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RA3 is a reference-guided approach for epigenetic
characterization of single cells
Shengquan Chen 1,2,4, Guanao Yan3,4, Wenyu Zhang2, Jinzhao Li2, Rui Jiang1✉ & Zhixiang Lin 2✉

The recent advancements in single-cell technologies, including single-cell chromatin acces-

sibility sequencing (scCAS), have enabled profiling the epigenetic landscapes for thousands

of individual cells. However, the characteristics of scCAS data, including high dimensionality,

high degree of sparsity and high technical variation, make the computational analysis chal-

lenging. Reference-guided approaches, which utilize the information in existing datasets, may

facilitate the analysis of scCAS data. Here, we present RA3 (Reference-guided Approach for

the Analysis of single-cell chromatin Accessibility data), which utilizes the information in

massive existing bulk chromatin accessibility and annotated scCAS data. RA3 simultaneously

models (1) the shared biological variation among scCAS data and the reference data, and (2)

the unique biological variation in scCAS data that identifies distinct subpopulations. We show

that RA3 achieves superior performance when used on several scCAS datasets, and on

references constructed using various approaches. Altogether, these analyses demonstrate

the wide applicability of RA3 in analyzing scCAS data.
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Chromatin accessibility is a measure of the physical access
of nuclear macromolecules to DNA and is essential for
understanding the regulatory mechanism1,2. For rapid and

sensitive probing of chromatin accessibility, assay for
transposase-accessible chromatin using sequencing (ATAC-seq)
directly inserts sequencing adaptors into accessible chromatin
regions using hyperactive Tn5 transposase in vitro3. With the
recent advancements in technology, single-cell chromatin acces-
sibility sequencing (scCAS) further enables the investigation of
epigenomic landscape in individual cells4,5. However, the analysis
of scCAS data is challenging because of its high dimensionality
and high degree of sparsity, as the low copy number (two of a
diploid-genome) of DNA leads to only 1–10% capture rate for the
hundreds of thousands of possible accessible peaks6. The
proposed approaches for the analysis of single-cell RNA-seq
(scRNA-Seq) data thus present limitations due to the novelty and
assay-specific challenges of extreme sparsity and tens of times
higher dimensions6.

Several computational algorithms have been proposed to
analyze scCAS data. chromVAR assesses the variation of chro-
matin accessibility using groups of peaks that share the same
functional annotations7. scABC calculates weights of cells based
on the number of distinct reads within the peak background and
then uses weighted k-medoids to cluster the cells8. cisTopic
applies latent Dirichlet allocation model to explore cis-regulatory
regions and characterizes cell heterogeneity from the generated
regions-by-topics and topics-by-cells probability matrices9.
Cusanovich et al. proposed a method that performs the term
frequency-inverse document frequency transformation (TF-IDF)
and singular value decomposition iteratively to get the final fea-
ture matrix5,10. Scasat uses Jaccard distance to evaluate the dis-
similarity of cells and performs multidimensional scaling to
generate the final feature matrix11. SnapATAC segments the
genome into fixed-size bins to build a bins-by-cells binary count
matrix and uses principal component analysis (PCA) based on
the Jaccard index similarity matrix to obtain the final feature
matrix12. SCALE combines a variational autoencoder and a
Gaussian mixture model to learn latent features of scCAS data13.
Destin is based on weighted PCA, where the peaks have different
weights based on the distances to transcription start sites and the
relative frequency of the peaks in ENCODE data14–16.

Incorporating reference data in analyzing single-cell genomic
data can better tackle the high level of noise and technical var-
iation in single-cell genomic data. Most reference-guided meth-
ods are designed for single-cell transcriptome data, and they focus
primarily on cell type annotation using reference data and marker
genes, which limits their application to other downstream ana-
lyses, such as data visualization and trajectory inference17–27. For
the analysis of single-cell chromatin accessibility data, SCATE28

was recently proposed to reconstruct and recover the “true”
chromatin accessibility level for each region in scCAS data uti-
lizing the information in bulk chromatin accessibility data, which
is similar to the goal of imputation methods developed for
scRNA-Seq data. Massive amounts of bulk chromatin accessibility
data have been generated from diverse tissues and cell lines15,16.
The amount of scCAS data is rapidly increasing4,5,10,29,30.
Meanwhile, computational tools that collect chromatin accessi-
bility data and efficiently compute chromatin accessibility over
the genomic regions facilitate the construction of reference
data31,32.

To utilize the information in existing chromatin accessibility
datasets for the analysis of scCAS data, we propose a probabilistic
generative model, RA3, in short for Reference-guided Approach
for the Analysis of single-cell chromatin Acessibility data.
Incorporating reference data built from bulk ATAC-seq data,
bulk DNase-seq data, and pseudo-bulk data by aggregating scCAS

data, RA3 effectively extracts biological variation in single-cell
data for downstream analyses, such as data visualization and
clustering. RA3 not only captures the shared biological variation
between single-cell chromatin accessibility data and reference
data, but also captures the unique biological variation in single-
cell data that is not represented in the reference data. RA3 can
model known covariates, such as donor labels. Through com-
prehensive experiments, we show that RA3 consistently outper-
forms existing methods on datasets generated from different
platforms, and of diverse sample sizes and dimensions. In addi-
tion, RA3 facilitates trajectory inference and motif enrichment
analysis for more biological insight on the cell subpopulations.

Results
The RA3 model. RA3 is a generative model based on the fra-
mework of probabilistic PCA33, and it decomposes the total
variation in scCAS data into three components: the component
that captures the shared biological variation with reference data,
the component that captures the unique biological variation in
single cells, and the component that captures other variations
(Fig. 1a). More specifically, the first component utilizes the prior
information of the projection vectors learned from reference data,
and it captures the variation in single-cell data that is shared with
the reference data. Choice of the reference data is flexible: it can
be the chromatin accessibility profiles of bulk samples or pseudo-
bulk samples by aggregating single cells. In practice, the reference
data can be incomplete: novel cell types or novel directions of
biological variation that are not captured in the reference data can
be present in the single-cell data. The second component captures
the unique biological variation in single-cell data that is not
present in the reference data: it incorporates the spike-and-slab
prior to capture the direction of variation that separates a small
subset of cells from the other cells, since there may be rare cell
types that are not captured in the reference data. The spike-and-
slab prior also facilitates RA3 to distinguish biological variation
from technical variation, assuming that the direction of variation
that separates a small subset of cells more likely represents bio-
logical variation. The third component captures the other varia-
tions in single-cell data, and it likely represents the technical
variation. Other than the three components, RA3 includes
another term to model known covariates. The first and second
components are used for downstream analyses, and we present
results on data visualization, cell clustering, trajectory inference
and motif enrichment analysis.

