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mGluR5 positive modulators both potentiate
activation and restore inhibition in NMDA
receptors by PKC dependent pathway
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Abstract

Background: In order to understand the interaction between the metabotropic glutamate subtype 5 (mGluR5) and
N-methyl-D-aspartate (NMDA) receptors, the influence of mGluR5 positive modulators in the inhibition of NMDA
receptors by the noncompetitive antagonist ketamine, the competitive antagonist D-APV and the selective NR2B
inhibitor ifenprodil was investigated.

Methods: This study used the multi-electrode dish (MED) system to observe field potentials in hippocampal slices
of mice.

Results: Data showed that the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as the
positive allosteric modulators 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) and 3,3’-
difluorobenzaldazine (DFB) alone did not alter the basal field potentials, but enhanced the amplitude of field
potentials induced by NMDA. The inhibitory action of ketamine on NMDA-induced response was reversed by
CHPG, DFB, and CDPPB, whereas the blockade of NMDA receptor by D-APV was restored by CHPG and CDPPB, but
not by DFB. Alternatively, activation of NMDA receptors prior to the application of mGluR5 modulators, CHPG was
able to enhance NMDA-induced field potentials and reverse the suppressive effect of ketamine and D-APV, but not
ifenprodil. In addition, chelerythrine chloride (CTC), a protein kinase C (PKC) inhibitor, blocked the regulation of
mGluR5 positive modulators in enhancing NMDA receptor activation and recovering NMDA receptor inhibition.
The PKC activator (PMA) mimicked the effects of mGluR5 positive modulators on enhancing NMDA receptor
activation and reversing NMDA antagonist-evoked NMDA receptor suppression.

Conclusion: Our results demonstrate that the PKC-dependent pathway may be involved in the positive
modulation of mGluR5 resulting in potentiating NMDA receptor activation and reversing NMDA receptor
suppression induced by NMDA antagonists.

Introduction
Glutamate is a well-known excitatory neurotransmitter
in the mammalian central nervous system (CNS) and
plays an important role by acting through two distinct
types of receptors, the ion-channel associated (ionotro-
pic) and G-protein-coupled (metabotropic) receptors [1].
Ionotropic glutamate receptors (iGluRs) that mediate
fast excitatory synaptic transmission are ion channels
permeable to cations and are classified as a-amino-3-
hydroxy-5-methyl-4-isoazolepropionic acid (AMPA),

kainite, and N-methyl-D-aspartate (NMDA) receptors
based on agonist preference. Metabotropic glutamate
receptors (mGluRs) are members of G-protein-coupled
receptor (GPCR) and influence a variety of intracellular
second messenger systems that modulate neuronal
excitability, synaptic plasticity, and neurodegeneration.
mGluRs are involved in physiological and pathophysio-
logical processes, including development, learning and
memory, pain, ischemia, stroke, epileptic seizures, schi-
zophrenia, as well as chronic neurodegenerative diseases
[2]. Eight mGluR subtypes have been identified and
divided into three subgroups based on sequence homol-
ogy, signal transduction pathways, and pharmacology
[3]. They are Group I (mGluR1 and mGluR5), Group II
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(mGluR2 and mGluR3), and Group III (mGluR4,
mGluR6, mGluR7, and mGluR8). Among these three
groups of mGluRs, Group I mGluRs (mGluR1/5) have
drawn the most attention because of their wide distribu-
tion in CNS and active regulation of multiple neuronal
signaling. Stimulation of these receptors by agonists
increases hydrolysis of membrane phosphoinositide (PI)
via activated phospholipase C, leading to formation of
diacylglycerol (DAG), which activates protein kinase C
(PKC) and inositol-1,4,5-trisphosphate (IP3), which
induces calcium release from intracellular stores and
then stimulates PKC [4,5]. Furthermore, the alteration
of PKC and intracellular calcium signals could modulate
various metabotropic functions.
Interactions between mGluRs and NMDA receptors

