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A B S T R A C T   

Objectives: Metagenomic next-generation sequencing (mNGS) is a powerful tool for pathogen 
detection. The accuracy depends on both wet lab and dry lab procedures. The objective of our 
study was to assess the influence of read length and dataset size on pathogen detection. 
Methods: In this study, 43 clinical BALF samples, which tested positive via clinical mNGS and 
were consistent with the diagnosis, were subjected to re-sequencing on the Illumina NovaSeq 
6000 platform. The raw re-sequencing data, consisting of 100 million (M) paired-end 150 bp 
(PE150) reads, were divided into simulated datasets with eight different data sizes (5 M, 10 M, 15 
M, 20 M, 30 M, 50 M, 75 M, 100 M) and five different read lengths (single-end 50 bp (SE50), 
SE75, SE100, PE100, and PE150). Both Kraken2 and IDseq bioinformatics pipelines were 
employed to analyze the previously diagnosed pathogens in the simulated data. Detection of 
pathogens was based on read counts ranging from 1 to 10 and RPM values ranging from 0.2 to 2. 
Results: Our results revealed that increasing dataset sizes and read lengths can enhance the per-
formance of mNGS in pathogen detection. However, a larger data sizes for mNGS require higher 
economic costs and longer turnaround time for data analysis. Our findings indicate 20 M reads 
being sufficient for SE75 mode to achieve high recall rates. Additionally, high nucleic acid loads 
in samples can lead to increased stability in pathogen detection efficiency, reducing the impact of 
sequencing strategies. The choice of bioinformatics pipelines had a significant impact on recall 
rates achieved in pathogen detection. 
Conclusions: Increasing dataset sizes and read lengths can enhance the performance of mNGS in 
pathogen detection but increase the economic and time costs of sequencing and data analysis. 
Currently, the 20 M reads in SE75 mode may be the best sequencing option.   

1. Introduction 

Metagenomics is the study of microbial communities by sequencing genomic fragments from biological samples. Emerging as a 
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powerful tool in characterizing human and environmental microbiome, the high-throughput sequencing technology has largely 
expanded the scope of metagenomics. In recent years, metagenomic next-generation sequencing (mNGS) has been widely used in 
clinical laboratories for infectious diseases diagnosis [1,2] and outbreak investigation [3,4]. With higher detection rate [5,6] and 
shorter turnaround time [7,8] than conventional methods, unbiased mNGS has the potential to identify all pathogens in a single test. It 
holds the promise of revolutionizing the landscape of clinical microbiology. 

The process of mNGS includes experimental operations (wet lab) and computational analysis (dry lab) [2]. The wet lab refers to the 
experimental procedures involved in preparing and sequencing DNA or RNA samples, such as nucleic acid extraction, library prep-
aration, and sequencing, and the dry lab involves computational analysis of raw sequencing data obtained from microbial samples to 
identify and quantify the taxonomic composition and functional potential of the microbial community [9–11]. Each step in the process 
affects the accuracy of pathogen detection, which is crucial for diagnosis and treatment. In addition to ensuring reliable mNGS results, 
cost and time savings should be considered from a practical perspective [7,12]. The cost mainly depends on sequencing dataset size 
and platform. Mainstream sequencing platforms generate reads with length ranging from 50 bp to 300 bp (paired-end (PE) or 
single-end (SE)), and the reads length determines the sequencing run time [13]. For this rapidly evolving technology, comprehensive 
assessments of performance, cost and turnaround time of different sequencing strategies and bioinformatics pipelines in real time will 
provide effective information for clinicians and patients in the choice of optimal methods. 

In recent years, the field of metagenomics has witnessed significant progress in the development of tools and methods to effectively 
handle and analyze metagenomic data, such as the rapid evolution of the mNGS bioinformatics workflows [14–16]. These workflows 
encompass a wide range of tools, each serving a specific purpose [17–20]. Two noteworthy tools are Kraken2 [21] and IDseq [22]. 
Kraken2 employs exact k-mer matching techniques to efficiently assign taxonomic labels to DNA sequences using reference databases. 
Its remarkable accuracy and speed make it a suitable choice for processing large-scale datasets. Additionally, Kraken2 offers cus-
tomizable options for post-processing and visualization, thereby facilitating in-depth analyses [23–25]. IDseq is an open-source 
platform designed for disease diagnosis and monitoring. It integrates multiple analytical steps and incorporates various algorithms 
and databases to provide comprehensive analysis of microbial communities present in samples [26–28]. IDseq’s distinctive feature lies 
in its ability to fuse multiple bioinformatics tools into a user-friendly interface, making it easily accessible even to individuals without 
specialized expertise. These tools contribute significantly to the detection and characterization of microbial communities, ultimately 
leading to enhanced understanding of complex biological systems. 