RA3 decomposes variation in single-cell data. We first use a
simple example as a proof of concept to demonstrate RA3. We
collected human hematopoietic cells with donor label BM0828
from a bone marrow scATAC-seq dataset29 (referred as the
human bone marrow dataset). To reduce the noise level, we first
adopted a feature selection strategy similar to scABC and SCALE
(Methods). We performed the TF-IDF transformation to nor-
malize the scATAC-seq data matrix, implemented PCA, and then
performed t-distributed stochastic neighbor embedding (t-SNE)34

to reduce the dimension to two for visualization. This approach
(TF-IDF + PCA) is similar to that in Cusanovich20185,10, which
is among the top three methods suggested in a recent benchmark
study6. More discussions on TF-IDF transformation are provided
in the Methods section. It is hard to separate the majority of the
cell types using TF-IDF + PCA, and only CLP and MEP cells are
moderately separated from the other cells (Fig. 1b). We then
collected a reference data: bulk ATAC-seq samples from four
parent nodes in the hematopoietic differentiation tree29, includ-
ing samples that correspond to HSC, MPP, LMPP, and CMP cells
after fluorescent activated cell sorting. The genomic regions in the
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reference data are matched with that in the single-cell data. We
first considered a simple approach, referred as the bulk projection
approach, to utilize the information in the reference data: (1) we
applied PCA on bulk ATAC-seq data; (2) we used the projection
vectors learned from bulk data to project single-cell data after TF-
IDF normalization; (3) for visualization, we applied t-SNE on the
projected data to further reduce the dimension to two. This
simple approach significantly improves the separation of the cell
types (Fig. 1c). A method similar to the above approach was
proposed in Buenrostro et al.29, but the performance of the

method was not as good as our simple approach (Supplementary
Fig. 1a).

The bulk projection approach implicitly assumes that all the
biological variation is shared in single-cell and the reference data,
as it only uses the projection vectors learned from the reference
data and do not use single-cell data to learn the projection
vectors. In this example, using the projection vectors from
reference data alone cannot distinguish CLP from the other cells,
since the variation of CLP cells is not captured in the reference
data. We took residual after the bulk projection, and implemented

Fig. 1 The reference-guided approach for the analysis of scCAS data. a A graphical illustration of the RA3 model. RA3 decomposes the variation in scCAS
data into three components: the component that captures the shared biological variation with reference data, the component that captures the unique
biological variation in single-cell data, and the component that captures other variations. b t-SNE visualization of the cells from donor BM0828 using latent
features obtained from TF-IDF + PCA. c t-SNE visualization of the cells from donor BM0828 using latent features obtained from bulk projection. d We
calculated the residuals after the bulk projection. PCA was performed on the residuals, followed by t-SNE visualization. e The learned second component
with the spike-and-slab prior in RA3. f t-SNE visualization using the first two components learned by RA3. TF-IDF term frequency-inverse document
frequency transformation, PCA principal component analysis.
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PCA + t-SNE on the residual matrix: most cells other than MEP
and CLP cells are mixed together, which indicates the presence of
strong technical variation in the residual matrix (Fig. 1d). This
observation suggests that including the direction of variation
learned from single-cell data may help to separate CLP cells, but
the direction needs to be carefully chosen because of the strong
technical variation. A schematic plot for the desired direction of
variation to learn from single-cell data is shown in Fig. 1d: it
separates a small subset of cells from the other cells, and the
technical variation is weaker along that direction.

Our proposed RA3 models the data after TF-IDF transforma-
tion. To overcome the limitation of the bulk projection approach,
RA3 not only incorporates prior information from the projection
vectors learned from the reference data as the first component in
the decomposition of variation, but also incorporates a second
component to model the unique biological variation in single-cell
data. The key for the second component in RA3 is a spike-and-
slab prior35,36, which facilitates the model to detect directions that
lead to good separation of a small number of cells from the other
cells, and not necessarily directions with the largest variation.
Using the direction of the largest variation can be problematic
given that the technical variation can be strong. Applying RA3 to
the example, the second component with the spike-and-slab prior
successfully distinguishes CLP cells (Fig. 1e). We note that the
labels for CLP cells are not used in RA3 to detect the direction
that separates CLP cells. In this example, RA3 effectively utilizes
the prior information in reference data to separate CMP, GMP,
HSC/MPP, LMPP, and MEP cells, and it also captured the unique
variation in single-cell data, which separates CLP cells from GMP
and LMPP cells (Fig. 1f). The loadings of the second component
in RA3 provide functional insight on the cell subpopulations.
Using the top 1000 peaks with largest magnitude in the loadings
of the second component (we focus on peaks with negative
loadings as the sign of H2 for the identified cell subpopulation is
mostly negative), we performed Genomic Region Enrichment of
Annotation Tool (GREAT)37 analysis to identify significant
pathways associated with the identified cell subpopulation in
the second component (Methods). The top five pathways with
smallest p values from the binomial test are regulation of
lymphocyte activation, Fc receptor signaling pathway, immune
response-regulating cell surface receptor signaling pathway,
immune response-activating cell surface receptor signaling path-
way, and positive regulation of lymphocyte activation (see
Supplementary Table 1 for the complete enrichment results).
These enriched pathways are consistent with the function of CLP
cells: CLP cells serve as the earliest lymphoid progenitor cells and
give rise to T-lineage cells, B-lineage cells, and natural killer (NK)
cells. To summarize, the second component in RA3 not only
identifies the rare cell subpopulation, but also provides functional
insight of the identified cell subpopulation.

RA3 builds effective reference from massive bulk data. The
previous example of hematopoietic cells utilizes reference data
constructed from manually curated bulk samples that have rele-
vant biological context with the single-cell data. The cellular
composition in single-cell data is generally unknown. It can be
desirable to utilize bulk reference data generated from diverse
biological contexts and cell types, such as all the bulk chromatin
accessibility data generated in the ENCODE project15,16. The
implementation of RA3 requires matched regions/features in the
target single-cell data and the reference data. The web-based tool
OPENANNO31 provides a convenient way to construct the
reference data: the input for OPENANNO is the peak informa-
tion in single-cell data, and OPENANNO will calculate the
accessibility of these peaks in 871 bulk DNase-seq samples of

diverse biological context collected from ENCODE, which can be
used as the reference data. Note that this approach requires the
BAM files for the reference samples to calculate accessibility, an
alternative approach that does not require BAM files will be
discussed later. With the peak information in the human bone
marrow dataset29, we used OPENANNO to construct the refer-
ence data with samples of diverse biological context. The refer-
ence data constructed in this way achieved similar performance as
the manually curated reference data using only the relevant cell
types (Supplementary Fig. 1b).

We next applied RA3 to three other single-cell datasets: (1) a
mixture of human GM12878 and HEK293T cells (referred as the
GM/HEK dataset)5; (2) a mixture of human GM12878 and HL-60
cells (referred as the GM/HL dataset)5; (3) an in silico mixture of
H1, K562, GM12878, TF-1, HL-60 and BJ cells (referred as the
InSilico mixture dataset)4. We first manually constructed the
reference using BAM files of bulk DNase-seq samples from
the relevant cell lines (Methods). The performance significantly
improved over the approach not using reference data (Fig. 2a,b
and Supplementary Fig. 1d, e), which indicates that the abundant
BAM files of bulk chromatin accessibility profiles in the literature
can be fully used to help the analysis of scCAS data. When we
constructed the reference data with OPENANNO using all the
871 bulk samples (Methods), the performance of RA3 is
comparable with the implementation using only the relevant cell
lines for reference (Fig. 2c and Supplementary Fig. 1d, e).

We also considered an alternative approach to construct the
reference using only the peak files (BED files) of the reference
samples, to address the situation when BAM files are not
available. The reference data can be constructed by counting the
number of peaks in reference sample that overlap with every peak
in single-cell data (Methods). This approach to construct the
reference data also led to satisfactory performance (Fig. 2d and
Supplementary Fig. 1c–e), which suggests that we can build useful
reference with the peak files of bulk data when BAM files are not
available. Therefore, databases that collect more comprehensive
biological samples but only provide the peak information for each
bulk sample, such as Cistrome DB32, may further facilitate the
usage of RA3.