have been described [6]. Activation of NMDA receptors
provides a facilitatory regulation of mGluR5 responses
[7,8]. Conversely, mGluR5 is physically connected with
NMDA receptors and their stimulation positively modu-
lates the function of NMDAergic synapse in several brain
regions [9,10]. Recent behavioral studies also demon-
strated that mGluR5 antagonists augment the noncom-
petitive NMDA receptor antagonists, PCP or MK-801,
induced responses such as locomotor hyperactivity,
impairment of prepulse inhibition [11,12], and cognitive
deficits [13]. Previously, we have also reported that the
mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine
(CHPG), and antagonist 2-methyl-6-(phenylethyl)-pyri-
dine (MPEP) may respectively reduce and enhance the
ketamine anesthesia [14]. Furthermore, the mGluR5 posi-
tive modulators attenuate ketamine-induced behavioral
responses [15]. Accordingly, it is anticipated that
mGluR5 positive modulators are capable of reversing the
suppression of NMDA receptors in response to noncom-
petitive NMDA receptor antagonists. However, the inter-
actions of mGluR5 positive modulators with NMDA
receptor antagonists remain unclear.
In the present study, we set out to delineate the inter-

acting effect of mGluR5 and NMDA receptor antago-
nists on NMDA channel activity. Recently, a novel class
of potent positive allosteric modulators of mGluR5 has
been discovered [16-19]. For example, 3-cyano-N-(1,3-
diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and 3,3’-
difluorobenzaldazine (DFB) have no agonist activity but
potentiate threshold responses to glutamate, quisqualate
and (S)-3,5-dihydroxyphenylglycine. Therefore, our
experiments determined whether the mGluR5 agonist,
CHPG, and the positive allosteric mGluR5 modulators,
DFB and CDPPB, could potentiate NMDA receptor acti-
vation and/or restore NMDA receptor suppression
induced by ketamine, a noncompetitive NMDA receptor
antagonist, D-APV, a selective NMDA receptor antago-
nist, and ifenprodil, a NR2B selective NMDA receptor

antagonist, via measuring the field potentials in hippo-
campal slices of mice.

Materials and methods
Animal and Materials
Male NMRI mice (8-9 weeks, 33-40 g) were supplied
from the Laboratory Animal Center of Tzu Chi Univer-
sity (Hualien, Taiwan) and were housed 4 to 5 per cage
in a 12 hr light/dark cycle with ad libitum access to
water and food. The experimental protocol was
approved by the Tzu Chi University Review Committee
for the Use of Animals.
Glycine and potassium chloride were purchased from

J.T. Baker (Mallinckrodt Baker, Inc, Kentucky, USA). RS-
2-chloro-5-hydrophonovaleric acid (CHPG), chelerythr-
ine chloride (CTC), 3, 3’-difluorobenzaldazine (DFB),
phorbol 12-myristate 13-acetate (PMA), and tetrodotoxin
(TTX) were purchased from Tocris (Northpoint Forth
Way Avonmouth, UK). D-2-amino-5-phosphonovaleric
acid (D-APV), ketamine, N-methyl-D-aspartic acid
(NMDA), 4 a-phorbol 12, 13-didecanoate (4a-PDD) and
other chemicals were obtained from Sigma (St Louis,
MO, USA). For the preparation of stock solution, CHPG
was initially dissolved in 0.5 N NaOH and then neutra-
lized by 0.5 N HCl. DFB was dissolved in DMSO,
whereas ketamine was dissolved in saline. Then the indi-
vidual reagents were diluted in an artificial cerebrospinal
fluid (ACSF) containing (in mM) NaCl (120), KCl (3.5),
CaCl2 (2.5), MgCl2 (1.2), NaHCO3 (25), NaH2PO4 (1.2),
and D-glucose (11.5) at pH 7.4.

Preparation of multielectrode array
The preparation of the multi-electrode dish (MED; Pana-
sonic, Japan) has been described previously by Oka et al.
(1999). The MED probe is an array of 64 planar microelec-
trodes, where each microelectrode has a size of 50 ×
50 μm and is arranged in an 8 × 8 pattern. The interpolar
distance in this type of probe (MED-P515A) is 150 μm.
For sufficient adhesion of the hippocampal slice to the
MED probe, the surface of probe was treated with 0.1%
polyethylenimine or collagen in 25 mM borate buffer
for 8 hr at room temperature. Then the probe surface
was rinsed three times with distilled water for future
experiments.

Preparation of hippocampal slices
The NMRI mice were sacrificed by decapitation after
anesthesia, and the whole brain was carefully removed.
The brain was then immediately soaked in ice-cold and
oxygenated ACSF. Appropriate portions of the brain
were trimmed and placed on the ice-cold stage of a
vibrating tissue slicer, whereas the stage was filled with
oxygenated ACSF. Each slice (300 μm) was gently taken
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off the blade with a paint brush, trimmed, and immedi-
ately re-soaked in ACSF under 95% O2/5% CO2 bub-
bling for 90 min at room temperature. Then the
hippocampal slice between CA3 and CA1 was placed on
the center of the coated MED probe and positioned to
cover the 8 × 8 microelectrode array. After positioning
the hippocampal slice on MED probe, the ACSF was
applied to the slice up to an interface level.

