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Abstract

Current variant discovery approaches often rely on an initial read mapping to the reference sequence. Their effectiveness is
limited by the presence of gaps, potential misassemblies, regions of duplicates with a high-sequence similarity and regions of
high-sequence divergence in the reference. Also, mapping-based approaches are less sensitive to large INDELs and complex
variations and provide little phase information in personal genomes. A few de novo assemblers have been developed to iden-
tify variants through direct variant calling from the assembly graph, micro-assembly and whole-genome assembly, but mainly
for whole-genome sequencing (WGS) data. We developed SGVar, a de novo assembly workflow for haplotype-based variant dis-
covery from whole-exome sequencing (WES) data. Using simulated human exome data, we compared SGVar with five
variation-aware de novo assemblers and with BWA-MEM together with three haplotype- or local de novo assembly-based call-
ers. SGVar outperforms the other assemblers in sensitivity and tolerance of sequencing errors. We recapitulated the findings
on whole-genome and exome data from a Utah residents with Northern and Western European ancestry (CEU) trio, showing
that SGVar had high sensitivity both in the highly divergent human leukocyte antigen (HLA) region and in non-HLA regions of
chromosome 6. In particular, SGVar is robust to sequencing error, k-mer selection, divergence level and coverage depth.
Unlike mapping-based approaches, SGVar is capable of resolving long-range phase and identifying large INDELs from WES,
more prominently from WGS. We conclude that SGVar represents an ideal platform for WES-based variant discovery in highly
divergent regions and across the whole genome.
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Introduction

Complete and accurate detection of sequence variations is a key
prerequisite for deciphering the genetic etiology of disease [1, 2].
Mapping-based approaches currently dominate the field of vari-
ant discovery through whole-genome sequencing (WGS) or
whole-exome sequencing (WES), but with limitations in several
key aspects. First, the human reference sequence is not perfect
[3], containing misassemblies [4] and gaps [5]. In addition, some
regions show high-sequence divergence or complex structural
variations between haplotypes, or represent recent duplications
with high-sequence similarity, causing ambiguity in short-read
mapping [6, 7]. The 1000 Genomes Project Consortium esti-
mated 171 Mb (5.5%) of the human genome reference GRCh37 as
being inaccessible to the short-read sequencing technologies
and mapping algorithms [8], including 130 Mb of recent segmen-
tal duplications between which a reliable differentiation is often
difficult [9]. Importantly, some of the missing, highly divergent
and inaccessible regions are associated with human disease [2].
Current standard practice is less effective in variation discovery
from these regions [2]. For example, a recent study revealed that
mapping bias led to 19% error rate in assigning single nucleotide
polymorphism (SNP) genotypes for five critical genes in human
leukocyte antigen (HLA), a highly divergent region associated
with over 100 diseases [10].

Also, mapping efficiency often biases toward the reference
allele in the presence of INDELs [6], reducing the detection of
INDELs, especially large ones and those located within micro-
satellites [11, 12]. Even though numerous tools have been de-
veloped specifically for INDEL detection, an initial read mapping
is still needed [13]. Finally, phasing facilitates the inference of
causal mutations, as haplotype structure provides pertinent in-
formation as to whether two or more deleterious variants are
located on the same allele [14]. In organ transplantation, phase
information is useful for predicting the donor–recipient match
[15]. Nevertheless, current mapping-based approaches report
only unphased genotypes or limited phasing information from
local de novo assembly-based callers. Without genotype infor-
mation from trio or reference population, it will be difficult to
infer haplotype and uncover transmitted variants in personal
genomes.

The variation-aware de novo assemblers represent an attract-
ive alternative. In principle, they are similar to the consensus
sequence assemblers through the implementation of either de
Bruijn graph [3] or string graph [4, 16]. In de Bruijn graph-based
assembly paradigm, reads are split into substrings of length k
called k-mers that are often error-corrected before used to build
contigs. Thus, the performance of an assembler is correlated
with the k-mer coverage rather than the base coverage, which
highlights the importance of selecting appropriate k-mers, espe-
cially in cases when long reads are used. In string graph-based as-
sembly, contigs represent paths of string graph built from
overlapped reads. In this way, read coherence is fully retained in
string graph but lost in de Bruijn graph. Most importantly, there is
a key distinction between variation-aware and consensus se-
quence assemblers when applied to non-haploid organisms.
While the former tries to preserve heterozygotes at polymorphic
sites, the latter collapses them into consensus bases [17].

The variation-aware assemblers are capable of assembling
reads into haplotype contigs [18], facilitating the identification of
long INDELs and structural variations [2, 4, 12, 19]. In fact, a few
packages have been developed for direct variant calling from the
graph [3], local assembly (micro-assembly) using mapped reads
[1, 12], or whole-genome de novo assembly [4, 20, 21].

Cortex is the first de novo assembly-based algorithm for dir-
ect variant calling from short reads. Cortex implements colored
de Bruijn graph for single- or multi-sample variant calling, using
the reference sequence if available [3]. In the graph, the nodes
and edges are colored by the samples having them, thus allow-
ing population-based variant discovery. Variants are called dir-
ectly from the graph through the function ‘bubble-calling’ (for
simple variants) or ‘path-divergence calling’ (for complex vari-
ants). However, the current version has a low sensitivity, with
nearly 40% false-negative rate [1].

The String Graph Assembler (SGA) was originally developed
for consensus sequence assembly of large genomes [16]. It cre-
ates overlapping graphs by first performing Burrows–Wheeler
Transform and Ferragina–Manzini (FM) indexing of reads [16].
With the implementation of such a data structure, SGA can effi-
ciently compute the path of string graph in large genomes, alle-
viating the requirement of high computing, a limitation
inherent to string graph [22]. The ‘graph-diff’ module, a supple-
ment to the SGA package, provides two modes to call variants
directly from string graph and de Bruijn graph, respectively.
However, the efficiency of this development version has yet to
be assessed.