It is important to note that using the same mNGS procedure may introduce bias in pathogen detection of different infection types or 

Fig. 1. The overview of study design.  
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sample types [11]. For instance, compared with other sample types, the positive rate of mNGS using bronchoalveolar lavage fluid 
(BALF) samples was relatively higher [29], which probably due to the presence of colonizers from respiratory tract. Therefore, the 
assessment of optimal wet lab and dry lab procedures for specific samples is usually not universal. In this study, we re-sequenced 43 
previously mNGS-positive samples, with reported pathogen correlated with clinical diagnoses and conventional tests, using higher 
depth (100 million) and longer read lengths (paired-end 150). We processed these datasets to simulate varying read lengths and data 
volumes and analyzed the data using different bioinformatics pipelines to explore the effects of data volume, sequencing read length, 
and bioinformatics pipeline on mNGS detection. 

2. Methods and materials 

2.1. Study design 

BALF samples from patients with pulmonary infection who had undergone mNGS and conventional tests (including culture, PCR, 
galactomannan antigen test, and other assays) for pathogen detection were collected in this study. The inclusion criteria were: 1) with 
matching detection results of mNGS and conventional methods; 2) with negative conventional method results, but the mNGS results 
met the final diagnosis based on clinical symptoms. Patients met the following criteria were excluded: 1) with negative mNGS results; 
2) with inconsistent detection results between mNGS and conventional methods; 3) mNGS results did not met the final diagnosis; 4) 
with no remaining BALF samples. For each sample, causative pathogens were confirmed by clinicians, and gram-positive (G+) bac-
teria, gram-negative (G-) bacteria, fungi, viruses and intracellular pathogens were expected to be enrolled. The microbes were 
identified as causative pathogens if they met the following criteria: 1) both mNGS and conventional methods detected the identified 
pathogen or mNGS alone detected the microbe; 2) Previous literatures reported its pathogenicity; 3) the clinical symptoms of the 
patients are consistent with the characteristics of infection by the microbe; and 4) the final diagnosis by at least two independent 
clinicians verified the microbe. The samples were prepared for re-sequencing on Illumina NovaSeq 6000. After bioinformatics analysis, 
the identified microbes were compared to the previous confirmed pathogens, and the number of reads aligning to each pathogen were 
counted using IDseq. 

To investigate whether pathogen detection would be affected by the sequencing strategies, datasets with different size and read 
length were simulated based on the raw reads obtained above. Different classification algorithms and reference sequence databases 
were used to estimate the effect of bioinformatics pipelines on pathogen detection. The specific reads aligning to each detected 
pathogen were counted, and the recall rates were assessed (Fig. 1). 

2.2. Re-sequencing 

BALF samples that met the selection criteria were retrieved from the − 20 ◦C refrigerator for nucleic acid extraction. After thawing, 
200 μL BALF were used for DNA extraction. The DNA from each sample was extracted and purified using the QIAamp DNA Micro Kit 
(QIAGEN, Hilden, Germany) following the manufacturer’s instructions and the final elution volume was 50 μL. The concentration and 
quality of extraction were tested through Qubit 4.0 (Thermo Fisher Scientific, MA, USA). DNA libraries were constructed using QIAseq 
Ultralow Input Library Kit (QIAGEN, Hilden, Germany). Approximately 10–50 μl of DNA samples were utilized for library con-
struction, resulting in a final library volume of 50 μl. Subsequently, the inspected libraries were sequenced on Illumina NovaSeq 6000 
(Illumina, San Diego, USA) using PE150 model, with an anticipated data volume of 100 million (M) reads per sample. If the data output 
for a sample falls below 100 M, the DNA libraries will be reloaded for sequencing. 