Electrophysiological recordings
For electrophysiological recordings, the MED probe con-
taining the hippocampal slice was placed in a small
incubator which was superfused with ACSF in 5% CO2/
95% O2 at 34°C and connected to the stimulation/
recording component of MED8. The spontaneous field
potential or chemical evoked field potential at all 64
sites in the 64 multi-electrode probe was recorded
simultaneously with the multi-channel recording system
(Panasonic; MED8 system) at a 20 kHz sampling rate.
The electrodes in the stratum radiatum of field CA1
were selected as the recording electrodes. The recording
of field potentials was first carried out in the absence of
any chemical and electrical stimulation to establish a
baseline. In order to prevent the sodium channel
mediated spontaneous components, all the following
experiments were performed with 0.3 μM TTX. For
drug treatment purpose, ACSF containing appropriate
concentrations of various drugs were applied.

Statistical analyses
The recording channels for analysis were selected
among the electrodes located in the stratum radiatum of
field CA1. The maximum amplitudes of field potentials
were measured. All data are expressed as mean ± S.E.M.
Statistical significance of the difference between groups
was determined by one-way ANOVA followed by a Stu-
dent-Newman-Keuls post-hoc test. P < 0.05 was consid-
ered statistically significant.

Results
NMDA-induced potentials inhibited by ketamine, D-APV,
and ifenprodil
Figure 1 illustrates the representative recordings of field
potentials in hippocampal slices of mouse brains. The
basal spontaneous potential in an individual hippocam-
pal slice was initially recorded for 5 min, and then
NMDA (100 μM) was applied to stimulate field poten-
tials, followed by co-administration with NMDA recep-
tor antagonists such as ketamine, D-APV, or ifenprodil.
The present data demonstrated that the baseline activity
of field potential was of low voltage under TTX treat-
ment in the mouse hippocampus. Infusion of NMDA
(100 μM) into the hippocampal slice was observed to

Figure 1 Inhibitory effects of ketamine, D-APV and ifenprodil
on NMDA-induced potentials in hippocampal slices of mice. A
representative recordings show the field potentials induced by
NMDA (100 μM) and co-application of NMDA with ketamine (a, 10
μM) or D-APV (c, 50 μM). (b, d, e) Histograms represent the average
amplitude of field potentials during superfusion of hippocampal
slices with NMDA and co-application of NMDA together with
ketamine, D-APV, or ifenprodil at the concentrations of 1-50 μM. All
values are expressed as the mean ± S.E.M (n = 6). Data were
analyzed by one-way ANOVA followed by a Student-Newman-Keuls
post-hoc test. *P < 0.05 as compared with the baseline. #P < 0.05 as
compared with the NMDA groups and treated with NMDA alone.
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significantly evoke field potentials. These NMDA-
induced field potentials were blocked by NMDA recep-
tor inhibitors ketamine (1-50 μM), D-APV (1-50 μM),
and ifenprodil (1-10 μM) in a concentration-dependent
manner (Figure 1). Moreover, ketamine at the concen-
tration of 10 μM and D-APV at 50 μM attenuated the
amplitude of filed potentials induced by NMDA, which
approached to the baseline level.

Effects of mGluR5 modulators on NMDA receptor
activation and suppression
The mGluR5 modulators including DFB, CHPG, and
CDPPB were used to test their regulation on NMDA
receptor activation and suppression. In the following
experiments, we also initially recorded the field

potentials induced by NMDA (100 μM) and then by co-
application of NMDA with ketamine, D-APV, or ifen-
prodil at the respective concentration of 10 μM, 50 μM,
or 5 μM, which was utilized to elicit the appropriate
inhibition on NMDA-induced field potentials. After 10
min of washout, hippocampal slices were exposed to the
mGluR5 modulator, and then mGluR5 modulator com-
bined with NMDA for 5 min, followed by co-application
of mGluR5 modulator, NMDA, and NMDA receptor
antagonist ketamine, D-APV, or ifenprodil. Here we
observed that DFB (10 μM), CHPG (50 μM), or CDPPB
(10 μM) alone did not alter the basal field potentials in
mice hippocampus (Figure 2). Importantly, pretreatment
of slices with DFB, CHPG, or CDPPB followed by an
NMDA application, the amplitude of NMDA-induced