RA3 incorporates pseudo-bulk data as reference. It can be
difficult to obtain the bulk samples for certain cell populations,
especially for the cells in frozen or fixed tissues, where cell sorting
is challenging to implement. The recent efforts of cell atlas con-
sortiums have generated massive amounts of single-cell tran-
scriptome data for whole organisms38–47, and single-cell
chromatin accessibility data are rapidly increasing4,5,10,29,30. We
can construct pseudo-bulk reference data by aggregrating single
cells of the same type/cluster to alleviate the high degree of
sparsity in scCAS data. As a proof of concept, we first look at a
single-nucleus ATAC-seq dataset generated from mouse fore-
brain (referred as the mouse forebrain dataset)30, where the cell
type labels were provided, including astrocyte (AC), three sub-
types of excitatory neuron (EX1, EX2, and EX3), two subtypes of
inhibitory neuron (IN1 and IN2), microglia (MG), and oligo-
dendrocyte (OC). We randomly split the cells in this dataset into
half: half of the cells were aggregated by the cell types to build the
pseudo-bulk reference, and the other half of the cells were used as
the single-cell data. It is hard to separate the subtypes of excita-
tory neurons using TF-IDF + PCA (Supplementary Fig. 2a). RA3
using the pseudo-bulk reference successfully identified all the cell
types, with moderate separation in the three subtypes of excita-
tory neurons, EX1, EX2, and EX3 (Fig. 2e). To investigate the
influence of incomplete reference data, we left out MG and OC
cells in constructing the pseudo-bulk reference data. As expected,
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the bulk projection approach cannot distinguish MG and OC
cells (Fig. 2f). The spike-and-slab prior in RA3 successfully
detected the directions that lead to good separation of MG and
OC cells (Fig. 2g and Supplementary Fig. 2b), and RA3 led to
improved separation of all the cell types (Fig. 2h). We also per-
formed an experiment where the overlap between scCAS data and
the reference data gradually decreases. We gradually and ran-
domly downsampled the cells of the shared cell types (AC, EX1,
EX2, EX3, IN1, and IN2) in scCAS data, and the cell types (MG
and OC) unique to scCAS data remain unchanged. Before
downsampling, MG and OC constitute 18.1% of the total cells in
scCAS data. At the end point of downsampling, only 10.0% cells
of the shared cell types are retained, and MG and OC constitute
68.7% of the total cells in scCAS data. We used the default
parameters in RA3. As shown in Supplementary Fig. 3,
RA3 successfully separated MG and OC cells even when they
become the majority cell types in scCAS data.

To further demonstrate the advantage of RA3 for the analysis
of single-cell epigenetic profiles utilizing existing single-cell data,

we collected single cells from a sciATAC-seq dataset of the adult
mouse brain (referred as the MCA mouse brain dataset)10. We
used the provided cell type labels to evaluate different methods10.
We first look at cells from the mouse prefrontal cortex. It has
been suggested that there is heterogeneity within excitatory
neurons in mouse prefrontal cortex10. TF-IDF + PCA can hardly
distinguish the subtypes of excitatory neurons and inhibitory
neurons (Fig. 2i). We used the complete mouse forebrain
dataset30 to construct a pseudo-bulk reference for RA3
(Methods). RA3 achieved much better separation for the subtypes
of excitatory neurons (Fig. 2j). RA3 also achieved better
performance on three other brain tissues in the MCA mouse
brain dataset, including cerebellum and two replicates of the
whole brain (Supplementary Fig. 2d–f).

Next, we collected peripheral blood mononuclear cells
(PBMCs) from 10X Genomics (referred as the 10X PBMC
dataset). The labels of cell type are not provided in this dataset,
and eight cell populations inferred by cell markers are suggested
in recent studies6,9,48, including CD34+ cells, NK cells, dendritic

Fig. 2 RA3 incorporates reference data constructed from different sources. t-SNE visualizations of the cells in the GM/HEK dataset using latent features
obtained from a TF-IDF + PCA, and from RA3 using reference data constructed from different samples, including b BAM files of bulk GM12878 and
HEK293T DNase-seq samples, c BAM files of all the bulk samples in OPENANNO, and d BED files of all the bulk samples in OPENANNO. e We split the
cells in the mouse forebrain dataset into half: half of the cells were used to construct pseudo-bulk reference, and the other half were treated as single-cell
data. t-SNE visualization using the latent features learned by RA3 with the complete reference is shown. f We also constructed an incomplete pseudo-bulk
reference by leaving out MG and OC cells. t-SNE visualization using the latent features obtained by bulk projection with incomplete reference is shown. We
implemented RA3 with the incomplete reference: g the learned second component with spike-and-slab prior and h t-SNE visualization of the learned latent
features are shown. i t-SNE visualizations of cells in the mouse prefrontal cortex dataset, using the latent features obtained from TF-IDF + PCA and j the
latent features obtained from RA3 with pseudo-bulk reference constructed from the mouse forebrain dataset. k t-SNE visualizations of cells in the 10X
PBMC dataset using the latent features obtained from RA3 with pseudo-bulk reference constructed from another PBMC dataset. Chromatin accessibility of
S100A12 (a marker gene of monocytes) and MS4A1 (a marker gene of B cells) is projected onto the visualizations, respectively. TF-IDF term frequency-
inverse document frequency transformation, PCA principal component analysis.
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cells, monocytes, lymphocyte B cells, lymphocyte T cells, and
terminally differentiated CD4 and CD8 cells. For the implemen-
tation of RA3, we used a previously published PBMC dataset49 to
construct the pseudo-bulk reference (Methods). We first
performed dimension reduction with RA3 and then performed
clustering on the low-dimensional representation. To evaluate the
performance, we adopted the Residual Average Gini Index
(RAGI) score6, which calculates the difference between (a) the
variability of marker gene accessibility across clusters and (b) the
variability of housekeeping gene accessibility across clusters, and
a larger RAGI score indicates a better separation of the clusters
(Methods). RA3 achieved a RAGI score of 0.152, while TF-IDF +
PCA achieved a RAGI score of 0.110. Aside from RAGI score,
RA3 also led to more compact patterns for marker gene activity
(Fig. 2k and Supplementary Fig. 2c), compared with TF-IDF +
PCA (Supplementary Fig. 2g). In the previous implementations of
RA3, we used the peaks in the target single-cell data to calculate
accessibility for the reference data. When we use the peaks in the
reference data to calculate accessibility for the target single-cell
data, the RAGI score for RA3 is 0.150. This implementation
demonstrates that RA3 can be implemented when only the count
matrix of the reference data is available.