Scalpel [12] and DISCOVAR [1] perform local assembly based
on de Bruijn graph. Reads are first mapped to the genome refer-
ence, and pairs with at least one mapped read are selected.
Scalpel was designed solely for INDEL detection from WGS or
WES data [12]. DISCOVAR was developed for assembling longer
(250 bp) reads from WGS of polymerase chain reaction (PCR)-
free libraries; its error correction and variant detection algo-
rithms might not work well on the typical shorter (76–150 bp)
reads that are often generated from libraries involving PCR
amplification [1]. Importantly, their performance in highly di-
vergent regions remains unknown.

Finally, Fermi and FermiKit (fermi2) are string graph-based
whole-genome assemblers. Fermi implements Ferragina–
Manzini DNA (FMD) index, a variety of FM index used in SGA,
for forward–backward extension of DNA sequences [4]. It out-
puts unitigs that preserve SNPs, short INDELs and structural
variations, without subsequent unitig mapping and variant call-
ing. FermiKit is an updated version of Fermi [20], which uses the
BFC algorithm [23] for less greedy error correction compared
with the k-mer frequency used by Fermi, BWA-MEM [24] for
mapping unitigs to the reference and HTSBox (https://github.
com/lh3/htsbox) for variant detection. Nevertheless, both ver-
sions lack the flexibility needed for tweaking parameters when
applied to WES or targeted gene panel sequencing data.

Except for Scalpel that was designed exclusively for INDEL
detection in WES and WGS [12], the other packages described
above were developed for WGS. Unlike in WGS, de novo assem-
bly of WES data is complicated by the variability in coverage be-
cause of capture, sequencing and mapping bias [7, 25, 26].
De novo assembly of WES in complex regions is particularly chal-
lenging. Short-read assembly often implements de Bruijn graph,
a data structure tending to be less effective compared with
string graph when complex regions are assembled [27].

Understanding the advantages and limitations of individual
methods is critical for optimizing variant discovery through de
novo assembly. However, a detailed comparison of de novo assem-
blers is lacking in both WGS and WES. Using simulated exome
data as well as real WES and WGS, we assessed SGVar, a
chromosome-level de novo assembly pipeline we developed for
haplotype-based variant discovery, along with five other de novo
assembly-based and three mapping-based variant discovery
methods. SGVar demonstrates excellence in both sensitivity and
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precision, which is largely independent of variability in coverage
and divergence. SGVar can achieve long-range phasing over
some of the most divergent HLA genes. It is powerful in detecting
large INDELs, SNP clusters and complex structural variations.

Methods
Test data sets

We used simulated exome data and publicly available 76–150 bp
whole-exome data from NA12878 (Supplementary Table S1). A
250 bp PCR-free WGS data set (�60� coverage) from a CEU
trio including NA12878, NA12891 and NA12892 was also used,
which was generated by the 1000 Genomes Project (ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/phase3/data).

Simulated reads provide a simple system to evaluate the
performance of variant discovery methods over key factors,
such as sequencing error, coverage and divergence level, as
both ‘true’ (pre-placed by simulation) and ‘false’ variants are
known [28]. We generated two simulated data sets, with and
without sequencing error, from exonic regions of chromosome
6. These regions were compiled from hg19 refGene exon anno-
tation and the capture regions interrogated by four Agilent
SureSelectXT All Exon kits [29]. Dwgsim (v0.1.11) was used to
simulate 100 bp paired-end reads at each of the seven mu-
tation rates between 0.05 and 15%, with eight coverage
depths (20 – 200�) for error-free reads and four coverage depths
(40 – 200�) for reads simulated with error (Supplementary Note).

Overall analytical strategy

We developed SGVar, a string graph-based de novo assembly
pipeline for variant discovery. It adopts the k-mer-based error-
correction and string graph assembly modules from the SGA
consensus assembly framework. We set up rules toward haplo-
type assembly by performing stringent read preprocessing,
k-mer-based rather than reads overlap-based error correction,
and by requiring perfect matches over overlapped bases in merg-
ing reads or sequences. To select high-quality reads for de novo
assembly, we kept those if they were at least 65 bp long, con-
tained only called bases (A, T, G and C) and no low-complexity se-
quences, and had Phred-scale quality scores of �20 (for 150 bp
reads) or 30 (for 76 and 100 bp reads) for over half of the bases;
the low-quality bases were then trimmed from the 30 end until

the base with a Phred-scale quality score of �30 was reached.
More details are provided in the Supplementary Note. Here, we
compared SGVar with five other de novo assemblers (Figure 1,
Supplementary Table S2) and three mapping-based methods.

Of the six variation-aware assembly-based methods, the two
methods in the SGA graph-diff module [16], which are SGA
paired de Bruijn graph (SGA-PDBG) and SGA string graph (SGA-
SG), and Cortex [3] perform direct variant calling from the as-
sembly graph; Fermi [4], FermiKit [20] and SGVar assemble reads
into contigs (unitigs), followed by contig mapping to the refer-
ence and variant calling. The initial assessment used simulated
error-free reads. SGA-PDBG, SGVar and fermi2 that showed rela-
tively better performance were then assessed using simulated
reads with error. The first two were finally assessed on whole-
genome data from a CEU (Utah residents with Northern and
Western European ancestry) trio including NA12878, NA12891
and NA12892 and on whole-exome data from NA12878.

De novo assembly- and mapping-based variant detection

The detailed procedure and parameter settings for each of the
six assemblers are provided in Supplementary Note. To use
SGVar in the detection of variants from Chr6, NA12878 WES
reads were mapped to the reference using BWA (v0.6.2). We
kept pairs including at least one uniquely mapped read (to
Chr6) with a mapping quality score of �20. As we focused on
the highly divergent HLA region (see below), unmapped pairs
were also included. These reads were preprocessed by trimming
off low-quality bases from 30 end and filtering out low-quality
reads. The retained reads were assembled into haplotype con-
tigs using the ‘sga assemble’ command. Contigs were filtered
based on A-statistic score [30, 31] and contig size. Retained con-
tigs were mapped to the hg19 reference, and variants were iden-
tified using SAMtools (v0.1.8, with the pileup function). We also
tested SAMtools v0.1.12a with the mpileup function. The mpi-
leup function missed some positions with SNPs or INDELs,
which are real variants supported by the manual inspection of
the contig–reference alignments. Key SGVar parameters were
provided in Supplementary Table S3.