Figure 2 Effects of mGluR5 modulators on NMDA-induced field potentials and the NMDA receptor blockade by ketamine, D-APV, or
ifenprodil in hippocampal slices. (a) A representative recording showing co-application of CHPG (50 μM) enhanced NMDA (100 μM)-induced
potentials and prevented ketamine (10 μM)-evoked suppression on NMDA receptors. Summary data showing the average amplitude of field
potentials induced by NMDA with and without ketamine (b, 10 μM), D-APV (c, 50 μM), or ifenprodil (d, 5 μM) as well as in the co-application of
mGluR5 modulators, DFB (10 μM), CHPG (50 μM), or CDPPB (10 μM). All values are expressed as the mean ± S.E.M. (n = 5-7). Data were analyzed
by one-way ANOVA followed by a Student-Newman-Keuls post-hoc test. #p < 0.05 as compared with the NMDA groups. *p < 0.05 as compared
with the NMDA plus ketamine or D-APV groups.
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field potentials was significantly enhanced. Furthermore,
both CHPG and CDPPB reversed the blockade of keta-
mine and D-APV on NMDA-induced field potentials
(Figure 2). DFB also significantly reversed the inhibitory
responses elicited by ketamine, but not by D-APV
(Figure 2c). However, CHPG did not influence ifenpro-
dil-elicited suppression on NMDA receptor activation
(Figure 2d).
When the exposure of NMDA to hippocampal slices

was conducted prior to co-application of positive mGluR5
modulators combined with NMDA, it was observed that
the NMDA-induced field potential was particularly poten-
tiated by CHPG, but not by DFB and CDPPB. The inhibi-
tory effects of ketamine and D-APV on NMDA receptors
were only significantly reversed by CHPG, but not by DFB
and CDPPB (Figure 3a, b). In contrast, the inhibitory effect
of ifenprodil on NMDA receptor activation was not
reversed by CHPG (Figure 3c).

PKC dependent pathway
The following experiments were to determine whether
the influence of NMDA receptor activation and suppres-
sion by positive mGluR5 modulators was involved in the
protein kinase C (PKC) dependent pathway. Pretreat-
ment with chelerythrine (CTC, 10 μM), a PKC blocker,
was found to inhibit the potentiation of DFB, CHPG,
and CDPPB on NMDA-induced field potentials (Figure
4a). Chelerythrine also blocked the reversing effects of
DFB, CHPG, and CDPPB on ketamine- and D-APV-
evoked NMDA receptor suppression (Figure 4b, c).
Importantly, the field potential induced by NMDA was
also enhanced by PMA (1 μM), the PKC activator, but
not by 4a-PDD (1 μM), inactive phorbol esters (Figure
5). Furthermore, the inhibitory effects of ketamine and
D-APV on NMDA receptor activation were reversed by
PMA (1 μM), but not by 4a-PDD (1 μM) (Figure 5).

Discussion
In the present study, we examined the effects of the
mGluR5 orthosteric agonist, CHPG, and the mGluR5
positive allosteric modulators, DFB and CDPPB, on hip-
pocampal filed potentials induced by NMDA receptor
activation and inhibited by NMDA receptor antagonists
such as ketamine, D-APV, and ifenprodil. Our results
demonstrated that pretreatment with CHPG, DFB, and
CDPPB produced a predominate augmentation on field
potentials induced by NMDA in the hippocampal slice,
although they alone did not affect the basal potential.
These mGluR5 modulators also reserved the inhibitory
actions of ketamine and D-APV on NMDA-elicited
responses. As NMDA was pretreated before co-applica-
tion of mGluR5 modulators, the potentiation of NMDA
receptor activation and restoration of NMDA receptor
blockade were regulated by CHPG, but not by DFB and

