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Abnormal regulation of tau phosphorylation and/or alternative splicing is associated with the development of a large (>20) group
of neurodegenerative disorders collectively known as tauopathies, the most common being Alzheimer’s disease. Despite intensive
research, little is known about the molecular mechanisms that participate in the transcriptional and posttranscriptional regulation
of endogenous tau, especially in neurons. Recently, we showed that mice lacking Dicer in the forebrain displayed progressive
neurodegeneration accompanied by disease-like changes in tau phosphorylation and splicing. Dicer is a key enzyme in the
biogenesis of microRNAs (miRNAs), small noncoding RNAs that function as part of the RNA-induced silencing complex (RISC)
to repress gene expression at the posttranscriptional level. We identified miR-16 and miR-132 as putative endogenous modulators
of neuronal tau phosphorylation and tau exon 10 splicing, respectively. Interestingly, these miRNAs have been implicated in
cell survival and function, whereas changes in miR-16/132 levels correlate with tau pathology in human neurodegenerative
disorders. Thus, understanding how miRNA networks influence tau metabolism and possibly other biological systems might
provide important clues into the molecular causes of tauopathies, particularly the more common but less understood sporadic
forms.

1. Introduction

The discovery of small noncoding miRNAs uncovered an
intriguing additional level to the fine-tuning of the tran-
scriptome and proteome. Since their discovery almost 20
years ago [1, 2], research has progressed considerably towards
gaining a better understanding of the impact of the complex
network of gene regulation by miRNAs on health and disease.
This is well documented in the cancer field, for instance,
where miRNAs are increasingly acknowledged as potential
diagnostic and therapeutic agents [3, 4]. Like protein-coding
genes, miRNA genes are transcribed from the genome mainly
from RNA polymerase II (reviewed in [5]). To date, more
than 1000 miRNA genes have been identified in humans
and 750 in mice, some of which are specifically expressed in
the brain [6–10]. In the cytoplasm, the endonuclease Dicer
cleaves miRNA precursors (approximately 70 nucleotides in
length) to generate mature (approximately 21 nucleotides in

length) double-stranded RNAs. These are loaded as single-
stranded RNAs into the RNA-induced silencing complex
(RISC), composed of Argonaute (Ago) proteins, to negatively
regulate gene expression, albeit some exceptions have been
documented [11, 12]. This regulation is achieved through
binding with imperfect complementarity mainly to the 3′

untranslated region (3′UTR) of target messenger RNAs
(mRNAs), leading to translation inhibition or degradation.
Both in vitro and in vivo studies have shown that alterations
of a single miRNA (or miRNA family) could have profound
effects on hundreds of target genes [13, 14], thus possibly
implicating multiple biological pathways.

Abnormal phosphorylation and insoluble deposition of
tau are observed in more than 20 neurodegenerative disor-
ders, collectively known as tauopathies (reviewed in [15]).
In Alzheimer’s disease (AD), the most common tauopathy,
hyperphosphorylated tau accumulates in the somatoden-
dritic compartment of neurons, aggregates, and finally forms
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neurofibrillary tangles (NFTs). Other tauopathies include
frontotemporal lobar degeneration (FTLD), Pick’s disease,
progressive supranuclear palsy (PSP), corticobasal degen-
eration (CBD), and progressive aphasia, all of which are
characterized by neuronal and/or glial tau inclusions.

Although the exact physiological role of tau remains
under scrutiny, it is proposed to function to promote micro-
tubule assembly, stabilization, spacing, and parallel-ordered
organization, which are necessary for axonal transport and
neurite outgrowth (reviewed in [16]). Tau binds to several
proteins (reviewed in [17]) and therefore could participate in
various other paradigms, including targeting the Src kinase
Fyn to dendrites [18]. In the central nervous system, tau
is expressed as six isoforms, resulting from inclusion or
exclusion of alternative exons 2, 3, and 10 [19] (reviewed in
[20]). Mutations in or surrounding tau exon 10, leading to an
imbalance in tau isoforms with 3 or 4 microtubule-binding
domains, can cause familial FTLD-17. Thus, tau missplicing
can cause neurodegeneration and dementia in adulthood.
Changes in tau isoforms have also been observed in various
other tauopathies, including PSP and Pick’s disease or
myotonic dystrophy (reviewed in [21]); however, the under-
lying mechanisms involved in abnormal tau splicing and
neurodegeneration remain ill-defined. Moreover, whether
splicing abnormalities function upstream or concomitantly
with tau hyperphosphorylation to promote neurodegenera-
tion remains an open debate.