For SGA-SG and SGA-PDBG, variants were identified using
the commands ‘sga graph-diff’ and ‘sga graph-diff - -paired-
debruijn’, respectively. In using Cortex to call variants from
simulated reads without error, we followed the instructions in
the user manual (http://cortexassembler.sourceforge.net/cor

Figure 1. Flowchart illustrating variant discovery methods and test data sets used in the study. All six de novo assemblers were first assessed on simulated reads with-

out error across seven divergence levels (0.05, 0.1, 0.5, 1, 5, 10 and 15%) and eight coverage depths (20, 40, 60, 80, 100, 120, 160 and 200�). Three of them, SGA-PDBG,

SGVar and fermi2, were further assessed using reads simulated with error (0.01% error rate at the 50 and 1% at the 30 end of reads) at the above seven divergence levels

and four coverage depths (40, 60, 100 and 200�). SGA-PDBG and SGVar as representatives of de Bruijn graph-based and string graph-based assemblers were finally as-

sessed on the CEU trio (NA12878, NA12891 and NA12892) WGS and eight NA12878 WES data (see Supplementary Table S1). Arrows point to the data sets on which a

method was assessed. As controls, three callers together with BWA or BWA-MEM as the mapper were also tested on simulated reads with error and NA12878 WES

data.
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tex_var_user_manual.pdf). To assemble error-free reads with
Fermi, we ran the commands ‘run-fermi.pl -e fermi’ and ‘make’,
which perform k-mer frequency-based error correction and con-
struct the FMD index. Unitigs were built and cleaned by the
‘fermi unitig’ and ‘fermi clean’ commands, respectively. Unitig
mapping and variant detection followed the procedure used by
SGVar. Finally, we used FermiKit (fermi2) to call variants from
simulated reads with or without error, following the online user
manual (https://github.com/lh3/fermikit).

De novo assembly-based approaches are expected to be ef-
fective in regions with high levels of divergence and heterozy-
gosity, as a high density of SNPs should help resolve
haplotypes. We thus focused on the highly divergent HLA re-
gion, which encodes antigen-presenting molecules that play es-
sential roles in the immune system [32]. We analyzed the
impact of coverage and divergence on assembly-based variant
detection. Using SGA-PDBG and SGVar as representatives, we
also sought to investigate how sequencing error and k-mer se-
lection might impact de Bruijn graph-based versus string graph-
based assemblers. Reads preprocessing is a key step in de novo
assembly. For the data simulated with sequencing error, the
dumpy base quality score does not fully reflect the characteris-
tic error profile in real Illumina sequencing data. Considering
this, we performed a simple preprocessing by arbitrarily trim-
ming 10 bases from the 30 end. For whole-genome data from
the CEU trio and exome data from NA12878, systematic,
quality-based read filtering and end trimming were applied
(Supplementary Note).

As controls, BWA-backtrack [33] (referred to as BWA) or
BWA-MEM (v0.7.12) [24] together with three callers were also
tested on simulated reads with error and NA12878 exome data
(Figure 1). We previously found that local realignment and base
quality score recalibration, which are recommended by the
Genome Analysis Toolkit (GATK) Best Practices [34, 35], had lit-
tle benefit for the selected methods (Figure 1) [36]. Therefore,
after duplicate marking, we only performed local realignment for
NA12878 WES using the Mills and 1000G gold standard INDELs
(Mills_and_1000G_gold_standard.indels.hg19.vcf.gz). Variants were
identified with FreeBayes (v9.9.2-27) [37], GATK HaplotypeCaller
(GATK HC) (v2.7-2) [34, 38] and Platypus (v0.5.2) [7], following our
previous study [36].

Quality metrics

For simulated data, pre-placed variants were treated as the ‘true
positive’, and the performance was assessed based on sensitiv-
ity, precision and overall genotype concordance, as previously
described [29]. For NA12878 WGS and WES data, we estimated
the sensitivity using the union of two public call lists below as
the proxy for reference call set (‘true positive’). The high-
confidence call set was generated from 11 WGS and 3 WES data
using seven mappers and three callers [39], which is available at
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/
GIAB_integration/NIST_RTG_PlatGen_merged_highconfidence_
v0.2.primitives.vcf.gz. The second call set was merged from
three separate variant lists, which were generated by Cortex,
DISCOVAR and BWA-MEMþGATK HC from 250 bp paired-end
reads of a PCR-free genomic library [1]. The list is available at
ftp://ftp.broadinstitute.org/pub/crd/DiscovarManuscript/vcf/.

Considering the difficulty in defining the exact INDEL bound-
ary, for simulated data, INDELs identified within 10 bp of the pre-
placed ones were counted as matches. For real WES and WGS,
exact matching in genomic position is required. As the reference-
quality sequence is not available for NA12878, we inferred the

precision by (i) checking alignments around method-specific vari-
ants from WES; and (ii) checking long haplotype contigs
assembled with the 2� 250 bp WGS data in the CEU trio.

Results
The six de novo assemblers showed marked differences
on simulated reads

Of the six methods, SGVar, Fermi and fermi2 first assemble
reads into contigs or unitigs, while Cortex and SGA graph-diff
call variant directly from the assembly graph. We first assessed
them (Supplementary Table S2) on simulated error-free data
sets. We plotted sensitivity (Figure 2A–H, Supplementary Figure
S1A–E), precision (Supplementary Figure S1F–J) and genotype
concordance (Supplementary Figure S1K–O) over eight coverage
depths and seven divergence levels.

Overall, Cortex had the lowest SNP (Figure 2A–D) and INDEL
(Figure 2E–H) calling sensitivity in a majority of the cases, sup-
porting the previous finding [1]. It also had low precision
(Supplementary Figure S1F–J) and genotype concordance
(Supplementary Figure S1K–O) at high divergence. Remarkably,
SGVar performed similarly well across different divergence lev-
els, with the highest SNP calling sensitivity (median 94.3%,
Supplementary Figure S1A–E) and genotype concordance (me-
dian 98.6%, Supplementary Figure S1K–O) across all coverage
depths and divergence levels, although it had slightly lower pre-
cision (median 96.8%, Supplementary Figure S1F–J). Like SGVar,
Fermi also had sensitivity largely independent of divergence
level; in part this may be because of the fact that we used the
same tools implemented in SGVar to map unitigs from Fermi
and to identify variants. Fermi and fermi2 required high cover-
age to achieve a high sensitivity (Figure 2A–H), especially in SNP
calling. Unlike Fermi, fermi2 showed a marked reduction in sen-
sitivity at high divergence, resembling the two SGA graph-diff
modes SGA-PDBG and SGA-SG (Figure 2A–H).