It may be challenging to reliably detect the peaks for the rare
cell subpopulations in the target scCAS data. We present two
approaches to tackle this issue. (1) The first is to use peaks
identified in the reference data. In the 10X PBMC scCAS
dataset, we have shown that the clustering performance is
similar when we use the peaks in the target scCAS data or the
peaks in the reference data: RAGI scores are 0.152 (scCAS
peaks) vs 0.150 (reference peaks). The cell atlas consortiums
will generate large amounts of data that can be used as
reference. We expect that the peak annotations in reference
data that RA3 can take advantage of will become increasingly
comprehensive in the future. So the first approach will become
appealing to tackle the issue of peak calling for rare
subpopulations when reference data become more abundant.
(2) Our second approach is to iterate between peak calling and
clustering with RA3. The peaks may not be reliably detected at
the first place. After implementing RA3 and clustering, there
will be moderate separation of the cell types. Then we redo peak
calling within each obtained cell cluster, and reimplement RA3
on these peaks. We expect that iterations between peak calling
and clustering with RA3 will improve peak detection and
identification of the rare cell subpopulations. As a proof of
concept, we implemented this procedure on the mouse
forebrain dataset. We first identified cell type-specific peaks
by the hypothesis testing procedure in scABC, and held out the
top 500 peaks with minimum p values for the MG and OC cell
types, respectively. Note that MG and OC cells are not present
in the reference data. We used the default parameters in RA3.
RA3 cannot distinguish MG and OC cells without the MG- and
OC-specific peaks (Supplementary Fig. 4a). We then performed
cell clustering with RA3 + Louvain clustering, performed peak
calling within each obtained cell cluster (we followed the
pipeline of peak calling provided by the original study of the
mouse forebrain data30), and merged these peaks to obtain new
features. Using these new features, RA3 successfully identified
MG and OC cells (Supplementary Fig. 4b), which demonstrates
the effectiveness of the iterative peak calling strategy. We note
that the first approach and the second approach can be
combined, i.e., using both reference peaks and de novo peaks in
scCAS data.

To summarize, the examples implementing RA3 with pseudo-
bulk reference data demonstrate the potential that RA3 can utilize
existing scCAS data to facilitate the analysis of newly generated
scCAS data.

Comparison with other methods. RA3 was benchmarked against
six baseline methods, including scABC8, Cusanovich20185,10,
Scasat11, cisTopic9, SCALE13, and SnapATAC12 (Methods). We
evaluated the methods by dimension reduction and clustering
with the provided cell labels (except for the 10X PBMC dataset,
where the cell labels are not provided): We implemented t-SNE
and uniform manifold approximation and projection (UMAP)50

to further reduce the low-dimensional representation provided by
each method to two for visualization. To evaluate the clustering
performance, we implemented Louvain clustering on the low-
dimensional representation provided by each method as sug-
gested by Chen et al.6, and we assessed the clustering performance
by adjusted mutual information (AMI), adjusted Rand index
(ARI), homogeneity score (homogeneity), and normalized mutual
information (NMI). For the 10X PBMC dataset, we used RAGI
score to evaluate the clustering performance since the cell labels
are not available. We only evaluated the clustering performance
for scABC because it does not perform dimension reduction.

We first evaluated the performance on the human bone
marrow dataset29. We used all the bulk chromatin accessibility
data provided by Buenrostro et al.29 as the reference data in RA3.
To evaluate different methods, we used both the subset of cells
and all the cells in this dataset.

(1) CLP, LMPP and MPP cells. These cells come from two
donors, BM0828 and BM1077. Scasat and Cusanovich2018
cannot distinguish MPP and LMPP (Fig. 3a). Although SCALE,
cisTopic, and SnapATAC can separate the three cell types, the
effect of the two donors is obvious (Fig. 3a and Supplementary
Fig. 5), which leads to poor clustering performance for the three
cell types (Fig. 4a and Supplementary Fig. 6). When the variation
of different donors is not of interest, it is necessary to incorporate
donor labels as covariates51, while all the baseline methods do not
include such a component. RA3 benefited from using reference
data and from including donor labels as the covariates, and
outperformed the baseline methods in both visualization (Fig. 3a)
and clustering (Fig. 4a and Supplementary Fig. 6).

(2) Cells from donor BM0828. Scasat and Cusanovich2018
cannot separate most cell types except CLP and MEP (Fig. 3b).
We encountered an error message with output “Nan” when
implementing SCALE with the default parameters in this dataset.
So we did not include SCALE in this comparison. cisTopic and
SnapATAC performed reasonably well except for separating
CMP cells (Fig. 3b). RA3 performed the best in both visualization
(Fig. 3b) and clustering (Fig. 4a and Supplementary Fig. 6).

(3) The full dataset with all the cells and donors. Although
cisTopic, Cusanovich2018, and SnapATAC achieved reasonable
separation of the cells, their performance was influenced by the
effect of donors, especially for HSC, MPP, and LMPP cells
(Fig. 3c). RA3 achieved the best clustering performance (Fig. 4a
and Supplementary Fig. 6).

For the three datasets with mixture of cell lines4,5, we
constructed the reference in RA3 using bulk DNase-seq samples
with relevant biological context for the target single-cell data.
Compared to the baseline methods, RA3 also achieved satisfac-
tory performance on the GM/HEK, GM/HL, and InSilico mixture
datasets (Supplementary Fig. 7).

We then assessed the performance on the mouse forebrain
dataset30. We randomly split the cells in this dataset into half: half
of the cells were aggregated by the provided cell type labels to
build the pseudo-bulk reference, and the other cells were used as
the single-cell data. All the baseline methods can hardly
distinguish the three subtypes of excitatory neuron (EX1, EX2,
and EX3), while RA3 can separate EX1 and it achieved moderate
separation of EX2 and EX3 (Figs. 3d and 4a and Supplementary
Fig. 6). To mimic platforms that generate sparser scCAS data, we
downsampled the reads in single-cell data (Methods). RA3
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consistently outperformed other methods when the dropout rate
varies from 5 to 50% (Fig. 4b and Supplementary Fig. 8).
Compared with the baseline methods, RA3 was less affected when
the dropout rate increases, and RA3 still achieved reasonable
separation of the cells when dropout rate = 25% (Fig. 3e). This
observation suggests the increased benefit of utilizing reference
data when the single-cell dataset has higher degree of sparsity.

We also evaluated the performance on the MCA mouse brain
dataset10. We used the complete mouse forebrain dataset30 to
construct a pseudo-bulk reference. We first look at cells from the
mouse prefrontal cortex. Cusanovich2018 cannot distinguish
excitatory neurons as previously reported10 (Fig. 3f). We
encountered an error when implementing SCALE on this dataset.
Scasat achieved a slight improvement over Cusanovich2018 in
separating excitatory neurons. cisTopic, SnapATAC, and RA3 all
provided better separation of the inhibitory neurons and the
subtypes of excitatory neurons (Fig. 3f). RA3 achieved better

separation of ACs and OCs (Fig. 3f), and the best overall
clustering performance (Fig. 4a). RA3 also outperformed the
baseline methods on three other datasets, including mouse
cerebellum and two samples of the mouse whole brain
(Supplementary Fig. 7).

We finally tested the performance on the 10X PBMC dataset.
We used the previously published dataset of PBMC cells49 to
construct a pseudo-bulk reference based on the provided cell type
labels. RA3 consistently outperforms the baseline methods
according to the RAGI score (Fig. 4c). In addition, RA3 led to
more compact patterns for marker gene activity (Supplementary
Fig. 9).