To date, several groups have identified factors involved
in the regulation of tau splicing. These include regulatory
sequences (cis-elements) within or around tau exon 10 as
well as specific regulatory proteins (trans-acting factors)
(reviewed in [20]). Similarly, a number of enzymes have been
proposed to regulate tau phosphorylation (reviewed in [22]).
Although these studies have been insightful, they were mostly
based on artificial and/or overexpression paradigms, which
makes it difficult to extrapolate these observations to endoge-
nous tau.

In 2006, Bilen et al. [23] showed a remarkable enhance-
ment of tau-mediated cell death in Drosophila cells upon
suppression of miRNA maturation. Specifically, the authors
showed that retinal degeneration caused by the expression of
normal or mutant (R406W) human tau in vivo was enhanced
by loss of R3D1/loquacious, a double-stranded RNA binding
protein that is required for the activity of Dcr-1 (Dicer homo-
logue) in miRNA processing. Interestingly, upregulation of
bantam suppressed tau-induced degeneration, suggesting
that this miRNA could mitigate tau-induced neurotoxicity.
However, as bantam is not conserved in humans, it is
tempting to speculate that other miRNAs play a similar role
in the mammalian brain. More recently, a neuronal miRNA,
miR-128, was shown to modulate the expression of BAG2,
a cochaperone potentially involved in tau degradation and
aggregation in cultured COS-7 cells and in primary neurons
[24]. Our recently published data indicate that conditional
knockout (cKO) of Dicer (resulting in a global reduction
in miRNA production) in the adult mouse brain results in
disease-like hyperphosphorylation of endogenous tau [25].
Moreover, the Dicer mutant mice display changes in tau exon
10 splicing [26], as seen in various tauopathies including

PSP and Pick’s disease. In this paper, we highlight salient
observations with regard to these studies and highlight out-
standing questions related to miRNA research in tauopathies.

2. Tau Phosphorylation Regulation by
the miR-15 Family

Tau is a phosphoprotein that contains more than 80 potential
phosphorylation sites (reviewed in [27]). It is generally
well accepted that tau phosphorylation is important for
microtubule binding, whereas phosphorylation causes tau to
detach from microtubules. Hyperphosphorylation, defined
as increased phosphorylation of physiological sites and addi-
tional phosphorylation at pathological sites, characterizes
insoluble aggregates of tau. However, in its unphosphory-
lated form, under thermal stress, tau localizes to the nucleus,
where it protects DNA from double-stranded DNA damage
[28]. A phosphorylated pool of tau could also localize
to somatodendritic compartment as well as the dendritic
spine to modulate neuronal plasticity and glutamatergic
transmission [18]. Tau phosphorylation is very sensitive
to intrinsic and extrinsic changes (e.g., heat, cold, stress,
and starvation) [29–32]. Thus, any changes in the delicate
balance between the tau kinases and phosphatases could have
serious biological consequences, and the identification of
these regulatory enzymes in vivo is of particular importance.
It is noteworthy that some of those central key kinases also
regulate indirectly tau splicing through phosphorylation of
splicing factors [33–36]. Together, deregulation of kinase
and/or phosphatase activity could be dually detrimental
towards tau splicing and phosphorylation, which synergis-
tically would promote tau aggregation.