INDELs are more difficult to detect than SNPs. Also, it is chal-
lenging to define the exact boundary of INDELs, especially for
those located within microsatellites [12]. Considering this limi-
tation, we counted the called INDELs as true positives if they are
within 610 bp of simulated INDELs. At �5% divergence, SGVar
and Fermi are generally less sensitive than fermi2, SGA-PDBG
and SGA-SG (Figure 2E–H). However, the first two methods
determined the exact boundary for a larger proportion (54.7–
66.6%) of the identified INDELs, compared with 31.7–51.9% by
the other three methods (Supplementary Table S4).

Error correction is a critical component in assembly-based
variant calling. Based on the outcome from error-free reads, we
further assessed SGVar, SGA-PDBG and fermi2 on reads simu-
lated with error. We arbitrarily trimmed 10 bases from the 30

portion of the reads that were simulated at a higher error rate
than the 50 bases. For each of the three methods, the sensitivity
was comparable between error-free reads (Figure 2A–H) and
reads simulated with error after the 10 bp trimming
(Supplementary Figure S2A–H). In SNP calling, overall SGVar
had the highest sensitivity across all the divergence levels
(Supplementary Figure S2A–D). In INDEL calling, SGVar had the
lowest sensitivity at low divergence but the highest sensitivity
at high divergence (Supplementary Figure S2E–H).

For both SGA-PDBG and SGVar in SNP calling, the sensitivity
was highly comparable among error-free reads and error-con-
taining reads with and without 30 end trimming (data not shown).
However, sequencing errors reduced the precision, more obvi-
ously for SGA-PDBG at high coverage (Supplementary Figure S3).
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For 200� simulated reads with error, compared with error-free
reads, SGA-PDBG and SGVar lost 23.9 and 16.2% in precision on
average without 30 end trimming versus 15.3 and 4.1% when 30

end trimming was applied (Supplementary Figure S3). This is
consistent with the finding that de Bruijn graph is more sensitive
to sequencing errors than string graph [27]. Also, for both SGVar
and SGA-PDBG, there was a bigger loss of precision at 200�, com-
pared with the lower coverage data (Supplementary Figure S3). It
has been found that the assembly quality would decrease once
the sequencing depth goes too high [40–42], likely because of the
accumulation of uncorrected sequencing errors.

In parallel, we also tested three haplotype (FreeBayes) or
local de novo assembly-based callers (GATK HC and Platypus) on
simulated reads with error. As we previously found [29], BWA is
not suitable for mapping reads at high divergence (Figure 1). We
thus focused on the methods with BWA-MEM as the mapper. In
SNP calling, Platypus performed poorly at �1% divergence; the
other two callers had a higher sensitivity (96.4% on average)
than SGVar (92.9%) at �1% divergence but performed less well
(44.8–84.3 versus 94.8%) at �5% divergence (Supplementary
Figure S2A–D). Overall SGVar was less sensitive in INDEL detec-
tion (Supplementary Figure S2E–H), in particular when com-
pared with GATK HC and Platypus that are known to be ideal for
INDEL calling [29]. Considering the limitation of simulated
reads, we further assessed SGVar and SGA-PDBG on real WGS
and WES data.

Variant calling in real WGS data

We have investigated six de novo assembly-based variant calling
methods on simulated reads. However, real sequencing reads
are far more complex. In particular, they contain platform- and
sequence context-specific bias (like GC bias) and error. Such
bias may lead to low or no coverage in some regions [43]. For
WES, the actual coverage also depends on the exome enrich-
ment platforms [44]. In addition, de novo assembly is extremely
sensitive to sequencing error. Without proper correction,
sequencing error could markedly reduce the assembly quality
[45, 46]. Sequencing error, read length, divergence level and
coverage depth are key factors in de novo assembly-based vari-
ant calling. It will be critical to fully assess the performance of a
method over these key factors using real sequencing data.

The most comprehensive call set in NA12878 was generated
from 250 bp paired-end reads of a PCR-free genomic library [1],
using two assemblers (Cortex and DISCOVAR) together with
BWA-MEMþGATK HC, a widely used mapping-based pipeline.
This list accounts for a majority of the reference call set com-
piled in this study. The same type of WGS data is available in a
CEU trio (NA12878, NA12891 and NA12892), allowing us to first
assess these methods and the quality of the reference call set
on WGS before applied to WES data.

We first assessed SGVar and SGA-PDBG on the 250 bp PCR-
free WGS from NA12878. SGVar had a much higher SNP and
INDEL sensitivity than SGA-PDBG in the HLA region, particularly

Figure 2. Sensitivity in SNP and INDEL detection by six de novo assemblers. (A–D) SNP sensitivity at four coverage depths. (E–H) INDEL sensitivity at four coverage

depths. Reads were simulated without introducing error. In estimating the number of matches in INDELs, we extended the coordinates of the simulated INDELs

by 6 10 bp before compared with the called INDELs. SGA-PDBG¼SGA paired de Bruijn graph; SGA-SG¼SGA string graph.
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in the six highly divergent genes (HLA-A, HLA-B, HLA-C, HLA-
DQA1, HLA-DQB1 and HLA-DRB1) (Table 1). For example, in iden-
tifying known INDELs, SGA-PDBG had a sensitivity of only �10%,
compared with nearly 70% by SGVar. While SGVar performed
similarly between simulated reads (Figure 2E–H, Supplementary
Figure S2E–H) and the 250 bp WGS (Table 1) in INDEL calling,
SGA-PDBG was much worse in WGS (Table 1) than in simulated
reads (Figure 2E–H, Supplementary Figure S2E–H). Obviously,
SGA-PDBG is not suitable for INDEL detection.