Figure 3 Pretreatment of NMDA alters the regulation of
mGluR5 modulators on the potentiation of NMDA activation
and prevention of NMDA blockade. The hippocampal slices were
initially exposed to NMDA with ketamine (a, 10 μM), D-APV (b,
50 μM), or ifenprodil (c, 5 μM). After washout, the NMDA was re-
exposed to the mGluR5 modulator, DFB (10 μM), CHPG (50 μM), or
CDPPB (10 μM) was co-applied with NMDA, followed by a co-
application of NMDA, the mGluR5 modulator, and ketamine, D-APV,
or ifenprodil. Summary data showing the average amplitude of field
potentials induced by NMDA with and without ketamine, D-APV, or
ifenprodil as well as in the co-application of mGluR5 modulators,
DFB (10 μM), CHPG (50 μM), or CDPPB (10 μM). All values are
expressed as the mean ± S.E.M. (n = 5-7). Data were statistically
analyzed by one-way ANOVA followed by a Student-Newman-Keuls
post-hoc test. #p < 0.05 as compared with the NMDA groups. *p <
0.05 as compared with the NMDA plus ketamine or D-APV groups.
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Figure 4 PKC inhibitor influences the effects of mGluR5 modulators on NMDA receptor activation and suppression. Pretreatment of
hippocampal slices with chelerythrine (10 μM), a PKC inhibitor, inhibited the enhancing effects of DFB (10 μM), CHPG (50 μM), and CDPPB
(10 μM) on NMDA-induced field potentials (a) and reversed the attenuating effects of mGluR5 modulators on ketamine (b, 10 μM) or D-APV (c,
50 μM)-evoked NMDA receptor suppression. All values are expressed as the mean ± S.E.M. (n = 5). Data were statistically analyzed by one-way
ANOVA followed by a Student-Newman-Keuls post-hoc test.
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CDPPB. Furthermore, the mGluR5-mediated amplifica-
tion of NMDA-induced potentials and restoration of
NMDA receptor blockade were blocked by the PKC
inhibitor, Suggesting that the cellular modulation of
NMDA receptor by mGluR5 may involve in PKC-
dependent pathway. Therefore, our results indicated that
these positive mGluR5 modulators could be effective in
attenuating the hippocampal abnormalities that result
from NMDA receptor hypofunction.
The potentiating actions of CHPG, DFB, and CDPPB

on NMDA-induced field potentials are similar to pre-
vious reports, which demonstrated that the selective
mGluR5 agonists produced enhancement of NMDA-
mediated responses in rat hippocampal slices [20], rat
subthalamic nucleus slices [9], and mouse striatal med-
ium spiny neurons [10]. However, DFB, CDPPB, and
even the selective mGluR5 agonist CHPG, when admini-
strated alone, did not influence the basal field potentials
in the hippocampal slices. Consistently, CHPG did not
affect the field excitatory postsynaptic potential (fEPSP)
in the CA1 area of rat hippocampal slices [21] and the
ventral root potential in the rat spinal cord [22].
Furthermore, CHPG did not alter the ratio of fEPSP
responses, indicating that CHPG may be unlikely to
induce a presynaptic release of glutamate. When the
concentration has reached higher than 1 mM, CHPG
can elicit a reduction in the fEPSP slope [21], suggesting
that mGluR5 activation may act on synaptic transmis-
sion through an increase in endogenous glutamate neu-
rotransmission on NMDA receptors, as reported to
occur in the striatum[23] and periaqueductal grey [24].
It appears that CHPG, DFB, and CDPPB at the concen-
trations used under this experimental condition mainly
act postsynaptically and do not influence the glutamate
neurotransmission in hippocampus, since the selective
concentrations for these mGluR5 positive modulators
(10-50 μM) were much lower than the concentration
that elicits glutamate release.
The mGluR5 positive allosteric modulator CDPPB has

been recently reported to reverse the effects of the non-
competitive NMDA antagonist MK801 on rat cortical
neuronal firing [25]. In agreement with this previous
report, our present study also demonstrated that positive
modulation of mGluR5 restored the inhibitory effects of
the NMDA receptor antagonist ketamine and D-APV
on mouse hippocampal field potentials activated by
NMDA. The above electrophysiological evidence may
further reveal our recent findings that mGluR5 positive
modulators attenuate ketamine-induced behavioral
responses [15]. Alternatively, the mGluR5 antagonists
can potentiate the neuronal firing evoked by NMDA
receptor antagonists in rat cortical neurons [26]. In line
with the potentiating actions of mGluR5 antagonists
on the noncompetitive NMDA receptor antagonists-