In all the examples, the results of UMAP visualization are
similar to that of t-SNE visualization (Supplementary Fig. 5). We
further evaluated the stability of clustering performance by
implementing bootstrap on the datasets in Fig. 4a. To be more
specific, we generated ten bootstrap samples by random sampling

Fig. 3 Evaluation of the visualization of scCAS data. a The dataset of CLP/LMPP/MPP cells. b The dataset of donor BM0828. c The human bone marrow
dataset. d The mouse forebrain dataset (half). e The mouse forebrain dataset (half) with 25% dropout rate. f The dataset of mouse prefrontal cortex. For all
the datasets, we obtained the latent features from SCALE, Scasat, cisTopic, Cusanovich2018, SnapATAC, and RA3, and then implemented t-SNE for
visualization.
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with replacement for each of the dataset. We then performed cell
clustering on the bootstrap samples using different methods. The
error bars in Fig. 4a represent the standard errors estimated by
bootstrap. In addition to the indexes of clustering performance,
we present the clustering tables (Supplementary Fig. 10). RA3
achieved a cleaner separation of the cell types, as the clustering
counts are more concentrated on the diagonals of the clustering
tables. To assess the computational efficiency and scalability of
RA3, we benchmarked the running time usage on datasets of
different sizes. As shown in Supplementary Fig. 11a, RA3 can
scale well with the size of scCAS dataset, especially for large
datasets. The computational time of RA3 on datasets with ~5K,
10K, 20K, and 50K cells are 1.7, 7.5, 16.5, and 17.5 min,
respectively. The size of the target scCAS dataset is dominant in
determining the computational time of RA3, and the number of
components learned from the reference data has a relatively
minor effect on the computational time (Supplementary Fig. 11b).

RA3 facilitates trajectory inference and motif analysis. Other
than data visualization and cell clustering, the output of RA3 can
also be implemented in downstream analyses including trajectory
inference and motif enrichment analysis. We use the cells from
donor BM0828 for illustration. We implemented Slingshot52 for
the trajectory inference, which is suggested in a benchmark
study53. The inputs for Slingshot include the low-dimensional
representation provided by RA3 and the cluster labels obtained
from RA3 + Louvain clustering, and the output for Slingshot is
the smooth curves representing the estimated cell lineages
(Methods). RA3 with Slingshot revealed the differentiation line-
age and the inferred trajectory greatly mimics the hematopoietic
differentiation tree29 (Fig. 5a). We then performed motif
enrichment analysis for the clusters identified by RA3 + Louvain
clustering. Cluster-specific peaks are needed for motif analysis
and we identified them by the hypothesis testing procedure in
scABC using the raw read counts and the cluster labels provided
by RA3 + Louvain clustering8. Note that for cell-level analysis
(visualization, clustering, and trajectory inference), we used TF-

IDF transformed data as the input; for peak-level analysis (dif-
ferential peak analysis), we used the raw read counts as part of the
input. We selected the top 1000 peaks with the smallest p values
for each cluster, and then applied chromVAR7 to infer the
enriched transcription factor (TF) binding motifs within these
peaks (Methods). Visualization of the top 50 most variable TF
binding motifs is shown (Fig. 5b). Thirty-nine of the top 50 most
variable TF binding motifs have been implicated in hematopoietic
development (Supplementary Table 2). Among them, some TF
binding motifs are specific to one or two clusters (Fig. 5b), and
previous literature further corroborates the role of these TFs/
motifs in the same cell types that the clusters represent: EBF1,
TCF3, and TCF4 are specific to cluster 7, which corresponds to
CLP cells29,54,55; JDP2, CEBPB, and CEBPE are specific to cluster
6, which corresponds to GMP cells29,56,57; and GATA1::TAL1,
GATA2, and GATA3 are specific to cluster 4, which corresponds
to MEP cells58,59.

Discussion
In this work, we have developed RA3 for the analysis of high-
dimensional and sparse single-cell epigenetic data using a
reference-guided approach. RA3 simultaneously models the
shared biological variation with reference data and the unique
variation in single-cell data that identifies distinct cell sub-
populations by incorporating the spike-and-slab prior. We have
shown that the reference data in RA3 can be constructed from
various sources, including bulk ATAC-seq, bulk DNase-seq, and
pseudo-bulk chromatin accessibility data, which will facilitate the
usage of RA3. We demonstrated that RA3 outperforms baseline
methods in effectively extracting latent features of single cells for
downstream analyses, including data visualization and cell clus-
tering. RA3 also facilitates trajectory inference and motif
enrichment analysis for scCAS data. In addition, RA3 is robust
and scalable to datasets generated with different profiling tech-
nologies, and of diverse sample sizes and dimensions.

Finally, our modeling framework is flexible and can be exten-
ded easily. We can incorporate other types of single-cell profiles

Fig. 4 Assessment of the clustering results. We implemented Louvain clustering on the low-dimensional representation provided by each method to get
the cluster assignments. The cluster assignments for scABC were obtained directly from the model output. a The clustering performance using different
methods evaluated by adjusted mutual information (AMI). The measure of center for the error bars denotes the AMI for different methods. The error bar
denotes the estimated standard error in ten bootstrap samples. b The clustering performance using different methods on the mouse forebrain dataset
(half) at different dropout rates evaluated by AMI. c The clustering performance using different methods on the 10X PBMC dataset evaluated by Residual
Average Gini Index (RAGI) score.
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as reference data to avoid the situation that the cell types in
scCAS data have not been adequately studied from the epigenetic
landscape. Besides, we can also extend our approach to non-linear
projection of scCAS data by incorporating deep neural networks
to capture higher level features.

Methods
The model of RA3. We first apply TF-IDF transformation to the read count matrix
in scCAS data. TF-IDF transformation achieves two goals in analyzing scCAS data:
(1) it normalizes for sequencing depth; (2) it upweights peaks/regions that do not
occur very frequently and downweights prevalent peaks/regions. The peaks/regions
that are less frequent in scCAS data tend to represent features that distinguish the
cell types, and giving these features higher weights improves separation of the cell
types (Supplementary Fig. 12). RA3 decomposes the variation in the scCAS data
after TF-IDF transformation into three components: the shared biological variation
with the reference data, the unique biological variation in scCAS data, and other
variations. Aside from the three components, RA3 also includes a term for known
covariates.

Consider the random vector yj 2 Rp ´ 1, which represents the observed p
features/regions for the jth cell among n cells in total. Borrowing the general
framework of probabilistic PCA33, RA3 models yj as the following:

yjjλj � N pðλj; σ2IpÞ; ð1Þ

λj ¼ βxj þWhj; λj 2 Rp´ 1; ð2Þ

where xj 2 Rq ´ 1 represents q known covariates, including the intercept and other
variables, such as the labels of donors or batches, and β 2 Rp ´ q represents the
unknown coefficients for xj. The variables W 2 Rp ´K and hj 2 RK ´ 1 are latent
variables: the columns in W have similar interpretation as the projection vectors in
PCA, and hj can be interpreted as the low-dimensional representation of yj. We
further decomposes the term Whj into three components:

Whj ¼ W1hj1 þW2hj2 þW3hj3 ; ð3Þ

where the dimensions are W1 2 Rp´K1 , W2 2 Rp´K2 , W3 2 Rp´K3 , hj1 2
RK1 ´ 1, hj2 2 RK2 ´ 1, hj3 2 RK3 ´ 1. So we have W= [W1 W2 W3] and hj ¼
½hTj1 hTj2 hTj3 �

T ¼ hTj1 h�Tj
h iT

with h�j ≜ hTj2 hTj3

h iT
.

We set W1 to be equal to the K1 projection vectors learned from PCA on the
reference data, so the first component W1hj1 utilizes prior information from the
reference data and captures the shared biological variation among scCAS data and
the reference data.

For the columns in W2 and W3, the prior specification is similar to that in
Bayesian PCA60:

wk � N pð0; α�1
k IpÞ; for k ¼ K1 þ 1; ¼ ;K; ð4Þ

where hyper-parameters α ¼ fαK1þ1; ¼ ; αKg are precision parameters that
controls the inverse variance of the corresponding wk, for k= K1+ 1,…, K.