DISCOVAR is a de Bruijn graph-based assembler developed
specifically for variant detection from long (250 bp) paired-end
reads of PCR-free library [1]. To understand how SGVar performs
relative to DISCOVAR, we intersected the list of known variants
(SNPs and INDELs) identified by SGVar with the two public lists
by DISCOVAR and BWA-MEMþGATK HC [1]. In the HLA region,
39.3% (10 266 of 26 149) of the known variants identified by
SGVar were not in the DISCOVAR list, compared with only 7.7%
(2005 of 26 141) not in the GATK HC list (Table 2). The percent-
ages of SGVar-specific calls were nearly doubled in the six
highly divergent HLA genes (Table 2). The results suggested that
DISCOVAR is much less sensitive than SGVar in the HLA region.

We next assessed whether SGVar can achieve long-range
phasing, using PCR-free 250 bp WGS data from the CEU trio.
We focused on HLA-DQB1 and HLA-DRB1, two of the most highly
divergent HLA genes. We first used BLAT to identify two
longest contigs from NA12878 (daughter) that best matched the
alleles from each of the two genes in the international
ImMunoGeneTics (IMGT)/HLA database (ftp://ftp.ebi.ac.uk/pub/

databases/ipd/imgt/hla/fasta/). The identified four contigs
(4794–10 094 bp) were used to pull out the best hits from contigs
assembled in NA12891 (father) and NA12892 (mother) via BLAT.
For both genes, SGVar successfully separated the two
alleles in NA12878 (Table 3, Figure 3). For HLA-DRB1, allele
DRB1*03:01:01:01 (represented by contig Ctg-1323) in NA12878 is
from NA12891 (Ctg-1461); the two contigs perfectly matched HLA
haplotype 6_qbl_hap6 but showed only 93% similarity with the
hg19 reference. The second allele DRB1*01:02:01 (Ctg-1036) is from
NA12892 (Ctg-23443), with the first 7439 bp from Ctg-1036 fully
matching Ctg-23443. For HLA-DQB1, allele DQB1*02:01:01 (matches
6_qbl_hap6) is from NA12891. The second allele DQB1*05:01:01:03
(Ctg-9038, 10 042 bp) fully matched Ctg-11639 (14 010 bp) from
NA12892. These results strongly suggest that SGVar can achieve
long-range phasing in highly divergent regions.

A closer examination of a 11.7 kb phased region within HLA-
DRB1 of NA12878 revealed that DISCOVAR missed nearly 70%
(173 of 249) of the SNPs carried by alleles DRB1*03:01:01:01 and
DRB1*01:02:01 and BWA-MEMþGATK HC missed 17% (42 of 249)
of them (Figure 3). In another 10.1 kb phased region from HLA-
DQB1, DISCOVAR and BWA-MEMþGATK HC missed 79.3% (463 of
584) and 9% (52 of 584) of the SNPs identified by SGVar (Figure 3).
Therefore, while the public list is likely of high quality in ordinary
regions [1], it is less complete in the HLA region. As reliable as-
sessment of variant discovery methods strongly depends on the
quality of the reference call set, there is a need to generate a
more complete and accurate reference call set for the HLA region.

Using WGS data from the CEU trio, we found that some con-
tigs were partially aligned to the reference by BWA-MEM, show-
ing stretches of hard- or soft-clipped bases at the contig ends
(represented by ‘H’ or ‘S’ in the CIGAR string of the BAM file). We
argued that some of the clipped bases likely represent ex-
tremely divergent bases, large INDELs or structural variation.
Based on extensive manual inspection of alignments between
contigs from the six HLA genes (Table 1) in NA12878 and the
human genome reference as well as the eight HLA haplotype se-
quences available in the University of California, Santa Cruz gen-
ome browser, we tested a two-tier contig mapping strategy
aiming to improve alignment accuracy. All contigs were first
mapped by BWA-MEM, and those showing hard- or soft-clipping
were remapped by BLAT. As 99.4% of the known INDELs [in Single
Nucleotide Polymorphism Database (dbSNP) v138] from chromo-
some 6 have a length of 20 bp or shorter, the known INDELs iden-
tified by BWA-MEM and BWA-MEMþBLAT were mostly <20 bp in

Table 1. Percentage of variant calling sensitivity from NA12878 WGS

Type SGVar SGA-PDBG

HLA 6 genes HLA 6 genes

Known SNP 94.4 97.2 88.5 85.8
Novel SNP 61.8 79.3 47.9 54.1
Total 92.2 96 85.7 83.7
Known INDEL 69.7 67.6 8.9 14.5
Novel INDEL 39 25.7 8.6 10.8
Total 55 49.4 9.3 14

Note: Contigs generated by SGVar were mapped to the hg19 reference using

BWA-MEM. Known variants are those in dbSNP v138. The 6 genes are HLA-A,

HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1. The 250 bp PCR-free WGS is

from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data.

Table 2. Shared and unique known variants from NA12878 WGS and WES

Data Type Region SGVar versus DISCOVAR SGVar versus GATK HC

Shared SGVar only DISCOVAR only Shared SGVar only GATK HC only

WGS SNP HLA 14 985 9701 423 22 830 1857 1178
SNP 6 genes 660 2169 7 2458 369 64
INDEL HLA 898 565 285 1306 148 545
INDEL 6 genes 23 112 8 111 20 56

WES SNP HLA 614 346 28 860 98 53
SNP 6 genes 159 248 6 361 45 26
SNP Non-HLA 1320 105 73 1358 67 66
INDEL HLA 15 11 5 21 5 11
INDEL 6 genes 2 9 2 8 3 8
INDEL Non-HLA 79 27 32 80 26 28

Note: Known variants (in dbSNP v138) detected by SGVar were compared with two public call sets identified by DISCOVAR and BWA-MEM with GATK HC [1]. The 6 HLA

genes (6 genes) are HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1. The WGS data are from 250 bp paired-end sequencing of a PCR-free library (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/phase3/data). For WES, the average number of variants identified from the two 150 bp data sets (Supplementary Table S1) is shown.
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size (Supplementary Figure S4A and B). However, remapping with
BLAT identified large (>90 bp) novel INDELs missed by BWA-MEM
alone (Supplementary Figure S4C and D).