2.3. qPCR validation 

Samples containing mNGS reports of Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus underwent real-time 
quantitative PCR (qPCR) validation using SYBR green method. The same DNA used for mNGS re-sequencing was utilized for these 
experiments. Genomic DNAs extracted from A. baumannii ATCC 17978, K. pneumoniae ATCC 10031, and S. aureus ATCC 6538 served as 
controls. The quantification of genomic DNA was conducted using the Applied Biosystems™ 7500 Fast PCR System (Thermo Fisher 
Scientific, USA). The designed primer pairs used for detection were as follows: S. aureus (Forward: CCCCGCCAACTTGCACATTA, 
Reverse: GGTGTGGGCCCCAACATAGA), K. pneumoniae (Forward: ACTGCGTCTGGTGATCTACG, Reverse: GCGGAATTTCGCCCATG-
TAG), and A. baumannii (Forward: AAGGCCCTGTAGCGATCCATGC, Reverse: AAGCTGCCATCTGTGCCTAGC). 

2.4. Bioinformatics analysis 

Prior to formal analysis, the acquired sequencing raw data underwent filtration using fastp (v0.21.0) [30] to eliminate adapter 
sequences, as well as low-quality, low-complexity, and short reads. The parameters used were –cut_mean_quality 15 –length_required 
45 –trim_poly_x -e 20. Bowtie2 (v2.4.2) [31] (–sensitive-local) was used to remove human reads by mapping to human reference 
genome (GRCh38.p13). The remaining reads obtained were used as input to IDseq (https://czid.org/) [22] or Kraken2 v2.1.1 [32] 
(database: pluspf_20,210,517, default parameters) to detect pathogens. Various specific sequence counts (ranging from 1 to 10 with 
intervals of 1) and different RPM values (ranging from 0.2 to 2 with intervals of 0.2) were individually established as the criteria for 
detection. 
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2.5. Dataset simulation 

We utilized Seqtk (v1.2) (https://github.com/lh3/seqtk) to perform random subsampling of the data and employed a local Perl 
script to manipulate the sequencing read lengths. Based on the raw reads obtained by re-sequencing, we simulated datasets with 
different size of 100 M, 75 M, 50 M, 30 M, 20 M, 15 M, 10 M, 5 M reads and different read length of PE150, PE100, SE100, SE75, SE50. 
In the first step, 100 M reads (PE150) were randomly extracted from each sample and repeated 3 times to construct sufficient statistics. 
Next, the first 100 bp of PE150 reads in each dataset were truncated to generate PE100 reads, and “read-1” of PE100 reads were 
extracted as SE100 reads. Read length of SE75 and SE50 were simulated by truncating the first 75 bp and 50 bp of SE100 reads. Finally, 
each of the 100 M reads dataset (different read lengths, 3 repeats) was randomly down-sampled to 75 M, 50 M, 30 M, 20 M, 15 M, 10 M 
and 5 M. All of these simulated datasets were separately taken as input files to IDseq (NT and NR) and Kraken2 to detect pathogens, 

Fig. 2. Box plots illustrating the correlation between the number of pathogenic reads and both dataset size and read length. (a) The black horizontal 
lines within the box represent the median, while the top and bottom edges of the box represent the upper and lower quartiles. The number of 
pathogenic reads varied with dataset size; (b) The number of pathogenic reads varied with read length. 
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respectively. For each dataset, the number of reads aligning to the detected pathogens were counted. The recall performance of 
pathogen detection was assessed at each dataset size and each read length (3 repeats) by each bioinformatics pipeline (Fig. 1). 

2.6. Statistical analysis 

The chi-square test and paired samples t-test employed to examine the statistical variance of single or group paried data. Analysis 
was performed utilizing RStudio, leveraging R version 4.1.2. A p-value below 0.05 was deemed to indicate statistical significance. P- 
values below 0.05, 0.01, and 0.001 were denoted by "*", "**", and "***" respectively. 

3. Results 

3.1. Re-sequencing statistics and overview 

Of the initial 102 BALF samples collected from patients with pulmonary infections, 59 were excluded for reasons including negative 
mNGS results (16), inconsistencies between mNGS results and conventional diagnostic methods (23), inconsistencies between mNGS 
results and final diagnosis (11), and insufficient samples volume (28). At last, 43 clinical BALF samples that had been tested for mNGS 
and conventional methods were collected (Fig. 1). These samples contained 89 causative pathogens, including 57 bacteria (including 8 
Mycobacterium tuberculosis complex (MTBC)), 22 fungi, and 10 DNA viruses (Table S1). We re-sequenced these samples using Illumina 
NovaSeq 6000, and obtained 1533.4 giga (G) raw bases with an average of 113.6 million reads per sample. The Q30 ratio of the 
samples ranged from 84.93 % to 93.79 % (Table S1). All of the previously confirmed causative pathogens were again identified, and 
the number of reads aligning to each pathogen, as classified by IDseq, were counted (Table S1). 