As general posttranslational regulation of gene expres-
sion, miRNAs are potential modulators of kinase, phos-
phatase, and/or splicing factor expression. While studying
the effects of Dicer loss in the brain, we observed significant
changes in endogenous tau phosphorylation and splicing
[26]. This was demonstrated at the RNA and protein
levels using, RT-PCR, 2D electrophoresis and tau phospho-
specific antibodies. Because of using the Cre-LoxP system,
Dicer inactivation was limited to neurons, and in particular
postmitotic pyramidal neurons. It is noteworthy that only
a few studies have documented changes in endogenous tau
phosphorylation in vivo, as most biological models express
exogenous and/or mutated human tau. Remarkably, several
phosphoepitopes related to disease, including serine 422,
were increased in the Dicer mutant mice when compared
with controls [25]. Unfortunately, given the rather quick
lethality associated with Dicer loss (approximately 4 weeks),
we could not determine whether tau hyperphosphorylation
concurred before or after neurodegeneration. Nevertheless,
these results provide a proof of concept that miRNA haploin-
sufficiency causes abnormal tau hyperphosphorylation and
missplicing.

As stated above, several tau kinases and phosphatases
have been identified, some of which are believed to con-
tribute significantly to tau hyperphosphorylation in vivo.
In attempt to identify such enzymes in the Dicer cKO
mice, we performed whole-genome microarrays and western
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Figure 1: Potential role of miRNAs in tau metabolism regulation. (a, b) Two models are shown demonstrating how specific miRNAs could
be involved in the regulation of tau phosphorylation (and aggregation) and/or tau exon 10 alternative splicing. Note that some miRNAs are
affected in disease conditions (in green, downregulated in AD; in red, downregulated in PSP). Whether other miRNA target effectors are
involved in the physiological and/or pathological regulation of tau metabolism remains to be explored. Any changes in the level or function
of these miRNAs could have serious biological consequences, including tau hyperphosphorylation and aggregation and an imbalance in
tau microtubule-binding repeats (encoded in tau exon 10, giving rise to either four 4R-tau or 3R-tau). Regulation of tau exon 10 splicing
by PTBP1 or PTBP2 may be direct or may implicate other coregulators such as TDP-43 or PSF, both of which have been shown to either
regulate PTBP2 expression or regulate PTBP splicing and repress tau exon 10 inclusion [26, 52–54].

blot analyses. These experiments led to the identification
of ERK1/MAPK3 (and possibly ERK2/MAPK1) as a major
regulator of neuronal tau phosphorylation in vivo, at least
in this model. In line with this observation, several ERK1-
dependent epitopes were hyperphosphorylated in the Dicer
mutant mice. Of course, several other enzymes can poten-
tially contribute to tau phosphorylation misregulation in this
and other models, and in particular disease conditions in
humans. In line with this hypothesis, a number of proposed
tau kinases, including GSK3β and JNK/MAPK8, are prone to
miRNA regulation in various cell types [37, 38]. Neverthe-
less, it is interesting to observe that ERK phosphorylation is
increased in tau-positive neurons in AD and other tauopa-
thies [39–41]. In addition, ERK is essential for brain develop-
ment and involved in neuronal death [42, 43]. Specific gene
knockout mouse models are required to assess the role of
these proteins in the regulation of tau phosphorylation and
neurodegeneration in vivo.

Although it is a conceptually crude experimental
approach, the Dicer cKO mice provide a unique and unbiased
model to study global miRNA function in the brain. To
identify miRNAs involved in the regulation of ERK1 (and
consequently tau phosphorylation), we used several predic-
tion programs that are available online, including TargetScan
(http://targetscan.org/). This program identified a number of
potential miRNA-binding sites in the 3′UTR of ERK1. Our
functional assays provided the validation that several mem-
bers of the miR-16 family (miR-16, -15, -195, -497) could
directly modulate endogenous ERK1 and tau phosphoryla-
tion in neuronal cells in vitro, including rat primary neurons.