Variant calling in real WES data

To develop a robust workflow across different capture plat-
forms, read lengths and genomic regions, we finally assessed
SGVar and SGA-PDBG, together with the three mapping-based
pipelines, on eight NA12878 WES data sets. These data sets
were generated using Roche (100 bp) and Illumina (76 and
150 bp) exome capture kits (Supplementary Table S1). Analysis
of the 150 bp WES data indicated that DISCOVAR missed a

significant portion of variants in the HLA region, as demon-
strated in the WGS data (Table 2). In contrast, in the non-HLA
region, over 90% of the known variants were shared between
DISCOVAR and SGVar. Therefore, unlike SGVar that performs
well across a wide range of divergence (Figure 2A–H, Figure 4A
and B, Supplementary Figure S2A–H), DISCOVAR is much less
sensitive in the HLA region than in the non-HLA regions (Table 2).
On the other hand, SGVar is more sensitive than SGA-PDBG
(Figure 4A and B), especially in INDEL detection (data not shown),
consistent with the finding from WGS (Table 1).

We next compared SGVar with the three mapping-based
methods. In SNP calling, SGVar was slightly less sensitive (1.5–
3.0% lower) in the non-HLA regions but generally more sensitive

Figure 3. SGVar phasing of SNPs in HLA-DRB1 and HLA-DQB1. Haplotype contigs were assembled from 250 bp PCR-free WGS in a CEU trio. Contig sequences were com-

pared with the IMGT/HLA database (ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/fasta/) and with hg19 reference sequence via BLAT (Table 3), by which the matching

between alleles from NA12878 and those in NA12892 or NA12891 was inferred. To identify shared and method-specific SNP calls, phased SNPs in the indicated contigs

from NA12878 were intersected with two public variant lists identified by DISCOVAR and GATK HC, also from 250 bp PCR-free WGS [1].

Table 3. SGVar assembly of HLA-DQB1 and HLA-DRB1 from WGS in a CEU trio

Sample Gene Contig Length (bp) Best hit in IMGT/HLA Best hit in eight haplotypes

Allele Match (bp) Mismatch (bp) Best hit Span (bp) Sim (%)

NA12892 HLA-DQB1 Ctg-11639 14 010 DQB1*05:01:01:03 7090 0 6 14 020 97.4
NA12891 HLA-DQB1 Ctg-4703 5373 DQB1*06:02:01:01 4556 0 6 5373 100.0
NA12878 HLA-DQB1 Ctg-9038 10 042 DQB1*05:01:01:03 7090 0 6 10 054 96.5
NA12891 HLA-DQB1 Ctg-568 4724 DQB1*02:01:01 3963 0 6_qbl_hap6 4724 100.0
NA12878 HLA-DQB1 Ctg-6032 4794 DQB1*02:01:01 3985 0 6_qbl_hap6 4794 100.0
NA12892 HLA-DRB1 Ctg-23443 11 257 DRB1*01:02:01 3654 1 6 13 910 99.2
NA12891 HLA-DRB1 Ctg-14574 10 605 DRB1*15:01:01:02 6292 0 6 10 605 100.0
NA12878 HLA-DRB1 Ctg-1036 10 094 DRB1*01:02:01 6305 5 6 10 087 97.9
NA12892 HLA-DRB1 Ctg-23796 9266 RB1*01:02:01 7764 6 6 9615 96.6
NA12891 HLA-DRB1 Ctg-1461 5305 DRB1*03:01:01:01 5305 0 6_qbl_hap6 5305 100.0
NA12878 HLA-DRB1 Ctg-1323 5004 DRB1*03:01:01:01 5004 0 6_qbl_hap6 5004 100.0

Note: Contigs were generated at 31-mer. BLAT was used to search contig sequences against the IMGT/HLA database (ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/

fasta/) and the eight different haplotypes. The 250 bp PCR-free WGS is from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data. Note that the first 7439 bp from Ctg-

1036 perfectly match Ctg-23443 in HLA-DRB1 and Ctg-9038 perfectly matches a 10 042 bp region from Ctg-11639 in HLA-DQB1. NA12878, daughter; NA12892, mother;

NA12891, father; Sim, similarity.
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in the HLA region (Figure 4A), consistent with the trend over
different divergence levels observed in simulated data
(Supplementary Figure S2A–D). For example, in the six HLA
genes, SGVar was �3% more sensitive than GATK HC and 15–
28% more sensitive than FreeBayes and Platypus (Figure 4A). In
INDEL calling, SGVar was less sensitive in both HLA and non-

HLA regions (Figure 4B). We found that some of the INDELs de-
tected by SGVar extended beyond of the capture regions. As we
limited the analysis to the capture regions, the chance of iden-
tifying long INDELs would have been reduced. Indeed, by target-
ing the entire chromosome 6 rather than just the capture
regions, SGVar identified large INDELs up to 800 bp that were

Figure 4. Sensitivity of known variant detection in NA12878 WES. (A) Known SNP sensitivity. (B) Known INDEL sensitivity. The mean and SD were plotted for WES data

listed in Supplementary Table S1. Chr6 variants were identified by SGVar, SGA-PDBG and three mapping-based approaches and separated into known (in dbSNP v138)

and novel ones. In mapping-based approaches, reads were mapped to hg19 reference using BWA-MEM. We required exact match in genomic coordinates when calcu-

lating INDEL sensitivity. SGA-PDBG had a low sensitivity in INDEL detection and was not shown here. The six HLA genes (‘6 gene’) are HLA-A, HLA-B, HLA-C, HLA-DQA1,

HLA-DQB1 and HLA-DRB1.
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missed by the mapping-based methods. The result supports the
notion that de novo assembly-based approach should be able to
identify large (�30 bp) INDELs [47]. Here, SGVar sensitivity is
likely underestimated. In the HLA region, the reference call set
is less complete (Figure 3). Also, the vast majority of the variants
in the reference were generated by BWA-MEM together with
GATK HC, which biases against SGVar in the comparison, as the
three mapping-based approaches also used BWA-MEM as the
mapper.