3.2. The number of pathogen reads depend on read length and dataset size 

We simulated 120 datasets (8 dataset sizes, 5 read lengths, 3 repeats) for each sample, with different sizes and read lengths based on 
the raw reads. The number of reads classified by Kraken2 or IDseq (NT and NR) aligning to each pathogen were counted. We found that 
the detected pathogen read counts increased with the size of dataset, regardless of the classifier or read length. IDseq (especially IDseq 
NT) identified a higher number of reads for the same pathogen compared to Kraken2, which is consistent with previous reports 
regarding the utility of IDseq [22,33] (Fig. 2a). 

Given the same dataset size, the read counts of each pathogen increased with read length and sequencing mode. The PE150 and 
PE100 groups identified higher number of reads than the SE100, SE75, and SE50 groups. However, we did not observe any significant 
difference in detected reads number in two pipelines between PE150 and PE100 (IDseq: P = 0.62, Kraken2: P = 0.82) (Table S2). 
Longer reads and paired-end sequencing mode were associated with higher mapped read counts, and a read length of 100 bp is 

Fig. 3. Assessment of recall performance for pathogen detection using IDseq and Kraken2, across different dataset sizes and read lengths. The 
different colored lines represent the recall rates (%) for pathogen detection based on different positive criteria, with read counts ranging from 1 to 10 
(a) and RPM ranging from 0.2 to 2 (b). 
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sufficient in pair-end sequencing. It is worth noting that the number of pathogen reads obtained using IDseq NR and Kraken2 in SE50 
mode was extremely low, which could result in some pathogens not being identified due to the number of reads falling below the cutoff 
for detection (Fig. 2b). Consistent results were observed when bacteria, DNA viruses, fungi and M. tuberculosis complex (MTBCs) were 
analyzed separately (Figs. S1–S4). 

Additionally, we compared the time required for data quality control (QC) and host data removal processes during data analysis 
across different data sizes and read lengths. The time cost ranged from over 3 h for 100 M PE150 to less than 5 min for 5 M SE50 
(Fig. S5). As the fragment length increased and the data size became larger, the turnaround time for data analysis also increased. 

3.3. The influence of multiple factors on assay recall 

We assessed the recall performance of pathogen detection at each dataset size and each read length using both IDseq and Kraken2. 
The cutoff for detection was set as read count of 1–10, RPM of 0.2–2, respectively. Our results showed that both IDseq and Kraken2 had 
higher recall rates with lower cutoff for detection, and increased recall rates with larger dataset sizes and longer read lengths. However, 
IDseq outperformed Kraken2, particularly with smaller dataset sizes and read lengths (Fig. 3a–b). In nearly every dataset (95.5 % based 
on read count standard, 87.5 % based on RPM standard), there is a notable difference in the detection rates between the two methods 
(Fig. 4). At a dataset size of 100 M reads, the recall rate of IDseq was over 97.59 % under all read count cutoffs and read lengths. This 
indicates that IDseq is less affected by other factors if the dataset size is sufficient. In contrast, the recall rate of Kraken2 decreased even 
with larger dataset sizes when the cutoff for detection was stricter or the read length decreased. This underscores the importance of 
dataset size and bioinformatics pipeline selection for pathogen detection. 

3.4. Comparison of SE75 20 M and SE50 50 M 

The long-read sequencing results in long turnaround time and high sequencing costs, so we compared the two most commonly used 
read length, SE75 and SE50. Regardless of the cutoff for detection, the recall rate using IDseq requires 50 M reads in SE50 mode to 
achieve the same performance as 20 M SE75 strategies. This observation was in line with that of Kraken2, but the recall rate under 
SE75 20 M using Kraken2 was even higher than SE50 50 M when the cutoff for detection was low (<5). In addition, we found that the 
recall rate of SE50 using Kraken2 was much lower than that of other read lengths in each dataset, and this trend was also evident in 

