 [45] were downloaded by R pack-
age “GEOquery”. The transcriptome data of TCGA-LIHC were obtained from HCCDB 
[46], whereas the gene mutation data, methylation data, copy-number alteration data 
and corresponding clinical information of TCGA-LIHC were retrieved from UCSC 
XENA [47]. Criteria for study inclusion were: (1) The cases were diagnosed as HCC or 
non-HCC liver tissues. (2) HCC caused by different types of etiologies was acceptable. 
(3) The cases had complete expression data. (4) For clinical characteristics analysis, the 
HCC cases had corresponding clinical information and overall survival time was more 
than 30 days. The main characteristics of each dataset were listed in Additional file 13: 
Table S6 and the detail clinical traits of TCGA-LIHC cohort were provided in Additional 
file 14: Table S7.

Preprocessing of training data

The GSE14520 dataset had been normalized by robust multi-array average (RMA) 
and GSE76427 dataset had been normalized by robust spline normalization (RSN, R 
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package “lumi”) according to the metadata of these data sets from GEO database. To 
generate gene level summarization, we utilized an interquartile range (IQR) method. 
This allowed us to designate the probe set ID with the largest IQR of expression val-
ues out of all multiple probe set IDs as the representative of the gene. Missing expres-
sion values are imputed using nearest neighbor imputation (R package “impute”). 
ComBat (R package “sva”), an empirical Bayes method, was applied to achieve correct 
batch effect and cross-study normalization (Additional file 1: Fig. S1).

Development of the model

Briefly, we extracted and included all pathway information from Kyoto Encyclope-
dia of Genes and Genomes [48–50], Pathway Interaction Database [51] and BioCarta 
Pathway Database [52]. Using R package “pathifier”, we transformed gene-level infor-
mation into pathway-level information and gained a PDS matrix. And then we chose 
penalized regression with a global-tuning algorithm to get a model which can achieve 
a balance between explanatory ability and parsimony. For a detailed description of the 
method, please refer to Additional file 15: Doc. S1.

Evaluation indicators

The AUROC, AUPRC, Brier score, accuracy (ACC), precision, recall, F1-score and 
MCC were utilized to assess the performance of this model. The ROC curve was a 
plot characterized by true positive rate [true positive/(true positive + false negative)] 
and false positive rate [false positive/(true negative + false positive)]. And the PRC 
curve was a plot characterized by precision and recall. F1-score could be seen as a 
harmonic average of the model precision and recall.

where TP is positive examples correctly labeled as positive. FP is negative examples 
incorrectly labeled as positive. TN is negative examples correctly labeled as negative. FN 
is positive examples incorrectly labeled as negative.

ACC =
TP+ TN

TP+ FP+ TN+ FN

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1score = 2×
Precision× Recall

Precision+ Recall

MCC =
TP× TN− FP× FN

√
(FN+ TN)(FP+ TN)(TP+ FN)(TP+ FP)
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Survival analysis

The univariate significance of variables related to OS and RFS were determined by 
Kaplan–Meier method and log rank test. Influence of multiple variables on survival 
were tested through univariate and multivariate Cox regression analysis. The Cox 
proportional hazards parameters’ significance was detected by the Wald test and doc-
umented as the hazard ratio (HR), with 95% CI.

Lasso Cox regression analysis

Lasso Cox regression analysis was performed to analyze samples and corresponding 
genes via glmnet function of R package “lars”, in which the parameters were alpha = 1 
and nlambda = 100.

SCNA data processing

Somatic copy-number alterations (SCNA) genomic features were defined as repeti-
tive regions with copy-number changes determined by GISTIC2 [53]. The SCNA data 
processing method in the previous study [54] was used to determine SCNA features 
and binary states in each sample. The concrete methods were as follows: Peak regions 
from GISTIC results of all tumor types were extracted as SCNA features. As to peak 
regions of the same gene, only one peak region was retained. To determine the SCNA 
event, we use the discrete copy number calls provided by GISTIC: − 2, homozygous 
loss; − 1, heterozygous loss; 0, diploid; 1, single-copy gain; 2, high-level amplification 
or multiple-copy gain.

CNV and SNV analysis

For CNV, the analysis was carried out by GISTIC2. The specific parameters used 
were as follows: −  ta = 0.1, −  armpeel = 1, brlen = 0.7, −  cap = 1.5, −  conf = 0.75, 
−  td = 0.1, −  genegistic = 1, −  gcm = extreme, −  js = 4, −  maxseg = 2000, 
− qvt = 0.25, − rx = 0, − savegene = 1. And with respect to SNV, we applied default 
parameters of R package “maftool” to analyze the mutation of TCGA-LIHC data-
set, whose statistical results were directly generated by oncplot function of package 
“maftool”.

Correlation of gene signature with immune related pathways

Previous studies have constructed some gene sets as immune related pathways, 
including (1) immune checkpoint; (2) antigen processing machinery; (3) CD8 T-effec-
tor signature; (4) epithelialmesenchymal transition (EMT) markers including EMT1, 
EMT2 and EMT3; (5) Angiogenesis signature; (6) pan-fibroblast TGFb response sig-
nature (Pan-F-TBRS); (7) WNT targets; (8) DNA damage repair; (9) mismatch repair; 
(10) Nucleotide excision repair; (11) DNA replication; (12) Fanconi anemia; (13) Cell 
cycle; (14) Cell cycle regulators; (15) FGFR3 related genees; (16) Homologous recom-
bination; (17) KEGG discovered histones [55–57]. We made a correlation analysis 
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of the risk score generated from the gene signature and gene set variation analysis 
(GSVA) enrichment scores of these pathways.

Statistical analysis

All statistical tests were performed by R software version 4.0.2. ANOVA or t.test was 
employed for differential analysis. And P-value < 0.05 was statistically significant.
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