On the other hand, in SNP calling from the HLA region,
SGVar was about 5% more sensitive on the 100 and 150 bp data
sets, compared with the 76 bp data set (Figure 4A). The differ-
ence was much less obvious in the non-HLA regions, indicating
that longer reads favor SGVar more in highly divergent regions.
Next, we focused on one of the 150 bp WES data
FC1_NA12878_S1_S4 (Supplementary Table S1). Compared with
the public call set, SGVar had 80 unique known SNPs but missed
56 in the HLA region versus 63 and 75 in the non-HLA region. To
get a rough estimation of the precision of SGVar, we assessed
authenticity of the above 80 known SNPs by intersecting with
those identified from 250 bp WGS in the CEU trio and further
checking the BWA-MEM alignments between WES reads and
the hg19 reference in the Integrative Genomics Viewer [48].

Of the 80 known SNPs unique to SGVar, about half (41) were
also identified by SGVar in the WGS data from both NA12878
and one of the parents, supporting the fidelity of these calls
(Supplementary Table S5). The 41 SNPs were from long (2.3–
10 kb, WGS) haplotype contigs assembled in four of the highly
divergent genes, including HLA-DQA1 (9), HLA-DQB1 (4), HLA-
DRB1 (15) and HLA-DRB5 (13). The other 39 SNPs were missed in
NA12878 WGS, including 7 that were fully supported by the
alignments in WES. We thus believed that 60% (48 of 80) of the
SGVar-specific known SNPs represent true variants. The re-
maining 32 SNPs are likely low-confidence calls or false posi-
tives. Nine of them were supported by only two reads (1),
flanked by INDELs in low-complexity regions (2) or called from a
contig erroneously mapped to the reference (6). The other 23
(32�9) were mostly supported by low-quality bases, with 16 in
gene MUC21. These low-quality bases had >10� coverage and
were located in the middle of the reads, remaining the same
after quality-based 30 end trimming and error correction.
Apparently, the mapping-based approaches would not identify
these SNPs, as they only consider bases with Q � 17. Therefore,
these calls may represent context-specific sequencing errors in
Illumina reads [49].

We further checked the 56 known SNPs in the HLA region
that are present in the public call set but missed by SGVar
(Supplementary Table S5). Twenty-nine likely represent false
positives in the public call set, as SGVar also missed them in
NA12878 WGS. The other 27 that were identified by SGVar from
the WGS but not from WES are probably false negatives. Of the
27, 12 were identified from WES with 31-mer, which we did not
include in the final SGVar call list that was generated using 51-
mer to 91-mer. Nine SNPs were in regions with no (3) or only
2–6� total coverage (6), likely reflecting low capture affinity. The
other six were in regions with reasonable (� 4�) coverage for
the alternative allele.

For the known INDELs detected from FC1_NA12878_S1_S4 in
the capture regions, SGVar had 32 unique INDELs and missed 40
in the public call set. We manually checked the alignments
around some of these INDELs (Supplementary Table S5). Of the
32, 19 were also identified by the mapping-based approaches
and three were supported by the alignments (�7 supporting
reads). For another six, the two haplotype contigs differed at the

polymorphic sites, with one haplotype having an INDEL and the
second haplotype having an SNP (3), or one haplotype having an
insertion and the second haplotype having a deletion (3). The
remaining four INDELs showed strong allele bias, with only 2–5
supporting reads (of >50). Therefore, we believed that nearly
90% (28 of 32) of the SGVar-specific known INDELs are true
variants.

On the other hand, SGVar missed 40 known INDELs in the
public call set (Supplementary Table S5). Nineteen of them
likely represent WGS-specific calls or false positives in the pub-
lic call set, including 12 that overlapped the contigs without an
INDEL and 7 from regions where no contig was assembled. For
another five, SGVar reported the INDELs at a slightly different
location or with a different genotype compared with the public
call set. The remaining 16 were identified in contigs assembled
at individual k-mers; however, they were not reported in the
final list after merging the calls from 51-mer to 91-mer by the
GATK tool ‘CombineVariants’, suggesting a need for improving
the consolidation of INDEL calls. Collectively, our analysis sup-
ports the power of de novo assembly in the detection of INDELs
[47], especially those in complex genomic regions.

SGVar is less impacted by the k-mer selection
than SGA-PDBG

In de Bruijn graph-based assembly, k-mer represents the error
correction and overlap parameter. In string graph-based assem-
bly, k-mer is only used in error correction. Therefore, k-mer as a
key factor may impact the two approaches differently in variant
discovery. To gain a better understanding of the possible differ-
ences, we tested different k-mers for SGA-PDBG and SGVar,
using 250 bp WGS and 150 bp WES data (FC1_NA12878_S1_S4)
from NA12878 (Figure 5A and B, Supplementary Figure S5A
and B).

In SGA-PDBG assembly of the HLA region from WGS, we
observed a maximum difference of 13% in known SNP sensitiv-
ity among the four k-mers (Supplementary Figure S5A). In con-
trast, the variability was over 4-fold smaller for SGVar
(Supplementary Figure S5B). A similar pattern was observed in
WES (Figure 5A and B). We further checked overlap of known
SNPs identified from WES at different k-mers (Supplementary
Figure S6A–D). For SGVar, 81% (784 of 968) of the known SNPs
were shared in the HLA region (Supplementary Figure S6A) ver-
sus only 38.6% (404 of 1046) for SGA-PDBG (Supplementary
Figure S6C). Their difference dropped to only 6% in the non-HLA
regions (Supplementary Figure S6B and D). These results indi-
cate that, for SGA-PDBG, multiple k-mers are needed to maxi-
mize sensitivity in highly divergent regions like HLA, which will
require more computing and extra effort to consolidate differ-
ent variant lists. In this aspect, the less dependence on k-mer
selection makes SGVar particularly appealing.