Fig. 4. Comparison of detection rates between different detection pipelines on the same dataset. Chi-square test was used to compare the recall rate 
of same dataset. “*“, “**” and “***” stands for a P value less than 0.05, 0.01 and 0.001. 
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IDseq results with strict cutoffs for detection and small dataset sizes (Fig. 5a–b, Figs. S6–S7). Besides the similar recall rate for pathogen 
detection, the cost for 50 M SE50 on the same sequencing platform is 2.5 times that of 20 M SE75, and the turnaround time for data 
analysis is twice as long as 20 M SE75. Therefore, we proposed that the sequencing strategies of 20 M SE75 was superior to 50 M SE50. 

Fig. 5. Comparison of detection rates difference between SE75 (20 M) and SE50 (20M–100 M). 
Chi-square test was used to compare the difference between different datasets with same bioinformatic pipeline and detection standard. The left 
numbers show the p value and the right symbols stand for different significance. “*“, “**” and “***” stands for a P value less than 0.05, 0.01 
and 0.001. 
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Table 1 
The causative pathogens identified in 43 clinical BALF samples.  

Samples Pathogens Type aSpecific 
reads 

Genome Size 
(Mb) 

Reads/Genome size 
(Depth) 

qPCR (Ct 
value) 

Group 

GZ2200228 Klebsiella pneumoniae Bacteria 75,503 5.61 13,458.65 28 High 
GZ2200228 Stenotrophomonas maltophilia Bacteria 26,518 4.60 5764.78  High 
GZ2200228 Burkholderia cenocepacia Bacteria 16,260 7.96 2042.71  High 
GZ2200228 Pseudomonas aeruginosa Bacteria 524 6.62 79.15  Middle 
GZ2200470 Klebsiella pneumoniae Bacteria 17,645 5.61 3145.28 26 High 
GZ2200470 Simplexvirus humanalpha1 Virus 21,002 0.15 140,013.33  High 
GZ2202808 Mycoplasma pneumoniae Bacteria 24 0.82 29.27  Middle 
GZ2203190 Haemophilus influenzae Bacteria 11 1.85 5.95  Low 
GZ2203190 Mycoplasma hominis Bacteria 16 0.70 22.86  Middle 
GZ2203708 Aspergillus fumigatus Fungi 11 28.54 0.39  Low 
GZ2203708 Enterococcus faecium Bacteria 2130 2.91 731.96  High 
GZ2203708 Pneumocystis jirovecii Fungi 63 8.18 7.70  Low 
GZ2203708 Ureaplasma urealyticum Bacteria 66 0.84 78.57  Middle 
GZ2204613 Pneumocystis jirovecii Fungi 11 8.18 1.34  Low 
GZ2204613 Ureaplasma urealyticum Bacteria 18 0.84 21.43  Middle 
GZ2204613 Enterococcus faecium Bacteria 698 2.91 239.86  Middle 
HC2200029 Simplexvirus humanalpha1 Virus 610 0.15 4066.67  High 
HC2200029 Pneumocystis jirovecii Fungi 6 8.18 0.73  Low 
HC2200029 Klebsiella pneumoniae Bacteria 100 5.61 17.83 32 Low 
HC2200211 Streptococcus pneumoniae Bacteria 834 2.12 393.40  High 
HC2200211 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

8 4.41 1.81  Low 

HC2200211 Staphylococcus aureus Bacteria 59 2.83 20.85 34 Middle 
GZ2206727 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

5 4.41 1.13  Low 

GZ2206727 Pseudomonas aeruginosa Bacteria 134 6.62 20.24  Low 
GZ2104496 Staphylococcus aureus Bacteria 110 2.83 38.87 29 Middle 
GZ2104496 Klebsiella aerogenes Bacteria 495 5.27 93.93  Middle 
GZ2105620 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

5 4.41 1.13  Low 

GD11970 Staphylococcus aureus Bacteria 111 2.83 39.22 31 Middle 
GD11970 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