Of mention, both endogenous miR-16 and tau are enriched
in distal axons of sympathetic neurons [44]. Intriguingly,
miR-15a and miR-15b are downregulated in AD brain and
cerebrospinal fluid, respectively [25, 45, 46], providing
clinical relevance for these observations. Moreover, miR-15
targets the proapoptotic protein Bcl-2, whose protein levels
are increased in AD [47–49]. In addition, miR-16 overex-
pression could regulate APP expression in vivo in the mouse
brain [50]. Taken together, these observations highlight the
potential importance of the miR-16 family in AD develop-
ment by regulating cell survival, amyloid production, and tau
phosphorylation (Figure 1). Interestingly, TargetScan pre-
dicts more than 1000 human target genes for miR-16, several
of which are associated with networks related to cell death,
cellular organization, and molecular transport (S. S. Hébert,
unpublished observations). Notably, among the high-scoring
predicted targets are miRNA-processing regulators such as
TNRC6B [51]. It will be interesting to see whether loss of
miR-16 family members in vivo recapitulates, at least in past,
the observed effects on ERK and, most importantly, tau
phosphorylation in vivo.

3. Tau Alternative Splicing
Regulation by miR-132

As discussed above, abnormal regulation of tau exon 10
splicing can cause disease. It is interesting to note that Dicer
deficiency in the adult brain is also associated with changes
in tau splicing [26]. Using a similar strategy as above (e.g.,
bioinformatics, microarrays, literature search, western blot

http://targetscan.org/


4 International Journal of Alzheimer’s Disease

analysis, etc.), we identified miR-132 and the neuronal splic-
ing regulator PTBP2 as potential regulators of endogenous
tau exon 10 splicing in neurons. These results are consistent
with previous findings linking tau exon 10 splicing regulation
by PTBP1 in vitro [55].

While not discussed in detail in our study, other miRNAs,
including miR-124 and miR-9, could also regulate endoge-
nous tau exon 10 splicing in neuronal cells by targeting
specific regulatory and/or splicing factors [26]. Both miRNAs
are downregulated in AD [56–58], which could have impor-
tant consequences for tau metabolism, at least in certain
biological contexts (Figure 1). For instance, downregulation
of miR-9 is observed in the presence of exogenous Aβ in
mouse primary neurons [59]. Whether this or other miRNAs
function as intermediates between Aβ peptides, tau missplic-
ing and hyperphosphorylation remain an exciting possibility.
Interestingly, differential splicing of the tau transcript has
also been reported in AD [60, 61].

PSP is a cause of late-onset atypical parkinsonism
described by Steele et al. [62]. Dementia is also a common
feature at the end stage of the disease. Neuropathologically,
PSP is characterized by neuronal loss, gliosis, and NFT
formation. Glial fibrillary tangles have also been described.
In these patients, tau aggregates are mainly composed of
tau with 4 microtubule-binding domains (4R-tau) [13,
15]. Using PSP as a model disease, we identified miR-132
to be selectively downregulated in pathological condi-
tions. Interestingly, PTBP2 protein (but not mRNA) levels
were increased in PSP patients and correlated significantly
with miR-132 expression [26]. These experiments provide
unprecedented molecular links among abnormal tau splic-
ing, hyperphosphorylation, and sporadic tauopathies. Inter-
estingly, changes in PTBP1 and PTBP2 levels, and by exten-
sion alternative splicing patterns, have been documented
in human diseases, including neurodegenerative disorders
[63, 64]. On the basis of these observations, it is tempting
to speculate that miRNAs could contribute significantly to
several aspects of tau metabolism and neuronal dysfunction
in various diseases.

4. Outstanding Questions

Although the above-mentioned studies are interesting, many
questions remain unanswered. For instance, what are the
biological and clinical significance of these findings? Are
other miRNAs involved in tau metabolism regulation? Can
miRNAs be used as diagnostic and possibly therapeutic
agents for sporadic tauopathies? Without a doubt, these and
other questions will require extensive followup studies in
various models, from cells to animals to humans.

Abbreviation

3′UTR: 3′ Untranslated region.
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