Discussion

De novo assembly is increasingly used in haplotype construction
from WGS, more suitable for the detection of large INDELs
and complex variants. In these instances, mapping-based
approaches are less effective. Current assemblers often imple-
ment de Bruijn graph, a data structure operating on k-mers
rather than on reads [50]. We developed SGVar, a string graph-
based, chromosome-scale de novo assembly pipeline for variant
discovery. To ensure haplotype assembly and minimize noise,
we have implemented highly stringent reads filtering, reads
trimming, k-mer-based error correction and contig filtering in
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SGVar. Using both reads mapped to Chr6 and unmapped reads,
SGVar achieved high sensitivity and precision in WES. It outper-
formed all tested de Bruijn graph- and string graph-based as-
semblers, especially in highly divergent regions like HLA. There
are over 100 highly divergent regions in the human genome [2,
51], from which variant discovery has been challenging. SGVar
should be most effective in those regions.

The performance of SGVar is generally independent of diver-
gence and coverage, making it superior to DISCOVAR, Cortex,
SGA graph-diff and fermi2 that have a much lower sensitivity at
high divergence, and to Fermi that requires high-sequencing
depth. Critically, SGVar could achieve long-range phasing up to
several kilobases and detect large INDELs in WES, more notably
in WGS owing to the continuity in read coverage. In NA12878
WGS, a 10.1 kb region from HLA-DQB1 harbors 584 phased SNPs,
and another 11.7 kb region within HLA-DRB1 contains 249
phased SNPs. This finding has significant implication in bio-
medical studies, as there is increasing evidence that some dis-
eases are associated with multiple linked variants [14, 52, 53].
Although short reads carry limited phase information if they
contain two or more variation sites [54], long-range phasing
through de novo assembly increases the chance of identifying
variants linked to complex diseases. In this aspect, the incorp-
oration of mate-pair or chromosome conformation capture
(3C)-based sequencing data into the assembly will help resolve
haplotypes over large regions [14, 55]. We expect an increasing
role for haplotype construction in genomic-based disease diag-
nosis [53].

Existing methods perform either whole-genome assembly or
local assembly within a few kilobases. In local assembly, only
pairs with at least one read mapped to particular regions are
included [1, 12]. We argue that some of the unmapped pairs are
likely derived from regions of high divergence, complex vari-
ation or large INDELs, or from regions currently missed in the
reference. It is estimated that 5–40 Mb euchromatic sequences
are missed from the human reference genome [2], including
some that are associated with complex disease [56–58]. To cir-
cumvent this limitation, SGVar performs chromosome-level as-
sembly, which takes pairs with one or both reads mapped to a
given chromosome and unmapped pairs. The inclusion of

unmapped pairs should be particularly helpful for de novo as-
sembly in highly divergent regions. Also, the chromosome-level
assembly approach provides the flexibility to target one or a few
chromosomes, or to speed up whole-genome assembly through
parallel computing.

The SGVar pipeline is designed for chromosome-level as-
sembly. However, some studies may focus on specific regions or
genes, like key genes within the HLA region. Also, targeted rese-
quencing of clinical samples is widely used in biomedical stud-
ies. Thus, implementing a separate module for regional
assembly will extend the application of SGVar. On the other
hand, the detection of INDELs, especially large ones, has been
challenging for most methods [12, 59]. We found that
remapping of contigs with hard- or soft-clipping by BLAT im-
proves the detection of large INDELs. Further, effort is needed to
optimize SGVar in INDEL detection.

The power of de novo assembly depends on factors like read
length and quality, sequencing depth, assembly algorithms and
parameter settings [2, 60]. One of the key parameters is k-mer
size. In de Bruijn graph, k-mer represents the overlap param-
eter. The choice of a longer k-mer, which will reduce the k-mer
coverage, improves the precision at the cost of sensitivity.
Conversely, a shorter k-mer would result in more false posi-
tives. It is recommended that de Bruijn graph-based assemblers
should run multiple k-mers to increase the sensitivity, as imple-
mented in Cortex [3]. However, extra effort is required to con-
solidate the multiple variant sets into a unified list. In string
graph-based assemblers like SGVar, the k-mer is used in error
correction but not in the assembly step. Despite the importance,
the setting of key parameters is often less well justified.
Therefore, a systematic assessment of k-mer size and other key
parameters will be needed to provide recommendations for end
user, which should enhance the future application of de novo as-
semblers in variant discovery.

Conclusion

Complete and accurate variant detection is critical, as we move
into precision-based medical practice. We have developed the
SGVar pipeline for variant discovery from WES data. SGVar took

Figure 5. Known SNP sensitivity in WES at different k-mers. The 150 bp WES data (FC1_NA12878_S1_S4, Supplementary Table S1) were used. (A) SGA-PDBG. (B) SGVar.

All: the union of known SNPs identified from all k-mers; 6 genes: HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1 and HLA-DRB1.
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advantage of the SGA data structure and implemented key
modules toward haplotype assembly. By splitting mapped reads
over individual chromosomes and also including unmapped
reads in the assembly, SGVar is memory efficient and outper-
forms other de novo assembly-based approaches, especially in
regions of high genomic complexity like HLA. Specifically,
SGVar is robust to sequencing errors, coverage and divergence
variability and k-mer selection. Though limited by the design to
target only exons and some other important genomic regions in
WES, SGVar can detect large INDELs and achieve long-range
phasing, which is more striking in WGS. However, the other de
novo assemblers are less powerful at high divergence or low-
sequencing depth. Future work will be needed to develop mod-
ules for local assembly of selected regions, such as those in the
targeted gene sequencing panels, and to enhance SGVar in
INDEL detection.

Key Points

• Mapping-based approaches represent the major choice
in variant discovery through WES or WGS, but they
are less sensitive to large INDELs and variants in com-
plex genomic regions.

• We have developed SGVar, a string graph-based de
novo assembly pipeline for variant discovery. In con-
trast with mapping-based approaches that provide lit-
tle phasing information, SGVar achieves long-range
phasing in the most divergent HLA region.

• Comparison of SGVar with another five variation-
aware de novo assemblers has revealed that SGVar is
robust to sequencing error, k-mer size and variability
in coverage and divergence.

• Unlike SGVar, Cortex, fermi2 and SGA graph-diff are
less sensitive at high divergence, and Fermi is less
sensitive at low-sequencing depth.

• NA12878 has been widely used in benchmark study of
variant calling. While the public call set from NA12878
is of high quality in ordinary regions, it is less accurate
and complete in the HLA region.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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