19 4.41 4.31  Low 

GD11640 Simplexvirus humanalpha1 Virus 26,887 0.15 179,246.67  High 
GD11640 Pneumocystis jirovecii Fungi 6227 8.18 761.25  High 
GD11640 Klebsiella pneumoniae Bacteria 645 5.61 114.97 32 Middle 
GD11640 Candida tropicalis Fungi 1266 14.75 85.83  Middle 
GD10886 Acinetobacter baumannii Bacteria 3165 3.99 793.23 24 High 
GD10886 Chlamydia psittaci Bacteria 62 1.18 52.54  Middle 
GD09444 Acinetobacter baumannii Bacteria 1189 3.99 297.99 31 High 
GD09444 Aspergillus fumigatus Fungi 30 28.54 1.05  Low 
GD09444 Simplexvirus humanalpha1 Virus 4425 0.15 29,500.00  High 
GD08920 Escherichia coli Bacteria 148 5.12 28.91  Middle 
GD08920 Simplexvirus humanalpha1 Virus 32 0.15 213.33  Middle 
DM-4192 Mycobacteroides abscessus Bacteria 293 5.10 57.45  Middle 
D2-0531 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

90 4.41 20.40  Low 

D1-0530 Cryptococcus neoformans Fungi 83 18.59 4.46  Low 
D1-0527 Moraxella catarrhalis Bacteria 5534 1.91 2897.38 22 High 
D1-0527 Staphylococcus aureus Bacteria 95 2.83 33.57 33 Middle 
D1-0517 Aspergillus terreus Fungi 42 30.03 1.40  Low 
DM-4385 Streptococcus pneumoniae Bacteria 55,504 2.12 26,181.13  High 
DM-4385 Staphylococcus aureus Bacteria 17,250 2.83 6095.41 29 High 
DM-4385 Candida albicans Fungi 6361 14.70 432.72  High 
DM-4531 Pneumocystis jirovecii Fungi 13,147 8.18 1607.21  High 
DM-4531 Talaromyces marneffei Fungi 606 28.31 21.41  Middle 
DM-4395 Acinetobacter baumannii Bacteria 4434 3.99 1111.28 25 High 
DM-4395 Klebsiella pneumoniae Bacteria 793 5.61 141.35 34 Middle 
DM-4395 Mycobacteroides abscessus Bacteria 25 5.10 4.90  Low 
DM-4395 Simplexvirus humanalpha1 Virus 14,629 0.15 97,526.67  High 
GZ2100214 Aspergillus fumigatus Fungi 24 28.54 0.84  Low 
GZ2100214 Klebsiella pneumoniae Bacteria 116 5.61 20.68 36 Middle 
GZ2100214 Pseudomonas aeruginosa Bacteria 1189 6.62 179.61  Middle 
GZ2100214 Streptococcus mitis Bacteria 1044 1.97 529.95  High 
GZ2100214 Streptococcus pneumoniae Bacteria 162 2.12 76.42  Middle 
GZ2100442 Candida tropicalis Fungi 30 14.75 2.03  Low 
GZ2100442 Escherichia coli Bacteria 1730 5.12 337.89  High 

(continued on next page) 
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3.5. Nucleic acid load affect pathogen detection 

We also conducted analysis of recall for different types of pathogens, including bacteria, fungi, DNA viruses, and MTBCs 
(Figs. S8–S9). The results for bacteria and fungi were generally consistent with those of all pathogens. However, the small number of 
enrolled viruses and MTBCs resulted in some variation. The recall rate for DNA viruses was consistently high (almost all above 90 %) 
across all datasets, regardless of read length, dataset size, or the cutoff for detection. Upon checking the initial number of reads aligning 
to these 10 DNA viruses calculated from the raw data, we found that most of them (8/10) were higher than the strictest cutoff for 
detection (10 reads). For MTBC, half of the read numbers (4/8) calculated from the raw data were below 10, resulting in variable recall 
rates that depended on read length, dataset size and the cutoff for detection (Table 1). When using either Kraken2 or IDseq, the levels of 
reads number for each pathogen obtained from the raw data and from datasets with large size (>50 M) were basically consistent, 
suggesting that the number of reads could serve as an indicator of nucleic acid load in samples. 

To further investigate the impact of nucleic acid load on pathogen detection, we categorized the pathogens into three groups based 
on the number of reads obtained from the raw data. Considering the influence of genome size on sequencing read counts, we employed 
a parameter of reads/genome-size (depth) to differentiate between high, medium, and low pathogen load data. The High group 
included pathogens with a depth above the third quartile, the Low group included those with a depth below the first quartile, and the 
Middle group included all others. We conducted correlation analysis between the cycle-threshold (Ct) values of qPCR and both the 
number of specific reads and depth separately. The results revealed a negative correlation between depth and Ct values, with an R2 

value of 0.6121, surpassing the R2 value between Ct values and the number of reads, which was 0.5344 (Fig. S10). These results 
suggested that higher depth values indicate higher pathogen loads and the three groups of pathogens should have different loads in the 
original samples. 