Let γj ¼ ½γ1j; ¼ ; γKj�T 2 RK ´ 1 denote a K-dimensional binary latent vector for
cell j. We assume the following priors for γj and hj:

γkj ¼ 1; hkjjγkj � γkjNð0; 1Þ; k ¼ 1; ¼ ;K1;K1 þ K2 þ 1; ¼ ;K

γkj � Bernoulli ðθÞ; hkjjγkj � ð1� γkjÞN ð0; τ20Þ þ γkjNð0; τ21Þ; k ¼ K1 þ 1; ¼ ;K1 þ K2

(

ð5Þ
Note that for the entries in hj1 and hj3 , the prior specification is the same as that
in Bayesian PCA, while for the entries in hj2 , we assume the spike-and-slab35,36

prior with pre-specified parameters τ0 < 1 and τ1 > 1. The spike-and-slab prior is
the key that encourages the model to find directions in W2 that separate rare and
distinct cell types from the other cells, and it will help us to distinguish biological
variation from technical variation. Therefore, the second component W2hj2
captures the variation unique in scCAS data that separates distinct and rare cell
types from the other cells. We note that the sparsity specification on hj is
different from that in sparse PCA61, where W is assumed to be sparse for
variable selection. The third component W3hj3 models other variations such as
technical variation. We believe that hj1 and hj2 more likely represent the
biological variation, and thus we use the learned hj1 and hj2 as the low-
dimensional representation for cell j. The parameter θ is pre-specified to
determine the size of the rare cell types. In practice, we set the parameters τ0=
0.9, τ1= 5, and θ= 0.1. We set both K2 and K3 equal to 5, and set K1 equal to the
number of reference bulk/pseudo-bulk samples, as we used all the principal
components (PCs) in the reference data. When more than 30 bulk samples are
used to construct the reference, we retained the loading matrix of the first 30 PCs
learned from the reference data when implementing RA3. The performance of
RA3 is robust to the choice of τ0, τ1, θ, K2, and K3 (Supplementary Figs. 13 and
14) and the number of PCs learned from the reference data (Supplementary
Fig. 15). In practice, we found that as long as K1 passes certain value, RA3
performs well and stable when it further increases. The reason is that the prior
on h⋅1 has a shrinkage effect, the variations of h⋅1 for the irrelevant projection
vectors are small and will be further shrunk toward 0. We set the default value of
K1 to be capped at 30. The value of K1 has a minor effect on the computational
time of RA3, compared to the scale of the target scCAS dataset (Supplementary
Fig. 11b).

Model fitting and parameter estimation. Given the observed scCAS matrix Y 2
Rp´ n after TF-IDF transformation and the matrix of covariates X 2 Rq ´ n , we
treat the latent variable matrix H ¼ h1; ¼ ; hn

� � 2 RK ´ n as missing data, and use
the expectation-maximization (EM) algorithm to estimate the model parameters
Θ= (Γ, A, W*, β, σ), where Γ ¼ ½γ1; ¼ ; γn� 2 RK ´ n , A ¼ diagðαK1þ1; ¼ ; αK Þ 2
RðK2þK3 Þ ´ ðK2þK3Þ and W� ¼ W2 W3

� � ¼ ½wK1þ1; ¼ ;wK � 2 Rp ´ ðK2þK3Þ . For

simplicity of the derivation that will follow, we also write H ¼ HT
1 HT

2 HT
3

� �T
,

where H1 2 RK1 ´ n , H2 2 RK2 ´ n , and H3 2 RK3 ´ n , corresponding to the

decomposition of variation introduced previously, and h�j ¼ ½hTj2 hTj3�
T
,

H� ¼ ½HT
2 HT

3 �
T
.

In the expectation step (E-step), given the parameters estimated in the previous
iteration Θt−1, the posterior distribution of hj is

hjjyj; xj;Θt�1 � N K ðμ̂j; Σ̂jÞ; ð6Þ

Fig. 5 Trajectory inference and motif enrichment analysis. a t-SNE visualization of the cells from donor BM0828 and the inferred trajectory with Slingshot
using the output of RA3 and Louvain clustering. The hematopoietic differentiation tree29 is shown on the bottomleft. b The top 50 most variable TF binding
motifs within the cluster-specific peaks for the cells of donor BM0828. The deviations calculated by chromVAR are shown. FACS fluorescent activated cell
sorting.
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where Σ̂j ¼ ðσ�2WTWþD�1
j Þ�1

, μ̂j ¼ σ�2ðyj � βxjÞTWΣ̂j , and

Dj ¼ I K1
� � � 0ð1� γðK1þ1ÞjÞτ20 þ γðK1þ1Þjτ

2
1 � � � 0..

...
. . .
. ..

...
.
0 � � � ð1� γðK1þK2ÞjÞτ

2
0 þ γðK1þK2Þjτ

2
10 � � � IK3

� �
2 RK ´K :

ð7Þ
Based on the posterior distribution, we compute the following expectations:

EðhjÞ ¼ μ̂Tj ;

EðhjhTj Þ ¼ EðhjÞEðhjÞT þ Σ̂j:

(
ð8Þ

In the maximization step (M-step), we maximize the expected value of the
complete log-likelihood with respect to Θ. The corresponding objective function is

Q ¼ EHjY;θ log PðYjW;H;X;A; βÞ þ log PðWjAÞ þ log PðHjΓÞ þ log PðΓÞð Þ
¼ � np

2
log σ2 � 1

2
EHjY;θ trace σ�2ðY� βXÞTðY� βXÞ � 2σ�2ðY� βXÞTWHþ σ�2ðWHÞTWH

h i� �

þ ∑
K

k¼K1þ1
� 1
2
log jα�1

k Ipj �
1
2
αkw

T
kwk

� �

� 1
2
∑
n

j¼1
∑
K

k¼1
E hjh

T
j

� �2

kk
φ γkj

� �
� logφ γkj

� �� �

þ ∑
n

j¼1
∑

k¼K1þ1;¼ ;K1þK2

γkjlog θ þ ð1� γkjÞlog ð1� θÞ
h i

;

ð9Þ

where φðγkjÞ ¼
ð1� γkjÞτ�2

0 þ γkjτ
�2
1 ; k ¼ K1 þ 1; ¼ ;K1 þ K2

1; k ¼ 1; ¼ ;K1;K1 þ K2 þ 1; ¼ ;K

�
,

and EðhjhTj Þkk is the kth diagonal element of matrix EðhjhTj Þ.
The optimization problem can be solved by the iterative conditional mode

algorithm: in each step, we search for the mode of one group of variables, fixing the
other variables. To update A, W, β and σ, we use the following formulas derived by
setting the gradients to zero:

αk ¼
p

wT
kwk

; for k ¼ K1 þ 1; ¼ ;K ð10Þ

W� ¼ ðY� βX �W1H1ÞEðH�ÞT ∑
n

j¼1
E h�j h

�T
j

� �
þ σ2A

	 
�1

; ð11Þ

β ¼ ðY�WHÞXTðXXTÞ�1
; ð12Þ

σ2 ¼
∑n

j¼1 ðyj � βxjÞTðyj � βxjÞ � 2ðyj � βxjÞTWEðhjÞ þ traceðEðhjhTj ÞWTWÞ
h i

pn
:

ð13Þ
The variable Γ is updated element-wise by choosing γkj∈ {0, 1} that maximizes

f γkj ðγkjÞ ¼ � 1
2
EðhjhTj Þ

2

kk
φðγkjÞ þ

1
2
logφðγkjÞ þ γkjlogθ þ ð1� γkjÞlogð1� θÞ;