Figure 5 Effects of phorbol ester on NMDA receptor activation
and suppression. Pretreatment of hippocampal slices with PMA (1
μM, a PKC activator) potentiating NMDA-induced field potentials (a,
b) and prevented ketamine (a, 10 μM)- or D-APV (b, 50 μM)-evoked
NMDA receptor blockade. Pretreatment of hippocampal slices with
4a-PDD (1 μM, inactive phorbol ester) did not affect NMDA-elicited
field potentials (c, d) and ketamine (c, 10 μM)- or D-APV (d, 50 μM)-
induced NMDA receptor blockade. All values are expressed as the
mean ± S.E.M. (n = 6). Data were statistically analyzed by one-way
ANOVA followed by a Student-Newman-Keuls post-hoc test. #p <
0.05 as compared with the NMDA groups. *p < 0.05 as compared
with the NMDA plus ketamine or D-APV groups.
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induced responses such as locomotor hyperactivity, pre-
pulse inhibition [11,12] and cognitive deficits [13,27],
these animal behavioral studies also reveal that activa-
tion of mGluR5 could ameliorate the behavioral
abnormalities associated with NMDA receptor defi-
ciency. Therefore, modulation of mGluR5 may provide a
novel approach for the development of therapeutic
agents to treat CNS impairment induced by NMDA
receptor dysfunction.
Activation of mGluR5 has been demonstrated to facili-

tate NMDA receptor function [10,20] and reverse the
effects of NMDA antagonist induced responses [15,25].
CHPG, directly binding to glutamate binding site, and
DFB as well as CDPPB, binding to the heptahelical trans-
membrane domain of mGluR5, increase the intrinsic effi-
cacy of the endogenous glutamate to activate mGluR5,
which results in enhancement of NMDA receptor func-
tion and reversion of the NMDA receptor obstruction
elicited by ketamine and D-APV. However, CHPG did
not improve the inhibitory action of ifenprodil, a NR2B
selective NMDA receptor antagonist [28], on NMDA
receptor activation. It suggests that the regulation of
NMDA receptor by mGluR5 may not involve the NMDA
receptor subunit NR2B. Interestingly, the sensitivities of
NMDA receptor activation and suppression in response
to the mGluR5 agonist CHPG and the allosteric modula-
tors DFB and CDPPB were remarkably distinct when the
NMDA receptor was activated prior to the introduction
of mGluR5. It is important to point out that with pre-
treatment of NMDA before mGluR5 activation, the
potentiation of the NMDA receptor and restoration of
receptor barrier were only regulated by CHPG, but not
by DFB and CDPPB. These findings indicate that NMDA
receptor activation may change the sensitivity of mGluR5
for agonists and allosteric modulators, since stimulation
of NMDA receptor has been reported to induce phos-
phorylation of mGluR5 and activation of protein phos-
phatase [7,29]. It is possible that mGluR5 in this state is
insensitive to allosteric modulators.
Two distinct signaling pathways for the potentiation of

NMDA responses by mGluRs have been presented, one
PKC-dependent pathway [30,31] and another PKC-inde-
pendent process [32,33]. Our results showed that
mGluR5 signals sent via PKC to enhance NMDA-
mediated responses and restore the obstruction of
NMDA receptor by specific antagonists, since the PKC
inhibitor blunted mGluR5 positive modulators mediated
NMDA potentiation and restoration of NMDA suppres-
sion. Furthermore, PKC activator has the similar effects
of mGluR5 positive modulators through enhancing
NMDA receptor activation and reversing the NMDA
antagonist-evoked NMDA receptor suppression. The
molecular interactions that mediate the actions of
mGluR5 on NMDA receptors have been evidenced by

the agonist-elicited increase in the phosphorylation of
two serine residues (serine 896 and serine 897) of NR1
subunit of NMDA receptors [34]. Positive allosteric
modulators also potentiate this response to a subthres-
hold concentration of agonist [35]. It is not known,
however, whether phosphorylation of the NR1 receptors
could reduce the efficacy of noncompetitive NMDA
receptor antagonists, such as ketamine and D-APV.
Further studies are needed to determine whether
mGluR5 positive modulators influence the NMDA
receptor activation and suppression via modification of
the phosphorylation of NR1 subunit of NMDA
receptors.
In accordance with previous evidence showing that

mGluR5 positive modulators attenuate NMDA antago-
nist-evoked behavioral responses, our present data pro-
vide electrophysiological evidence that mGluR5 have
modulatory effects on NMDA receptor activation and
suppression, which are reversed by the PKC inhibitor.
These findings suggest that the regulatory role of
mGluR5 on NMDA receptor is involved in the PKC
dependent pathway and support the notion that positive
mGluR5 modulation is a potential therapeutic strategy
in the treatment of NMDA receptor hypofunction such
as schizophrenia.
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