The pathogens in Middle and High groups were nearly all identified using IDseq, and the recall rate of those in Low group varied 
with dataset size and read length (Fig. 6). While the performance of Kraken was not as superior as that of IDseq, the results were 
similar, suggesting that selecting appropriate sequencing strategies and bioinformatics pipelines can improve the detection rate of 
pathogens with low nucleic acid load in samples. 

4. Discussion 

In this study, we collected and re-sequenced 43 BALF samples in which 89 causative pathogens had been previously confirmed. 

Table 1 (continued ) 

Samples Pathogens Type aSpecific 
reads 

Genome Size 
(Mb) 

Reads/Genome size 
(Depth) 

qPCR (Ct 
value) 

Group 

GZ2100627 Fusobacterium nucleatum Bacteria 2265 2.31 980.52  High 
GZ2100702 Aspergillus fumigatus Fungi 6 28.54 0.21  Low 
GZ2100775 Klebsiella aerogenes Bacteria 11,139 5.27 2113.66  High 
GZ2101042 Aspergillus flavus Fungi 15 37.75 0.40  Low 
GZ2101856 Aspergillus flavus Fungi 1 37.75 0.03  Low 
GZ2101856 Cytomegalovirus humanbeta5 Virus 46 0.23 200.00 33 Middle 
GZ2101856 Lymphocryptovirus 

humangamma4 
Virus 4 0.17 23.53 36 Middle 

GZ2101856 Pneumocystis jirovecii Fungi 7 8.18 0.86  Low 
GZ2102120 Acinetobacter baumannii Bacteria 4 3.99 1.00 38 Low 
GZ2102120 Orientia tsutsugamushi Bacteria 275 1.98 138.89  Middle 
GZ2102518 Acinetobacter baumannii Bacteria 1638 3.99 410.53 32 High 
GZ2102518 Klebsiella pneumoniae Bacteria 4805 5.61 856.51 33 High 
GZ2103473 Aspergillus fumigatus Fungi 30 28.54 1.05  Low 
GZ2103993 Pneumocystis jirovecii Fungi 1356 8.18 165.77  Middle 
GZ2103993 Ureaplasma urealyticum Bacteria 30 0.84 35.71  Middle 
GZ2205173 Aspergillus fumigatus Fungi 20 28.54 0.70  Low 
GZ2205173 Enterococcus faecium Bacteria 310 2.91 106.53  Middle 
GZ2205173 Stenotrophomonas maltophilia Bacteria 1370 4.60 297.83  High 
GZ2205256 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

177 4.41 40.12  Middle 

GZ2205648 Mycobacterium tuberculosis 
complex 

MTBC/ 
Bacteria 

6 4.41 1.36  Low 

GZ2206201 Klebsiella aerogenes Bacteria 9120 5.27 1730.55  High 
GZ2206505 Mycobacterium tuberculosis 

complex 
MTBC/ 
Bacteria 

42 4.41 9.52  Low 

GZ2206509 Enterococcus faecium Bacteria 98 2.91 33.68  Middle 
GZ2206801 Aspergillus fumigatus Fungi 151 28.54 5.29  Low 
GZ2206801 Cytomegalovirus humanbeta5 Virus 210 0.23 913.04 27 High 
GZ2206801 Lymphocryptovirus 

humangamma4 
Virus 1 0.17 5.88 Negative Low 

GZ2206962 Klebsiella pneumoniae Bacteria 46,425 5.61 8275.40 23 High  

a Note: “Specific reads” means the reads can only be mapped to a specific species. 
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Based on the raw reads obtained from re-sequencing, datasets with different sizes and read lengths were simulated to investigate the 
effect of sequencing strategies on pathogen detection. The number of reads aligning to detected pathogens increased with dataset size 
and read length, and was influenced by bioinformatics pipelines. The recall rate of pathogens with low nucleic acid load in samples 
varied with dataset size and read length. In general, the sequencing strategy of 20 M SE75 was sufficient to achieve high performance. 
The recall rate under SE50 mode was significantly lower than other read lengths, and at least 50 M reads was required to achieve high 
detection rates. However, considering the cost and turnaround time for data analysis, we proposed that the sequencing strategies of 20 
M SE75 were superior to 50 M SE50. 