ð14Þ
where φ(γkj) is defined as

φðγkjÞ ¼ 1; k ¼ 1; ¼ ;K1;K1 þ K2 þ 1; ¼ ;K

φðγkjÞ ¼ ð1� γkjÞτ�2
0 þ γkjτ

�2
1 ; k ¼ K1 þ 1; ¼ ;K1 þ K2:

(
ð15Þ

We iteratively repeat the above E-step and M-step until convergence. E(H1) and
E(H2) obtained from the last iteration of the EM algorithm are used for
downstream analyses, including data visualization, cell clustering, trajectory
inference, and motif analysis. We implement an optional post-processing step for E
(H2). We first perform the one-sample t-test for each row of the estimate of E(H2)
obtained from the final iteration in EM algorithm, and test if its distribution has a
zero mean. Here we do not include the multiple testing correction procedure, as the
number of rows for testing (K2) is usually small. The rows that cannot reject the
null hypothesis under the 0.05 significant level would be discarded for following
analysis. We then truncate the values in each remaining row of E(H2) by the 5th
and 95th percentile. The purpose of the post-processing step is to alleviate the effect
of noisy cells with low sequencing depth. In practice, some components in H2 may
capture very few cells (<5) with extreme values, and these cells are usually noisy
cells with low sequencing depth. The optional post-processing step has minimal
effect on data visualization but it can improve the clustering result, especially for
methods based on Euclidean space, such as k-means clustering.

Initialization. The initial values for Θ= (Γ, A, W*, β, σ) are needed for the EM
algorithm. We consider a warm start for W2. More specifically, we calculate the
residual matrix rW1

, by subtracting the projection onto the column space of W1

from Y: rW1
¼ Y�W1W

T
1 Y. We then apply PCA to the residual matrix rW1

, and
obtain the loading matrix V and the PC score matrix. Varimax rotation is then
implemented on the PC score matrix, and rotation matrix R is obtained. We then
initialize W2 as VR. The intuition for varimax rotation is that we are looking for
directions within the principal subspace that separates a small number of cells from
the rest, mimicking the sparsity prior on W2. We also consider a warm start for σ.

To initialize σ, we first obtain the residual by subtracting from Y the projection
onto the column space of W1 and VR, and we then initialize σ as the standard
deviation of the residual. We initialize A with the identity matrix, and β with zeros.
We initialize γkj with 0 for k= K1+ 1,…, K1+ K2 and 1 for other k. W3 is initi-
alized by a random matrix with elements distributed as standard Gaussian
distribution.

Datasets and data processing
Datasets. The human bone marrow dataset contains single-cell chromatin acces-
sibility profiles across ten populations of immunophenotypically defined human
hematopoietic cell types from seven donors29. The GM/HEK and GM/HL datasets
are mixtures of the cell lines GM12878/HEK293T and GM12878/HL-60,
correspondingly5. The InSilico mixture dataset was constructed by computationally
combining scCAS datasets from H1, K562, GM12878, TF-1, HL-60, and BJ cell
lines4. The mouse forebrain dataset was generated from the forebrain tissue from
an 8-week-old adult mouse (postnatal day 56) by single-nucleus ATAC-seq30. The
MCA mouse brain dataset was generated from the prefrontal cortex, cerebellum,
and two samples from the whole brain of 8-week-old mice using sciATAC-seq,
which is a combinatorial indexing assay10. The 10X PBMC dataset produced by
10X Chromium Single Cell ATAC-seq was generated from PBMC from a
healthy donor.

Data preprocessing. To reduce the noise level, we selected peaks/regions that have at
least one read count in at least 3% of the cells in the scCAS count matrix. Similar to
Cusanovich et al.10, we performed TF-IDF transformation to normalize the scCAS
count matrix before implementing our model: we first weighted all the regions in
individual cells by the term frequency, which is the total number of accessible
regions in that cell, and then multiplied these weighted matrix by the logarithm of
inverse document frequency, which is the inverse frequency of each region to be
accessible across all cells.

Downsampling procedure. We randomly dropped out the non-zero entries in the
data matrix to zero with probability equal to the dropout rate.

Construction of reference
Manually curated bulk reference. For the human bone marrow dataset, we used
bulk ATAC-seq data of HSC, MPP, LMPP, CMP, GMP, MEP, Mono, CD4, CD8,
NK, NKT, B, CLP, Ery, UNK, pDC, and Mega cells provided by Buenrostro et al.29

as the reference data in RA3. To construct the reference for the GM/HEK, GM/HL,
and InSilico mixture datasets, we first downloaded BAM files of bulk DNase-seq
samples with relevant biological context from ENCODE15,16: GM12878 and
HEK293T cell lines for the GM/HEK dataset, GM12878 and HL-60 cell lines for
the GM/HL dataset, and H1, K562, GM12878, HL-60, and BJ cell lines for the
InSilico mixture dataset. We then counted the reads that fall into the regions of
scCAS data for the bulk samples to form a count matrix that has same features/
regions as the target single-cell data. We finally obtained the reference data through
scaling the count matrix by total mapped reads of each bulk sample.

OPENANNO. The webserver OPENANNO31 provides a convenient and straight-
forward approach to construct the reference. OPENANNO can annotate chro-
matin accessibility of arbitrary genomic regions by the normalized number of reads
that fall into the regions using BAM files, or the normalized number of peaks that
overlap with the regions using BED files. After submitting the peak file in scCAS
data to the webserver, OPENANNO computes the accessibility of the single-cell
peaks across 199 cell lines, 48 tissues, and 11 systems based on 871 DNase-seq
samples from ENCODE. When more than 30 bulk samples are used to construct
the reference, we retained the loading matrix of the first 30 PCs learned from the
reference data when implementing RA3.

Pseudo-bulk reference by aggregrating single cells. Given that it can be difficult to
obtain the bulk samples for certain cell populations, we can alternatively construct
pseudo-bulk reference data by aggregrating single cells of the same type/cluster. To
address the bias of the difference in cell type abundance in constructing the
reference, we took average (instead of taking sum) for each peak over single cells of
the same type/cluster. When the peaks do not match between the target single-cell
data and the reference single-cell data, we mapped the reads in the reference single-
cell data to the peaks in the target single-cell data to obtain the count matrix for the
reference single-cell data. The pseudo-bulk reference constructed in this way
requires the BAM files for the reference single-cell data. When the BAM files for
the reference single-cell data are not available, we can map the reads in the target
single-cell data to the peaks in the reference single-cell data instead. We demon-
strated this second way of constructing pseudo-bulk reference through the 10X
PBMC dataset, and the performance was similar.

GREAT analysis, trajectory inference, and motif analysis
GREAT analysis. We first selected the top 1000 peaks with largest magnitude in the
loadings of the second component: we focus on peaks with negative loadings
because the sign of H2 for the identified cell subpopulation (mainly CLP cells) is
mostly negative, and the peaks with negative loadings tend to be more accessible in
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the identified cell subpopulation. We then submitted these peaks to the GREAT37

server with a whole genome background and the default parameter settings to
identify significant pathways associated with the peaks and thus obtain functional
insight on the identified cell subpopulation. We note that our analysis with GREAT
does not require knowing the cell labels.

Trajectory inference. We adopted Slingshot52 for trajectory inference, which is the
best method of single-cell trajectory inference for tree-shaped trajectories as sug-
gested in a benchmark study53. With the default parameter settings, we used the
getLineages function to learn cluster relationships using the low-dimensional
representation provided by RA3 and the cluster labels obtained from RA3 +
Louvain clustering, and then constructed smooth curves representing the estimated
cell lineages using the getCurves function. We then used the embedCurves function
to map the curves to the two-dimensional t-SNE space for visualization.

Motif enrichment analysis. With the cluster labels obtained from RA3 + Louvain
clustering, we identified the cluster-specific peaks by implementing the hypothesis
testing procedure in scABC8 on the raw read counts. We selected the top 1000
peaks with smallest p values for each cluster, and then performed TF binding motif
enrichment within these peaks using chromVAR7.

Discussion on the Gaussian assumption. TF-IDF transformation is necessary for
better separation of the cells. After TF-IDF transformation, the data matrix is no
longer discrete and becomes continuous. Gaussian distribution is commonly used
to model continuous data and it has high computational efficiency given its con-
jugacy in our model. Computation is an important concern given the scale of the
datasets. We used the Kolmogorov–Smirnov (KS) test to test the normality of
individual peaks within each cell type after TF-IDF transformation. It is a one-
dimensional KS test as testing high-dimensional normality is not feasible. It
showed that up to 90% of the one-dimensional tests have been rejected, which
suggests that TF-IDF transformed data are not normally distributed. However,
given the good performance in all our examples, we think that the Gaussian
assumption is robust for cell-level analysis, including visualization, clustering, and
lineage reconstruction. For feature-level analysis, including differential peak ana-
lysis, the raw read counts should be used. We implemented scABC to detect
differential peaks, using the raw read counts and the cluster labels obtained by RA3
+ Louvain clustering.

Baseline methods. We compared the performance of RA3 with six baseline
methods (using their default parameters), including scABC8, SCALE13, Scasat11,
cisTopic9, Cusanovich20185,10, and SnapATAC12. Source code for implementing
the baseline methods was obtained from a benchmark study6. We set uniform
random seeds in all experiments to ensure the reproducibility of results. Similar to
SCALE, we applied all the baseline methods to reduce the scATAC-seq data to ten
dimensions for downstream visualization and clustering. To ensure data con-
sistency, we disabled the parameters for filtering peaks and cells in SCALE, and we
used the peaks in single-cell data instead of binning the genome into fixed-size
windows when implementing SnapATAC.

Visualization and clustering
Visualization. We first obtained the low-dimensional representation provided by
each method. To further reduce the dimension to two, we then implemented t-SNE
using the R package Rtsne34, and UMAP using the R package UMAP50.

Clustering. We first obtained the low-dimensional representation provided by each
method except for scABC, and then implemented Louvain clustering62–64 by
scanpy64, which is a community detection-based clustering method. The cluster
assignments for scABC were directly obtained from the model output. We
implemented binary search to tune the resolution parameter in Louvain clustering
to make the number of clusters and the number of cell types as close as possible6.
We used eight as the number of expected cell populations for the 10X PBMC
dataset.

Metrics for evaluation of clustering results. We evaluated the clustering
methods based on ARI, NMI, AMI, and homogeneity scores.

Let T denote the known ground-truth labels of cells, P denote the predicted
clustering assignments, N denote the total number of single cells, xi denote the
number of cells assigned to the ith cluster of P, yj denote the number of cells that
belong to the jth unique label of T, and nij denote the number of overlapping cells
between the ith cluster and the jth unique label. Rand index (RI) represents the
probability that the obtained clusters and the provided cell type labels will agree on
a randomly chosen pair of cells. ARI is an adjusted version of RI, where it adjusts

for the expected agreement by chance, and it is calculated as follows:

ARI ¼
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Both NMI and AMI are based on mutual information (MI), which assesses the
similarity between the obtained clusters and the cell type labels. NMI scales MI to
be between 0 and 1, and it is calculated as follows:

NMI ¼ MI ðP;TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðPÞHðTÞp ;

where H(⋅) is the entropy function.
AMI adjusts MI by considering the expected value under random clustering,

and it is calculated as follows:

AMI ¼ MI ðP;TÞ � E½MI ðP;TÞ�
avg½HðPÞ;HðTÞ� � E½MI ðP;TÞ� ;

where E(⋅) denotes the expectation function.
The homogeneity score assesses whether the obtained clusters contain only

cells of the same cell type, and it is equal to 1 if all the cells within the same
cluster correspond to the same cell type. The homogeneity score is computed as
follows:

Homogeneity ¼ 1�HðTjPÞ
HðTÞ ;

where H(T∣P) indicates the uncertainty of true labels based on the knowledge of
predicted assignments.

A comparison of ARI, NMI, and AMI was presented in65. ARI is preferred
when there are large equal-sized clusters65. AMI is theoretically preferred to NMI,
even though NMI is also very commonly used. AMI is preferred when the sizes of
clusters are unbalanced and when there are small clusters65.

We adopted the RAGI score6 to evaluate the clustering performance for the
10X PBMC dataset, since no cell type labels are provided in this dataset. The
RAGI score calculates the difference between (a) the variability of marker gene
accessibility across clusters and (b) the variability of housekeeping gene
accessibility across clusters. More specifically, we first used the Gene Scoring
method66 to summarize the accessibility for each gene in each cell. We then
computed the mean gene score among cells within each cluster, and computed
the Gini index67 for each marker gene48 based on these mean gene scores. We
use a set of annotated housekeeping genes reported in https://m.tau.ac.il/elieis/
HKG/HK_genes.txt. The Gini index for each housekeeping gene is calculated
similarly as that for the marker gene. We take average of the Gini indexes within
the set of marker genes and the set of housekeeping genes, respectively. Last we
obtain the RAGI score by calculating the difference in the average Gini indexes
in these two sets of genes. Intuitively, a good clustering result should contain
clusters that are enriched for accessibility of the marker genes, and each marker
gene should be highly accessible in only one or a few clusters. A larger RAGI
score indicates a better separation of the clusters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The human bone marrow dataset and the corresponding reference ATAC-seq data were
retrieved from NCBI Gene Expression Omnibus (GEO) with the accession number
GSE96772. Single-cell data of the GM/HEK and GM/HL datasets are available at GEO
GSE68103. The InSilico mixture dataset was collected from GEO with the accession
number GSE65360. BAM files of the reference data for GM/HEK, GM/HL, and InSilico
mixture datasets were obtained from ENCODE with the following accession number:
ENCFF774HUB, ENCFF775ZJX, and ENCFF783ZLL for the GM/HEK dataset;
ENCFF783ZLL, ENCFF775ZJX, ENCFF746RUG, and ENCFF328JJT for the GM/HL
dataset; and ENCFF328JJT, ENCFF826DJP, ENCFF923SKV, ENCFF775ZJX, and
ENCFF949CIK for the InSilico mixture dataset. The mouse forebrain dataset can be
accessed in GEO with the accession number GSE100033. The MCA mouse brain dataset
is available at http://atlas.gs.washington.edu/mouse-atac. The 10X PBMC dataset is
available at https://support.10xgenomics.com/single-cell-atac/datasets. The reference
data of fresh PBMCs were downloaded from GEO with the accession number
GSE129785. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
The RA3 R package with a detailed tutorial is freely available at https://github.com/
cuhklinlab/RA3 (https://doi.org/10.5281/zenodo.4581063)68. The source code for
reproduction is available at https://github.com/cuhklinlab/RA3_source (https://doi.org/
10.5281/zenodo.4581077).
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