The performance of mNGS in pathogen detection can be influenced by various factors in both wet and dry labs, including sample 
processing, nucleic acid extraction, library construction, sequencing platforms and bioinformatics workflows [34,35]. By using 
simulation data based on sequencing reads, we were able to eliminate the effects of experimental processes, sequencing platforms, and 
focus solely on the impact of sequencing strategies and bioinformatics pipelines on pathogen detection. Our study found that 
increasing dataset sizes and read lengths improved assay performance, and that 20 M reads of data is sufficient for SE75 mode to 
achieve a high recall rate, consistent with previous research [34]. In contrast, the shorter sequences in SE50 may result in loss of critical 
sequence information, which presents a challenge that cannot be fully addressed by increasing dataset size. 

Previous studies have shown that there exists a correlation between the microbial load present in samples and the quantitative 
reads per million reads (RPM) values identified by mNGS [35,36]. In the current study, using both IDseq and Kraken2, we obtained 
almost identical levels of read counts for the same pathogen from both the raw data and large-sized datasets. This leads us to believe 
that the reads number of pathogen can serve as an indicator of the nucleic acid load of the corresponding pathogen present in the 
sample. In this study, we conducted qPCR experiments to validate the correlations between read numbers and pathogen load. The 

Fig. 6. The recall rate of pathogen with high, middle and low nucleic acid load in samples. 
The Low and High group included pathogens with a read-number/genome-size below or above the first and third quartile respectively, while the 
Middle group encompassed all others. Samples with lower nucleic acid load have a lower recall rate in pathogen detection by mNGS. IDseq exhibits 
a better pathogen recall rate compared to Kraken2, especially in samples with low nucleic acid load. 
Since data extraction does not affect the pathogen’s RPM, under a consistent RPM detection standard, the differences in detection rates among 
varying data volumes with the same sequencing read length are minimal, aligning with expectations. 
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results of the qPCR also indicate that samples with higher pathogen loads yield higher quantities of specific reads. Hence, when the 
nucleic acid load of pathogens is unknown, the read count of pathogens identified through mNGS can be utilized to assess the nucleic 
acid load for analysis. 

By classifying pathogens into high, medium, and low nucleic acid load groups and analyzing their recall rates, our findings suggest 
that high nucleic acid loads in the sample can result in more stable pathogen detection efficiency that is less affected by sequencing 
strategies. This highlights the importance of collecting samples with adequate pathogen nucleic acid loads, such as by directly sam-
pling at the site of infection during the initial acute presentation and before the administration of antibiotics, and ensuring proper 
storage during transport and storage [11]. On the other hand, when nucleic acid loads are insufficient, detection efficiency can be 
improved by increasing sequencing data and choosing an appropriate bioinformatics analysis process. 

This study also has some limitations. Firstly, that most patients received empirical antibiotic treatment before clinical sampling 
prevented the complete identification of all microorganisms present in the samples, thus limiting the assessment of pathogen detection 
precision. Secondly, due to the limited availability of clinical samples and storage conditions, RNA viruses were not included in the 
study. Furthermore, the inclusion of a limited number of pathogens may have introduced some bias into the findings. While qPCR can 
offer more reliable quantitative results, only a small subset of pathogens was tested using qPCR in a limited number of samples in this 
study. Besides, spiked-in controls were not included in the experimental process, and the potential impact of DNA extraction and 
library construction on final detection was not taken into account. 

The bioinformatics analysis of mNGS is a crucial step in pathogen detection, which involves several key processes such as sequence 
quality control, sequence alignment, species classification, and data visualization. Nevertheless, benchmarking mNGS tools remains a 
challenge in this field, as the choice of parameters, databases, and datasets can all affect the outcomes. Currently, some commercial or 
open resources have been developed for researchers’ convenience [18,22,37–39]. Our study focused on IDseq and Kraken2 for per-
formance testing and confirmed that the bioinformatics pipelines significantly impact pathogen detection. Therefore, developing more 
efficient and accurate sample pretreatment and analysis processes to enhance mNGS tool performance should remain a key priority for 
researchers. 
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